Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma

. 2021 Sep 30 ; 22 (19) : . [epub] 20210930

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34638952

The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.

Zobrazit více v PubMed

Yan X., Chen X. Titanium Dioxide Nanomaterials. In: Scott R.A., editor. Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd.; Chichester, UK: 2015. pp. 1–38. DOI

Cho W.-S., Kang B.-C., Lee J.K., Jeong J., Che J.-H., Seok S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol. 2013;10:9. doi: 10.1186/1743-8977-10-9. PubMed DOI PMC

Haider A.J., Jameel Z.N., Al-Hussaini I.H. Review on: Titanium Dioxide Applications. Energy Procedia. 2019;157:17–29. doi: 10.1016/j.egypro.2018.11.159. DOI

Haghi M., Hekmatafshar M., Janipour M.B., Seyyed S. Antibacterial Effect of TiO2 Nanoparticles on Pathogenic Strain of E. coli. IJABR. 2012;3:621–624.

Ahmad R. Antibacterial Agents Against E. coli. IJIRSET. 2013;2:3569–3574.

Abdulazeem L., L-Amiedi B.H.A., Alrubaei H.A., L-Mawlah Y.H.A. Titanium dioxide nanoparticles as antibacterial agents against some pathogenic bacteria. Drug Invent. Today. 2019;12:5.

Abbasi A. Nanocarriers for Drug Delivery. Elsevier; Amsterdam, The Netherlands: 2019. TiO2-Based Nanocarriers for Drug Delivery; pp. 205–248. DOI

Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI

Uboldi C., Urbán P., Gilliland D., Bajak E., Valsami-Jones E., Ponti J., Rossi F. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol. Vitr. 2016;31:137–145. doi: 10.1016/j.tiv.2015.11.005. PubMed DOI

Allouni Z.E., Cimpan M.R., Høl P.J., Skodvin T., Gjerdet N.R. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf. B Biointerfaces. 2009;68:83–87. doi: 10.1016/j.colsurfb.2008.09.014. PubMed DOI

Ziental D., Czarczynska-Goslinska B., Mlynarczyk D.T., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020;10:387. doi: 10.3390/nano10020387. PubMed DOI PMC

Wang J., Zhou G., Tiancheng W., Yu H., Wang T., Ma Y., Jiangxue W., Gao Y., Li Y.-F., Sun J. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007;168:176–185. doi: 10.1016/j.toxlet.2006.12.001. PubMed DOI

Dréno B., Alexis A., Chuberre B., Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019;33:34–46. doi: 10.1111/jdv.15943. PubMed DOI

Xie G., Lu W., Lu D. Penetration of titanium dioxide nanoparticles through slightly damaged skin in vitro and in vivo. JABFM. 2015;13:356–361. doi: 10.5301/jabfm.5000243. PubMed DOI

Crosera M., Prodi A., Mauro M., Pelin M., Florio C., Bellomo F., Adami G., Apostoli P., De Palma G., Bovenzi M., et al. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int. J. Environ. Res. Public Health. 2015;12:9282–9297. doi: 10.3390/ijerph120809282. PubMed DOI PMC

Pelclova D., Navratil T., Kacerova T., Zamostna B., Fenclova Z., Vlckova S., Kacer P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials. 2019;9:888. doi: 10.3390/nano9060888. PubMed DOI PMC

Jones K., Morton J., Smith I., Jurkschat K., Harding A.-H., Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015;233:95–101. doi: 10.1016/j.toxlet.2014.12.005. PubMed DOI

Marucco A., Prono M., Beal D., Alasonati E., Fisicaro P., Bergamaschi E., Carriere M., Fenoglio I. Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials. 2020;10:2132. doi: 10.3390/nano10112132. PubMed DOI PMC

Dudefoi W., Rabesona H., Rivard C., Mercier-Bonin M., Humbert B., Terrisse H., Ropers M.-H. In vitro digestion of food grade TiO2 (E171) and TiO2 nanoparticles: Physicochemical characterization and impact on the activity of digestive enzymes. Food Funct. 2021;12:5975–5988. doi: 10.1039/D1FO00499A. PubMed DOI

Baranowska-Wójcik E., Szwajgier D., Oleszczuk P., Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2019;193:118–129. doi: 10.1007/s12011-019-01706-6. PubMed DOI PMC

Warheit D.B., Donner E.M. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem. Toxicol. 2015;85:138–147. doi: 10.1016/j.fct.2015.07.001. PubMed DOI

Chen J., Dong X., Zhao J., Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. 2009;29:330–337. doi: 10.1002/jat.1414. PubMed DOI

Ammendolia M.G., Iosi F., Maranghi F., Tassinari R., Cubadda F., Aureli F., Raggi A., Superti F., Mantovani A., De Berardis B. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem. Toxicol. 2017;102:63–75. doi: 10.1016/j.fct.2017.01.031. PubMed DOI

Barrett A.J., Woessner J.F., Rawlings N.D. Handbook of Proteolytic Enzymes. Volume 1 Elsevier; Amsterdam, The Netherlands: 2012.

Showing Compound Pancreatin (FDB001084)—FooDB. [(accessed on 16 September 2021)]. Available online: https://foodb.ca/compounds/FDB001084.

Pinďáková L., Kašpárková V., Kejlová K., Dvorakova M., Krsek D., Jírová D., Kašparová L. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids. Int. J. Pharm. 2017;527:12–20. doi: 10.1016/j.ijpharm.2017.05.026. PubMed DOI

Isaac C., De Mattos C.N., Rêgo F.M.P.D., Cardim L.N., Altran S.C., Paggiaro A.O., Tutihashi R.M.C., Mathor M.B., Ferreira M.C. Replacement of fetal calf serum by human serum as supplementation for human fibroblast culture. Rev. Bras. Cir. Plást. 2011;26:379–384. doi: 10.1590/S1983-51752011000300003. DOI

Zhao L., Chang J., Zhai W. Effect of Crystallographic Phases of TiO2 on Hepatocyte Attachment, Proliferation and Morphology. J. Biomater. Appl. 2005;19:237–252. doi: 10.1177/0885328205047218. PubMed DOI

Hezam M., Qaid S.M.H., Bedja I.M., Alharbi F., Nazeeruddin M.K., Aldwayyan A. Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment. Crystals. 2019;9:562. doi: 10.3390/cryst9110562. DOI

Sean N.A., Leaw W.L., Nur H. Effect of calcination temperature on the photocatalytic activity of carbon-doped titanium dioxide revealed by photoluminescence study. J. Chin. Chem. Soc. 2019;66:1277–1283. doi: 10.1002/jccs.201800389. DOI

Li C.-C., Chang S.-J., Tai M.-Y. Surface Chemistry and Dispersion Property of TiO2 Nanoparticles. J. Am. Ceram. Soc. 2010;93:4008–4010. doi: 10.1111/j.1551-2916.2010.04222.x. DOI

Suttiponparnit K., Jiang J., Sahu M., Suvachittanont S., Charinpanitkul T., Biswas P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2010;6:27. doi: 10.1007/s11671-010-9772-1. PubMed DOI PMC

Kosmulski M. The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 2002;99:255–264. doi: 10.1016/S0001-8686(02)00080-5. PubMed DOI

Teubl B.J., Schimpel C., Leitinger G., Bauer B., Fröhlich E., Zimmer A., Roblegg E. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. J. Hazard. Mater. 2015;286:298–305. doi: 10.1016/j.jhazmat.2014.12.064. PubMed DOI

Sager T.M., Porter D.W., Robinson V.A., Lindsley W.G., Schwegler-Berry D.E., Castranova V. Improved method to disperse nanoparticles forin vitroandin vivoinvestigation of toxicity. Nanotoxicology. 2007;1:118–129. doi: 10.1080/17435390701381596. DOI

Ji Z., Jin X., George S., Xia T., Meng H., Wang X., Suarez E., Zhang H., Hoek E.M., Godwin H., et al. Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ. Sci. Technol. 2010;44:7309–7314. doi: 10.1021/es100417s. PubMed DOI PMC

Pareek V., Bhargava A., Bhanot V., Gupta R., Jain N., Panwar J. Formation and Characterization of Protein Corona Around Nanoparticles: A Review. J. Nanosci. Nanotechnol. 2018;18:6653–6670. doi: 10.1166/jnn.2018.15766. PubMed DOI

Nguyen V.H., Lee B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017;12:3137–3151. doi: 10.2147/IJN.S129300. PubMed DOI PMC

Nierenberg D., Khaled A.R., Flores O. Formation of a protein corona influences the biological identity of nanomaterials. Rep. Pract. Oncol. Radiother. 2018;23:300–308. doi: 10.1016/j.rpor.2018.05.005. PubMed DOI PMC

Chen E.Y., Liu W.F., Megido L., Díez P., Fuentes M., Fager C., Olsson E., Gessner I., Mathur S. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. Understanding and utilizing the biomolecule/nanosystems interface; pp. 207–297. DOI

Capjak I., Goreta S., Jurašin D.D., Vrček I.V. How protein coronas determine the fate of engineered nanoparticles in biological environment. Arh. Hig. Rada Toksikol. 2017;68:245–253. doi: 10.1515/aiht-2017-68-3054. PubMed DOI

Sohal I.S., Cho Y.K., O’Fallon K.S., Gaines P., Demokritou P., Bello D. Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano. 2018;12:8115–8128. doi: 10.1021/acsnano.8b02978. PubMed DOI

Fröhlich E., Roblegg E. Oral uptake of nanoparticles: Human relevance and the role of in vitro systems. Arch. Toxicol. 2016;90:2297–2314. doi: 10.1007/s00204-016-1765-0. PubMed DOI

Sun Y., Zhen T., Li Y., Wang Y., Wang M., Li X., Sun Q. Interaction of food-grade titanium dioxide nanoparticles with pepsin in simulated gastric fluid. LWT. 2020;134:110208. doi: 10.1016/j.lwt.2020.110208. DOI

Gunawan C., Lim M., Marquis C., Amal R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J. Mater. Chem. B. 2014;2:2060–2083. doi: 10.1039/c3tb21526a. PubMed DOI

Zhu R.-R., Wang W.-R., Sun X.-Y., Liu H., Wang S.-L. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin. Toxicol. Vitr. 2010;24:1639–1647. doi: 10.1016/j.tiv.2010.06.002. PubMed DOI

McCracken C., Zane A., Knight D.A., Dutta P.K., Waldman W.J. Minimal Intestinal Epithelial Cell Toxicity in Response to Short- and Long-Term Food-Relevant Inorganic Nanoparticle Exposure. Chem. Res. Toxicol. 2013;26:1514–1525. doi: 10.1021/tx400231u. PubMed DOI

Deng Z.J., Mortimer G., Schiller T., Musumeci A., Martin D., Minchin R.F. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20:455101. doi: 10.1088/0957-4484/20/45/455101. PubMed DOI

Ruh H., Kühl B., Brenner-Weiss G., Hopf C., Diabaté S., Weiss C. Identification of serum proteins bound to industrial nanomaterials. Toxicol. Lett. 2012;208:41–50. doi: 10.1016/j.toxlet.2011.09.009. PubMed DOI

Marucco A., Fenoglio I., Turci F., Fubini B. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. J. Phys. Conf. Ser. 2013;429 doi: 10.1088/1742-6596/429/1/012014. DOI

Jin C.-Y., Zhu B.-S., Wang X.-F., Lu Q.-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chem. Res. Toxicol. 2008;21:1871–1877. doi: 10.1021/tx800179f. PubMed DOI

Bettencourt A., Gonçalves L.M., Gramacho A.C., Vieira A., Rolo D., Martins C., Assunção R., Alvito P., Silva M.J., Louro H. Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomaterials. 2020;10:1516. doi: 10.3390/nano10081516. PubMed DOI PMC

Gandamalla D., Lingabathula H., Yellu N.R. Cytotoxicity Evaluation of Titanium and Zinc Oxide Nanoparticles on Human Cell Lines. Int. J. Pharm. Pharm. Sci. 2017;9:240–246. doi: 10.22159/ijpps.2017v9i11.21924. DOI

Hamzeh M., Sunahara G.I. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol. Vitr. 2013;27:864–873. doi: 10.1016/j.tiv.2012.12.018. PubMed DOI

Hanot-Roy M., Tubeuf E., Guilbert A., Bado-Nilles A., Vigneron P., Trouiller B., Braun A., Lacroix G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. Vitr. 2016;33:125–135. doi: 10.1016/j.tiv.2016.01.013. PubMed DOI

He P., Tao J., Xue J., Chen Y. Cytotoxicity Property of Nano-TiO2 Sol and Nano-TiO2 Powder. J. Nanomater. 2011;2011:261605. doi: 10.1155/2011/261605. DOI

Kongseng S., Yoovathaworn K., Wongprasert K., Chunhabundit R., Sukwong P., Pissuwan D. Cytotoxic and inflammatory responses of TiO2 nanoparticles on human peripheral blood mononuclear cells: High concentrations of TiO2–NPs could induce cytotoxicity in PBMCs. J. Appl. Toxicol. 2016;36:1364–1373. doi: 10.1002/jat.3342. PubMed DOI

Suker D.K., Albadran R.M. Cytotoxic Effects of Titanium Dioxide Nanoparticles on Rat Embryo Fibroblast REF-3 Cell Line In Vitro. [(accessed on 17 April 2021)];Eur. J. Exp. Biol. 2013 3 Available online: https://www.imedpub.com/abstract/cytotoxic-effects-of-titanium-dioxide-nanoparticles-on-rat-embryo-fibroblast-ref3-cell-line-in-vitro-11714.html.

Wang Y., Cui H., Zhou J., Li F., Wang J., Chen M., Liu Q. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ. Sci. Pollut. Res. 2014;22:5519–5530. doi: 10.1007/s11356-014-3717-7. PubMed DOI

Zhang J., Song W., Guo J., Zhang J., Sun Z., Li L., Ding F., Gao M. Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages. Toxicol. Ind. Health. 2012;29:523–533. doi: 10.1177/0748233712442708. PubMed DOI

Pittol M., Tomacheski D., Simões D.N., Ribeiro V.F., Santana R.M.C. Evaluation of the Toxicity of Silver/Silica and Titanium Dioxide Particles in Mammalian Cells. Braz. Arch. Biol. Technol. 2018;61 doi: 10.1590/1678-4324-2018160667. DOI

Rosłon M., Jastrzębska A., Sitarz K., Książek I., Koronkiewicz M., Anuszewska E., Jaworska M., Dudkiewicz-Wilczyńska J., Ziemkowska W., Basiak D., et al. The toxicity in vitro of titanium dioxide nanoparticles modified with noble metals on mammalian cells. Int. J. Appl. Ceram. Technol. 2018;16:481–493. doi: 10.1111/ijac.13128. DOI

Wagner S., Münzer S., Behrens P., Scheper T., Bahnemann D.B.D., Kasper C. Cytotoxicity of titanium and silicon dioxide nanoparticles. J. Phys. Conf. Ser. 2009;170:012022. doi: 10.1088/1742-6596/170/1/012022. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...