Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
22-08358S
Grantová Agentura České Republiky
Cooperatio: "Dental Medicine" 207031; Pharm
Univerzita Karlova v Praze
PubMed
38953869
PubMed Central
PMC11321414
DOI
10.1080/17435889.2024.2362611
Knihovny.cz E-zdroje
- Klíčová slova
- acute exposure, nanocomposite, nanoparticles, stomatology, transcriptomics,
- MeSH
- dospělí MeSH
- inhalační expozice * škodlivé účinky MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- mikro RNA * genetika MeSH
- nanočástice chemie MeSH
- nanokompozity * chemie MeSH
- oxidační stres účinky léků MeSH
- pracovní expozice škodlivé účinky MeSH
- transkriptom * účinky léků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA * MeSH
Aim: Today, there is a lack of research studies concerning human acute exposure to nanoparticles (NPs). Our investigation aimed to simulate real-world acute inhalation exposure to NPs released during work with dental nanocomposites in a dental office or technician laboratory. Methods: Blood samples from female volunteers were processed before and after inhalation exposure. Transcriptomic mRNA and miRNA expression changes were analyzed. Results: We detected large interindividual variability, 90 significantly deregulated mRNAs, and 4 miRNAs when samples of participants before and after dental nanocomposite grinding were compared. Conclusion: The results suggest that inhaled dental NPs may present an occupational hazard to human health, as indicated by the changes in the processes related to oxidative stress, synthesis of eicosanoids, and cell division.
What is this article about? We searched for a possible impact of acute inhalation exposure to nanoparticles (NPs) released during the grinding of dental nanocomposites used for teeth reconstruction. The exposure design utilized in our study simulated the acute exposure of the dental staff to the NPs. Our research fills the gaps in knowledge in the field of acute human inhalation exposure to dental nanocomposites.What were the results? Results indicate that the impact of exposure to NPs is dependent on the style of working as well as on the interindividual biological variability among study subjects. Changes in expression levels of genes associated with an increase of oxidative stress, synthesis of eicosanoids (signaling molecules related to e.g., immune responses), and cell division were detected.What do the results of the study mean? All the observed changes may contribute to the pathogenesis of neurodegenerative disorders, carcinogenesis, or problems during pregnancy. Occupational exposure to inhaled NPs, including those generated in dental practice can pose a significant health risk, and protective measures when working with these materials should be considered. More research is needed to compare our results with chronic (long-term) exposure to similar materials to show the hazards related to their inhalation.
Zobrazit více v PubMed
Shin N, Drapcho J, Aich N, et al. . Quantification and characterization of nanometer-sized particles released from dental composite products using a multimodal approach. J Nanopart Res. 2020;22:345. doi:10.1007/s11051-020-05078-0 DOI
Nett RJ, Cummings KJ, Cannon B, et al. . Dental personnel treated for idiopathic pulmonary fibrosis at a tertiary care center - Virginia, 2000–2015. MMWR Morb Mortal Wkly Rep. 2018;67:270–273. doi:10.15585/mmwr.mm6709a2 PubMed DOI PMC
Kahraman H, Koksal N, Cinkara M, et al. . Pneumoconiosis in dental technicians: HRCT and pulmonary function findings. Occup Med (Lond). 2014;64:442–447. doi:10.1093/occmed/kqu047 PubMed DOI
Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent. 2013;7:145–151. PubMed PMC
Ferracane JL. Resin composite–state of the art. Dent Mater. 2011;27:29–38. doi:10.1016/j.dental.2010.10.020 PubMed DOI
Stansbury JW. Curing dental resins and composites by photopolymerization. J Esthet Restor Dent. 2000;12:300–308. doi:10.1111/j.1708-8240.2000.tb00239.x PubMed DOI
Leprince JG, Palin WM, Hadis MA, et al. . Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013;29:139–156. doi:10.1016/j.dental.2012.11.005 PubMed DOI
Moszner N, Fischer UK, Ganster B, et al. . Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater. 2008;24:901–907. doi:10.1016/j.dental.2007.11.004 PubMed DOI
Cho K, Rajan G, Farrar P, et al. . Dental resin composites: a review on materials to product realizations. Composites Part B: Engineer. 2022;230:109495. doi:10.1016/j.compositesb.2021.109495 DOI
Randolph LD, Palin WM, Leloup G, et al. . Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32:1586–1599. doi:10.1016/j.dental.2016.09.034 PubMed DOI
Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monatshefte für Chemie. 2005;136:21–45. doi:10.1007/s00706-004-0254-y DOI
Blackham JT, Vandewalle KS, Lien W. Properties of hybrid resin composite systems containing prepolymerized filler particles. Operative Dent. 2009;34:697–702. doi:10.2341/08-118-L PubMed DOI
Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc. 2003;134:1382–1390. doi:10.14219/jada.archive.2003.0054 PubMed DOI
Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J Nanotechnol. 2004;1:130–156. doi:10.1504/IJNT.2004.003723 DOI
Schmalz G, Hickel R, van Landuyt KL, et al. . Nanoparticles in dentistry. Dent Mater. 2017;33:1298–1314. doi:10.1016/j.dental.2017.08.193 PubMed DOI
Bogdan A, Buckett MI, Japuntich DA. Nano-sized aerosol classification, collection and analysis–method development using dental composite materials. J Occup Environ Hyg. 2014;11:415–426. doi:10.1080/15459624.2013.875183 PubMed DOI
Bradna POL, Zdimal V, Navratil T, et al. . Detection of nanoparticles released at finishing of dental composite materials. Monatshefte Fur Chemie. 2017;148(3):531–537. doi:10.1007/s00706-016-1912-6 DOI
Van Landuyt KL, Hellack B, Van Meerbeek B, et al. . Nanoparticle release from dental composites. Acta Biomater. 2014;10:365–374. doi:10.1016/j.actbio.2013.09.044 PubMed DOI
Polednik B. Aerosol and bioaerosol particles in a dental office. Environ Res. 2014;134:405–409. doi:10.1016/j.envres.2014.06.027 PubMed DOI
Sotiriou M, Ferguson SF, Davey M, et al. . Measurement of particle concentrations in a dental office. Environ Monit Assess. 2008;137:351–361. doi:10.1007/s10661-007-9770-7 PubMed DOI
Liu Y, Hardie J, Zhang X, et al. . Effects of engineered nanoparticles on the innate immune system. Semin Immunol. 2017;34:25–32. doi:10.1016/j.smim.2017.09.011 PubMed DOI PMC
Kendall M, Holgate S. Health impact and toxicological effects of nanomaterials in the lung. Respirology. 2012;17:743–758. doi:10.1111/j.1440-1843.2012.02171.x PubMed DOI
Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–839. doi:10.1289/ehp.7339 PubMed DOI PMC
Tran CL, Buchanan D, Cullen RT, et al. . Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–1126. doi:10.1080/08958370050166796 PubMed DOI
Tsai C-J, Liu C-N, Hung S-M, et al. . Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol. 2012;46:4546–4552. doi:10.1021/es204580f PubMed DOI
Ewels PA, Peltzer A, Fillinger S, et al. . The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38:276–278. doi:10.1038/s41587-020-0439-x PubMed DOI
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. doi:10.12688/f1000research.7563.2 PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8 PubMed DOI PMC
Chen J, Bardes EE, Aronow BJ, et al. . ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37:W305–311. doi:10.1093/nar/gkp427 PubMed DOI PMC
Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. . DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–466. doi:10.1093/nar/gkv403 PubMed DOI PMC
Guadagnini R, Moreau K, Hussain S, et al. . Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. 2015;9:25–32. doi:10.3109/17435390.2013.855830 PubMed DOI
Arellano-Cotrina JJ, Marengo-Coronel N, Atoche-Socola KJ, et al. . Effectiveness and recommendations for the use of dental masks in the prevention of COVID-19: a literature review. Disaster Med Public Health Prep. 2021;15:e43–e48. doi:10.1017/dmp.2020.255 PubMed DOI PMC
Remington WD, Ott BC, Hartka TR. Effectiveness of barrier devices, high-volume evacuators, and extraoral suction devices on reducing dental aerosols for the dental operator. J Am Dent Assoc. 2022;153:309–318.e1. doi:10.1016/j.adaj.2021.08.011 PubMed DOI PMC
He Z, Gao Q, Henley A, et al. . Efficacy of aerosol reduction measures for dental aerosol generating procedures. Aerosol Sci Technol. 2022;56:413–424. doi:10.1080/02786826.2022.2040729 PubMed DOI PMC
Vuchkovska A, Glanville DG, Scurti GM, et al. . Siglec-5 is an inhibitory immune checkpoint molecule for human T cells. Immunology. 2022;166:238–248. doi:10.1111/imm.13470 PubMed DOI
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–266. doi:10.1038/nri2056 PubMed DOI
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne). 2022;13:839005. doi:10.3389/fendo.2022.839005 PubMed DOI PMC
Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7:715–726. doi:10.1038/nrendo.2011.122 PubMed DOI PMC
Rossnerova A, Chvojkova I, Elzeinova F, et al. . Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. Environ Toxicol Pharmacol. 2024;108:104462. doi:10.1016/j.etap.2024.104462 PubMed DOI
Tirado-Hurtado I, Fajardo W, Pinto JA. DNA damage inducible transcript 4 gene: the switch of the metabolism as potential target in cancer. Front Oncol. 2018;8:106. doi:10.3389/fonc.2018.00106 PubMed DOI PMC
Song L, Chen Z, Zhang M, et al. . DDIT4 overexpression associates with poor prognosis in lung adenocarcinoma. J Cancer. 2021;12:6422–6428. doi:10.7150/jca.60118 PubMed DOI PMC
Jiang T, Zhu J, Jiang S, et al. . Targeting lncRNA DDIT4-AS1 sensitizes triple negative breast cancer to chemotherapy via suppressing of autophagy. Adv Sci (Weinh). 2023;10:e2207257. doi:10.1002/advs.202207257 PubMed DOI PMC
Zhang S, Cheon M, Park H, et al. . Interaction between glucocorticoid receptors and FKBP5 in regulating neurotransmission of the hippocampus. Neuroscience. 2022;483:95–103. doi:10.1016/j.neuroscience.2021.12.020 PubMed DOI
Storer CL, Dickey CA, Galigniana MD, et al. . FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab. 2011;22:481–490. doi:10.1016/j.tem.2011.08.001 PubMed DOI PMC
Galigniana NM, Ballmer LT, Toneatto J, et al. . Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51. J Neurochem. 2012;122:4–18. doi:10.1111/j.1471-4159.2012.07775.x PubMed DOI
Grandjean P. Individual susceptibility to toxicity. Toxicol Lett. 1992;64–65:43–51. doi:10.1016/0378-4274(92)90171-F PubMed DOI
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50:35–51. doi:10.1016/j.plipres.2010.07.005 PubMed DOI
Pelclova D, Zdimal V, Kacer P, et al. . Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J Breath Res. 2016;10:036004. doi:10.1088/1752-7155/10/3/036004 PubMed DOI
Pelclova D, Zdimal V, Komarc M, et al. . Three-year study of markers of oxidative stress in exhaled breath condensate in workers producing nanocomposites, extended by plasma and urine analysis in last two years. Nanomaterials (Basel). 2020;10(12):2440. doi:10.3390/nano10122440 PubMed DOI PMC
Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008;44:1689–1699. doi:10.1016/j.freeradbiomed.2008.01.028 PubMed DOI PMC
Pelclova D, Zdimal V, Komarc M, et al. . Deep airway inflammation and respiratory disorders in nanocomposite workers. Nanomaterials (Basel). 2018;8(9):731. doi:10.3390/nano8090731 PubMed DOI PMC
Cokic SM, Ghosh M, Hoet P, et al. . Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells. Dent Mater. 2020;36:270–283. doi:10.1016/j.dental.2019.11.009 PubMed DOI
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi:10.1016/S0092-8674(04)00045-5 PubMed DOI
Eom H-J, Chatterjee N, Lee J, et al. . Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett. 2014;229:311–318. doi:10.1016/j.toxlet.2014.05.019 PubMed DOI
Li S, Wang H, Qi Y, et al. . Assessment of nanomaterial cytotoxicity with SOLiD sequencing-based microRNA expression profiling. Biomaterials. 2011;32:9021–9030. doi:10.1016/j.biomaterials.2011.08.033 PubMed DOI
Pelclová D, Fenclová Z, Kacer P, et al. . 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind Health. 2007;45:766–774. doi:10.2486/indhealth.45.766 PubMed DOI
Ghafouri-Fard S, Khoshbakht T, Hussen BM, et al. . A comprehensive review on function of miR-15b-5p in malignant and non-malignant disorders. Front Oncol. 2022;12:870996. doi:10.3389/fonc.2022.870996 PubMed DOI PMC
Shi Q, Ge D, Yang Q, et al. . MicroRNA profiling of cerebrospinal fluid from patients with intracerebral hemorrhage. Front Lab Med. 2018;2:141–145. doi:10.1016/j.flm.2019.07.001 DOI
Rooda I, Kaselt B, Liivrand M, et al. . Hsa-mir-548 family expression in human reproductive tissues. BMC Genom Data. 2021;22:40. doi:10.1186/s12863-021-00997-w PubMed DOI PMC
Yao Y, Jiao D, Liu Z, et al. . Novel miRNA predicts survival and prognosis of cholangiocarcinoma based on RNA-seq data and in vitro experiments. Biomed Res Int. 2020;2020:5976127. doi:10.1155/2020/5976127 PubMed DOI PMC
Corsello T, Kudlicki AS, Garofalo RP, et al. . Cigarette smoke condensate exposure changes RNA content of extracellular vesicles released from small airway epithelial cells. Cells. 2019;8(12):1652. doi:10.3390/cells8121652 PubMed DOI PMC