Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34638952
PubMed Central
PMC8509028
DOI
10.3390/ijms221910614
PII: ijms221910614
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 particles, agglomeration, plasma, proteins, simulated gastric fluids,
- MeSH
- buněčné linie MeSH
- dárci krve MeSH
- fibroblasty účinky léků metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kovové nanočástice škodlivé účinky chemie MeSH
- krevní plazma metabolismus MeSH
- krystalizace MeSH
- kultivační média metabolismus MeSH
- lidé MeSH
- myši MeSH
- osmolární koncentrace MeSH
- povrchové vlastnosti MeSH
- sliny metabolismus MeSH
- titan škodlivé účinky chemie metabolismus MeSH
- velikost částic MeSH
- viabilita buněk účinky léků MeSH
- voda metabolismus MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kultivační média MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- voda MeSH
The growing application of materials containing TiO2 particles has led to an increased risk of human exposure, while a gap in knowledge about the possible adverse effects of TiO2 still exists. In this work, TiO2 particles of rutile, anatase, and their commercial mixture were exposed to various environments, including simulated gastric fluids and human blood plasma (both representing in vivo conditions), and media used in in vitro experiments. Simulated body fluids of different compositions, ionic strengths, and pH were used, and the impact of the absence or presence of chosen enzymes was investigated. The physicochemical properties and agglomeration of TiO2 in these media were determined. The time dependent agglomeration of TiO2 related to the type of TiO2, and mainly to the type and composition of the environment that was observed. The presence of enzymes either prevented or promoted TiO2 agglomeration. TiO2 was also observed to exhibit concentration-dependent cytotoxicity. This knowledge about TiO2 behavior in all the abovementioned environments is critical when TiO2 safety is considered, especially with respect to the significant impact of the presence of proteins and size-related cytotoxicity.
Department of Hematology Tomas Bata Regional Hospital in Zlin 76275 Zlin Czech Republic
Faculty of Technology Tomas Bata University in Zlín nám T G Masaryka 5555 76001 Zlin Czech Republic
Zobrazit více v PubMed
Yan X., Chen X. Titanium Dioxide Nanomaterials. In: Scott R.A., editor. Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons, Ltd.; Chichester, UK: 2015. pp. 1–38. DOI
Cho W.-S., Kang B.-C., Lee J.K., Jeong J., Che J.-H., Seok S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol. 2013;10:9. doi: 10.1186/1743-8977-10-9. PubMed DOI PMC
Haider A.J., Jameel Z.N., Al-Hussaini I.H. Review on: Titanium Dioxide Applications. Energy Procedia. 2019;157:17–29. doi: 10.1016/j.egypro.2018.11.159. DOI
Haghi M., Hekmatafshar M., Janipour M.B., Seyyed S. Antibacterial Effect of TiO2 Nanoparticles on Pathogenic Strain of E. coli. IJABR. 2012;3:621–624.
Ahmad R. Antibacterial Agents Against E. coli. IJIRSET. 2013;2:3569–3574.
Abdulazeem L., L-Amiedi B.H.A., Alrubaei H.A., L-Mawlah Y.H.A. Titanium dioxide nanoparticles as antibacterial agents against some pathogenic bacteria. Drug Invent. Today. 2019;12:5.
Abbasi A. Nanocarriers for Drug Delivery. Elsevier; Amsterdam, The Netherlands: 2019. TiO2-Based Nanocarriers for Drug Delivery; pp. 205–248. DOI
Hanaor D.A.H., Sorrell C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI
Uboldi C., Urbán P., Gilliland D., Bajak E., Valsami-Jones E., Ponti J., Rossi F. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol. Vitr. 2016;31:137–145. doi: 10.1016/j.tiv.2015.11.005. PubMed DOI
Allouni Z.E., Cimpan M.R., Høl P.J., Skodvin T., Gjerdet N.R. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf. B Biointerfaces. 2009;68:83–87. doi: 10.1016/j.colsurfb.2008.09.014. PubMed DOI
Ziental D., Czarczynska-Goslinska B., Mlynarczyk D.T., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials. 2020;10:387. doi: 10.3390/nano10020387. PubMed DOI PMC
Wang J., Zhou G., Tiancheng W., Yu H., Wang T., Ma Y., Jiangxue W., Gao Y., Li Y.-F., Sun J. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 2007;168:176–185. doi: 10.1016/j.toxlet.2006.12.001. PubMed DOI
Dréno B., Alexis A., Chuberre B., Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019;33:34–46. doi: 10.1111/jdv.15943. PubMed DOI
Xie G., Lu W., Lu D. Penetration of titanium dioxide nanoparticles through slightly damaged skin in vitro and in vivo. JABFM. 2015;13:356–361. doi: 10.5301/jabfm.5000243. PubMed DOI
Crosera M., Prodi A., Mauro M., Pelin M., Florio C., Bellomo F., Adami G., Apostoli P., De Palma G., Bovenzi M., et al. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int. J. Environ. Res. Public Health. 2015;12:9282–9297. doi: 10.3390/ijerph120809282. PubMed DOI PMC
Pelclova D., Navratil T., Kacerova T., Zamostna B., Fenclova Z., Vlckova S., Kacer P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials. 2019;9:888. doi: 10.3390/nano9060888. PubMed DOI PMC
Jones K., Morton J., Smith I., Jurkschat K., Harding A.-H., Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2015;233:95–101. doi: 10.1016/j.toxlet.2014.12.005. PubMed DOI
Marucco A., Prono M., Beal D., Alasonati E., Fisicaro P., Bergamaschi E., Carriere M., Fenoglio I. Biotransformation of Food-Grade and Nanometric TiO2 in the Oral–Gastro–Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials. 2020;10:2132. doi: 10.3390/nano10112132. PubMed DOI PMC
Dudefoi W., Rabesona H., Rivard C., Mercier-Bonin M., Humbert B., Terrisse H., Ropers M.-H. In vitro digestion of food grade TiO2 (E171) and TiO2 nanoparticles: Physicochemical characterization and impact on the activity of digestive enzymes. Food Funct. 2021;12:5975–5988. doi: 10.1039/D1FO00499A. PubMed DOI
Baranowska-Wójcik E., Szwajgier D., Oleszczuk P., Winiarska-Mieczan A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2019;193:118–129. doi: 10.1007/s12011-019-01706-6. PubMed DOI PMC
Warheit D.B., Donner E.M. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Food Chem. Toxicol. 2015;85:138–147. doi: 10.1016/j.fct.2015.07.001. PubMed DOI
Chen J., Dong X., Zhao J., Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J. Appl. Toxicol. 2009;29:330–337. doi: 10.1002/jat.1414. PubMed DOI
Ammendolia M.G., Iosi F., Maranghi F., Tassinari R., Cubadda F., Aureli F., Raggi A., Superti F., Mantovani A., De Berardis B. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem. Toxicol. 2017;102:63–75. doi: 10.1016/j.fct.2017.01.031. PubMed DOI
Barrett A.J., Woessner J.F., Rawlings N.D. Handbook of Proteolytic Enzymes. Volume 1 Elsevier; Amsterdam, The Netherlands: 2012.
Showing Compound Pancreatin (FDB001084)—FooDB. [(accessed on 16 September 2021)]. Available online: https://foodb.ca/compounds/FDB001084.
Pinďáková L., Kašpárková V., Kejlová K., Dvorakova M., Krsek D., Jírová D., Kašparová L. Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids. Int. J. Pharm. 2017;527:12–20. doi: 10.1016/j.ijpharm.2017.05.026. PubMed DOI
Isaac C., De Mattos C.N., Rêgo F.M.P.D., Cardim L.N., Altran S.C., Paggiaro A.O., Tutihashi R.M.C., Mathor M.B., Ferreira M.C. Replacement of fetal calf serum by human serum as supplementation for human fibroblast culture. Rev. Bras. Cir. Plást. 2011;26:379–384. doi: 10.1590/S1983-51752011000300003. DOI
Zhao L., Chang J., Zhai W. Effect of Crystallographic Phases of TiO2 on Hepatocyte Attachment, Proliferation and Morphology. J. Biomater. Appl. 2005;19:237–252. doi: 10.1177/0885328205047218. PubMed DOI
Hezam M., Qaid S.M.H., Bedja I.M., Alharbi F., Nazeeruddin M.K., Aldwayyan A. Synthesis of Pure Brookite Nanorods in a Nonaqueous Growth Environment. Crystals. 2019;9:562. doi: 10.3390/cryst9110562. DOI
Sean N.A., Leaw W.L., Nur H. Effect of calcination temperature on the photocatalytic activity of carbon-doped titanium dioxide revealed by photoluminescence study. J. Chin. Chem. Soc. 2019;66:1277–1283. doi: 10.1002/jccs.201800389. DOI
Li C.-C., Chang S.-J., Tai M.-Y. Surface Chemistry and Dispersion Property of TiO2 Nanoparticles. J. Am. Ceram. Soc. 2010;93:4008–4010. doi: 10.1111/j.1551-2916.2010.04222.x. DOI
Suttiponparnit K., Jiang J., Sahu M., Suvachittanont S., Charinpanitkul T., Biswas P. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties. Nanoscale Res. Lett. 2010;6:27. doi: 10.1007/s11671-010-9772-1. PubMed DOI PMC
Kosmulski M. The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 2002;99:255–264. doi: 10.1016/S0001-8686(02)00080-5. PubMed DOI
Teubl B.J., Schimpel C., Leitinger G., Bauer B., Fröhlich E., Zimmer A., Roblegg E. Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. J. Hazard. Mater. 2015;286:298–305. doi: 10.1016/j.jhazmat.2014.12.064. PubMed DOI
Sager T.M., Porter D.W., Robinson V.A., Lindsley W.G., Schwegler-Berry D.E., Castranova V. Improved method to disperse nanoparticles forin vitroandin vivoinvestigation of toxicity. Nanotoxicology. 2007;1:118–129. doi: 10.1080/17435390701381596. DOI
Ji Z., Jin X., George S., Xia T., Meng H., Wang X., Suarez E., Zhang H., Hoek E.M., Godwin H., et al. Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ. Sci. Technol. 2010;44:7309–7314. doi: 10.1021/es100417s. PubMed DOI PMC
Pareek V., Bhargava A., Bhanot V., Gupta R., Jain N., Panwar J. Formation and Characterization of Protein Corona Around Nanoparticles: A Review. J. Nanosci. Nanotechnol. 2018;18:6653–6670. doi: 10.1166/jnn.2018.15766. PubMed DOI
Nguyen V.H., Lee B.-J. Protein corona: A new approach for nanomedicine design. Int. J. Nanomed. 2017;12:3137–3151. doi: 10.2147/IJN.S129300. PubMed DOI PMC
Nierenberg D., Khaled A.R., Flores O. Formation of a protein corona influences the biological identity of nanomaterials. Rep. Pract. Oncol. Radiother. 2018;23:300–308. doi: 10.1016/j.rpor.2018.05.005. PubMed DOI PMC
Chen E.Y., Liu W.F., Megido L., Díez P., Fuentes M., Fager C., Olsson E., Gessner I., Mathur S. Nanotechnologies in Preventive and Regenerative Medicine. Elsevier; Amsterdam, The Netherlands: 2018. Understanding and utilizing the biomolecule/nanosystems interface; pp. 207–297. DOI
Capjak I., Goreta S., Jurašin D.D., Vrček I.V. How protein coronas determine the fate of engineered nanoparticles in biological environment. Arh. Hig. Rada Toksikol. 2017;68:245–253. doi: 10.1515/aiht-2017-68-3054. PubMed DOI
Sohal I.S., Cho Y.K., O’Fallon K.S., Gaines P., Demokritou P., Bello D. Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS Nano. 2018;12:8115–8128. doi: 10.1021/acsnano.8b02978. PubMed DOI
Fröhlich E., Roblegg E. Oral uptake of nanoparticles: Human relevance and the role of in vitro systems. Arch. Toxicol. 2016;90:2297–2314. doi: 10.1007/s00204-016-1765-0. PubMed DOI
Sun Y., Zhen T., Li Y., Wang Y., Wang M., Li X., Sun Q. Interaction of food-grade titanium dioxide nanoparticles with pepsin in simulated gastric fluid. LWT. 2020;134:110208. doi: 10.1016/j.lwt.2020.110208. DOI
Gunawan C., Lim M., Marquis C., Amal R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J. Mater. Chem. B. 2014;2:2060–2083. doi: 10.1039/c3tb21526a. PubMed DOI
Zhu R.-R., Wang W.-R., Sun X.-Y., Liu H., Wang S.-L. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin. Toxicol. Vitr. 2010;24:1639–1647. doi: 10.1016/j.tiv.2010.06.002. PubMed DOI
McCracken C., Zane A., Knight D.A., Dutta P.K., Waldman W.J. Minimal Intestinal Epithelial Cell Toxicity in Response to Short- and Long-Term Food-Relevant Inorganic Nanoparticle Exposure. Chem. Res. Toxicol. 2013;26:1514–1525. doi: 10.1021/tx400231u. PubMed DOI
Deng Z.J., Mortimer G., Schiller T., Musumeci A., Martin D., Minchin R.F. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20:455101. doi: 10.1088/0957-4484/20/45/455101. PubMed DOI
Ruh H., Kühl B., Brenner-Weiss G., Hopf C., Diabaté S., Weiss C. Identification of serum proteins bound to industrial nanomaterials. Toxicol. Lett. 2012;208:41–50. doi: 10.1016/j.toxlet.2011.09.009. PubMed DOI
Marucco A., Fenoglio I., Turci F., Fubini B. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases. J. Phys. Conf. Ser. 2013;429 doi: 10.1088/1742-6596/429/1/012014. DOI
Jin C.-Y., Zhu B.-S., Wang X.-F., Lu Q.-H. Cytotoxicity of Titanium Dioxide Nanoparticles in Mouse Fibroblast Cells. Chem. Res. Toxicol. 2008;21:1871–1877. doi: 10.1021/tx800179f. PubMed DOI
Bettencourt A., Gonçalves L.M., Gramacho A.C., Vieira A., Rolo D., Martins C., Assunção R., Alvito P., Silva M.J., Louro H. Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomaterials. 2020;10:1516. doi: 10.3390/nano10081516. PubMed DOI PMC
Gandamalla D., Lingabathula H., Yellu N.R. Cytotoxicity Evaluation of Titanium and Zinc Oxide Nanoparticles on Human Cell Lines. Int. J. Pharm. Pharm. Sci. 2017;9:240–246. doi: 10.22159/ijpps.2017v9i11.21924. DOI
Hamzeh M., Sunahara G.I. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol. Vitr. 2013;27:864–873. doi: 10.1016/j.tiv.2012.12.018. PubMed DOI
Hanot-Roy M., Tubeuf E., Guilbert A., Bado-Nilles A., Vigneron P., Trouiller B., Braun A., Lacroix G. Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol. Vitr. 2016;33:125–135. doi: 10.1016/j.tiv.2016.01.013. PubMed DOI
He P., Tao J., Xue J., Chen Y. Cytotoxicity Property of Nano-TiO2 Sol and Nano-TiO2 Powder. J. Nanomater. 2011;2011:261605. doi: 10.1155/2011/261605. DOI
Kongseng S., Yoovathaworn K., Wongprasert K., Chunhabundit R., Sukwong P., Pissuwan D. Cytotoxic and inflammatory responses of TiO2 nanoparticles on human peripheral blood mononuclear cells: High concentrations of TiO2–NPs could induce cytotoxicity in PBMCs. J. Appl. Toxicol. 2016;36:1364–1373. doi: 10.1002/jat.3342. PubMed DOI
Suker D.K., Albadran R.M. Cytotoxic Effects of Titanium Dioxide Nanoparticles on Rat Embryo Fibroblast REF-3 Cell Line In Vitro. [(accessed on 17 April 2021)];Eur. J. Exp. Biol. 2013 3 Available online: https://www.imedpub.com/abstract/cytotoxic-effects-of-titanium-dioxide-nanoparticles-on-rat-embryo-fibroblast-ref3-cell-line-in-vitro-11714.html.
Wang Y., Cui H., Zhou J., Li F., Wang J., Chen M., Liu Q. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ. Sci. Pollut. Res. 2014;22:5519–5530. doi: 10.1007/s11356-014-3717-7. PubMed DOI
Zhang J., Song W., Guo J., Zhang J., Sun Z., Li L., Ding F., Gao M. Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages. Toxicol. Ind. Health. 2012;29:523–533. doi: 10.1177/0748233712442708. PubMed DOI
Pittol M., Tomacheski D., Simões D.N., Ribeiro V.F., Santana R.M.C. Evaluation of the Toxicity of Silver/Silica and Titanium Dioxide Particles in Mammalian Cells. Braz. Arch. Biol. Technol. 2018;61 doi: 10.1590/1678-4324-2018160667. DOI
Rosłon M., Jastrzębska A., Sitarz K., Książek I., Koronkiewicz M., Anuszewska E., Jaworska M., Dudkiewicz-Wilczyńska J., Ziemkowska W., Basiak D., et al. The toxicity in vitro of titanium dioxide nanoparticles modified with noble metals on mammalian cells. Int. J. Appl. Ceram. Technol. 2018;16:481–493. doi: 10.1111/ijac.13128. DOI
Wagner S., Münzer S., Behrens P., Scheper T., Bahnemann D.B.D., Kasper C. Cytotoxicity of titanium and silicon dioxide nanoparticles. J. Phys. Conf. Ser. 2009;170:012022. doi: 10.1088/1742-6596/170/1/012022. DOI