Investigating species boundaries using DNA and morphology in the mite Tyrophagus curvipenis (Acari: Acaridae), an emerging invasive pest, with a molecular phylogeny of the genus Tyrophagus
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
University of Michigan
by Block grants from the Department of Ecology and Evolutionary Biology and a Rackham Graduate Student Research Grant
OAICE-08-CAB-147-2013
Universidad de Costa Rica (CR)
FI-0161-13
CONICIT- Costa Rica
No 15-04-05185-a
Russian Foundation for Basic Research
PVE 88881.064989/2014-01
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Ciência sem Fronteiras
16-14-10109
Russian Science Foundation
6.1933.2014/K project code 1933
Ministry of Education and Science of the Russian Federation
RO0417
Ministry of Agriculture of the Czech Republic
PubMed
29700678
DOI
10.1007/s10493-018-0256-9
PII: 10.1007/s10493-018-0256-9
Knihovny.cz E-zdroje
- Klíčová slova
- COI, DNA barcode, Genetic distances, Tyrophagus curvipenis, Tyrophagus phylogeny,
- MeSH
- Acaridae anatomie a histologie klasifikace enzymologie genetika MeSH
- biologická evoluce * MeSH
- fylogeneze * MeSH
- mitochondriální proteiny genetika MeSH
- proteiny členovců genetika MeSH
- respirační komplex IV genetika MeSH
- rozšíření zvířat MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- proteiny členovců MeSH
- respirační komplex IV MeSH
Mites of the genus Tyrophagus (Acari: Acaridae) are among the most widespread and common mites, inhabiting diverse natural and anthropogenic habitats. Some species are pests of agricultural products and stored food and/or live in house dust, causing allergies to humans. We sequenced 1.2 kb of the mitochondrial COI gene for 38 individuals belonging to seven species of Tyrophagus, including T. curvipenis, T. putrescentiae, T. fanetzhangorum, T. longior, T. perniciosus, and T. cf. similis. Molecular phylogenetic analyses (1) recovered two major clades corresponding to the presence or absence of eyespots, and (2) separated all included morphological species. Tyrophagus curvipenis and T. putrescentiae had the lowest between-species genetic distances (range, mean ± SD): 14.20-16.30, 15.17 ± 0.40 (K2P). The highest within-species variation was found in T. putrescentiae 0.00-4.33, 1.78 ± 1.44 (K2P). In this species, we recovered two distinct groups; however, no geographical or ecological dissimilarities were observed between them. Based on our analyses, we document important morphological differences between T. curvipenis and T. putrescentiae. For the first time, we record the occurrence of T. curvipenis in the New World and suggest that it may be an emerging pest as it is currently spreading in agricultural produce.
Biologically Active Substances in Crop Protection Crop Research Institute Prague Czech Republic
Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI 48109 USA
Zobrazit více v PubMed
Bull Entomol Res. 2010 Jun;100(3):263-72 PubMed
Insect Mol Biol. 1996 Nov;5(4):281-5 PubMed
Philos Trans R Soc Lond B Biol Sci. 2005 Oct 29;360(1462):1835-45 PubMed
Mol Ecol. 2012 Apr;21(8):1864-77 PubMed
Exp Appl Acarol. 2003;30(4):279-88 PubMed
Front Zool. 2007 Mar 07;4:8 PubMed
Exp Appl Acarol. 2014 Oct;64(2):141-57 PubMed
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14812-7 PubMed
Syst Biol. 2014 Nov;63(6):993-1004 PubMed
J Econ Entomol. 2004 Dec;97(6):2144-53 PubMed
Mol Biol Evol. 1994 Sep;11(5):725-36 PubMed
Annu Rev Entomol. 2010;55:421-38 PubMed
Proc Biol Sci. 2003 Feb 7;270(1512):313-21 PubMed
Bioinformatics. 2010 Oct 1;26(19):2455-7 PubMed
Mol Ecol Resour. 2015 Sep;15(5):1216-25 PubMed
Front Zool. 2010 May 25;7:16 PubMed
Mol Biol Evol. 2010 Mar;27(3):570-80 PubMed
Mol Phylogenet Evol. 2018 Feb;119:105-117 PubMed
Mol Phylogenet Evol. 2004 Sep;32(3):817-22 PubMed
Sci Rep. 2016 Oct 13;6:35275 PubMed
Exp Appl Acarol. 2005;35(1-2):29-46 PubMed
Philos Trans R Soc Lond B Biol Sci. 2005 Oct 29;360(1462):1825-34 PubMed
Mycoses. 2001 Nov;44(9-10):390-4 PubMed
Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(1):688-9 PubMed
Mol Biol Evol. 2015 May;32(5):1365-71 PubMed
Syst Biol. 2010 Jan;59(1):59-73 PubMed
Syst Biol. 2015 Jan;64(1):152-60 PubMed
Mol Ecol. 2013 Sep;22(17):4369-83 PubMed
Mol Biol Evol. 2016 Jul;33(7):1870-4 PubMed
Mol Biol Evol. 1999 Jan;16(1):37-48 PubMed
Syst Biol. 2014 Jul;63(4):639-44 PubMed
Bioinformatics. 2005 Mar 1;21(5):676-9 PubMed
Genetics. 2013 May;194(1):245-53 PubMed
Bioinformatics. 2009 Jun 1;25(11):1451-2 PubMed
Mol Biol Evol. 2006 Mar;23(3):691-700 PubMed
Mol Phylogenet Evol. 2017 Sep;114:212-224 PubMed
Syst Biol. 2006 Oct;55(5):715-28 PubMed
Evolution. 2004 Oct;58(10):2227-51 PubMed
PLoS Biol. 2004 Oct;2(10):e312 PubMed
Philos Trans R Soc Lond B Biol Sci. 2005 Oct 29;360(1462):1905-16 PubMed
Med Vet Entomol. 2014 Sep;28(3):287-96 PubMed
Front Microbiol. 2016 Jul 12;7:1046 PubMed
PLoS One. 2016 Dec 19;11(12 ):e0167203 PubMed
Gene. 2016 Feb 1;576(2 Pt 2):807-19 PubMed
Bioinformatics. 2001 Aug;17(8):754-5 PubMed
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15958-63 PubMed
Syst Biol. 2008 Oct;57(5):758-71 PubMed
Mol Phylogenet Evol. 2014 Feb;71:79-93 PubMed
Parasitol Res. 2011 Feb;108(2):497-503 PubMed
PLoS Genet. 2012;8(7):e1002764 PubMed
Mol Phylogenet Evol. 2008 Jun;47(3):1135-56 PubMed
Parasitol Res. 2014 Jul;113(7):2603-27 PubMed
Microbial Communities of Stored Product Mites: Variation by Species and Population