Ex vivo tools for the clonal analysis of zebrafish hematopoiesis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
K01-DK087814-01A1
NIDDK NIH HHS - United States
R01 HL048801
NHLBI NIH HHS - United States
U54 DK110805
NIDDK NIH HHS - United States
K01 DK087814
NIDDK NIH HHS - United States
Howard Hughes Medical Institute - United States
PubMed
27123951
PubMed Central
PMC5560128
DOI
10.1038/nprot.2016.053
PII: nprot.2016.053
Knihovny.cz E-zdroje
- MeSH
- buněčné kultury MeSH
- cytokiny genetika MeSH
- dánio pruhované krev MeSH
- hematopoetické kmenové buňky cytologie MeSH
- hematopoéza * MeSH
- kapři krev MeSH
- kultivační média chemie MeSH
- molekulární biologie metody MeSH
- proteiny dánia pruhovaného genetika MeSH
- rekombinantní proteiny genetika MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytokiny MeSH
- kultivační média MeSH
- proteiny dánia pruhovaného MeSH
- rekombinantní proteiny MeSH
This protocol describes the ex vivo characterization of zebrafish hematopoietic progenitors. We show how to isolate zebrafish hematopoietic cells for cultivation and differentiation in colony assays in semi-solid media. We also describe procedures for the generation of recombinant zebrafish cytokines and for the isolation of carp serum, which are essential components of the medium required to grow zebrafish hematopoietic cells ex vivo. The outcome of these clonal assays can easily be evaluated using standard microscopy techniques after 3-10 d in culture. In addition, we describe how to isolate individual colonies for further imaging and gene expression profiling. In other vertebrate model organisms, ex vivo assays have been crucial for elucidating the relationships among hematopoietic stem cells (HSCs), progenitor cells and their mature progeny. The present protocol should facilitate such studies on cells derived from zebrafish.
Department of Biological Sciences California State University Chico Chico California USA
Department of Cell Differentiation Institute of Molecular Genetics AS CR v v i Prague Czech Republic
Division of Hematology Oncology Dana Farber Boston Children's Boston Massachusetts USA
Stem Cell Program Dana Farber Boston Children's Boston Massachusetts USA
Zobrazit více v PubMed
de Jong JL, Zon LI. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet. 2005;39:481–501. PubMed
Carroll KJ, North TE. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol. 2014;42:684–696. PubMed PMC
Boatman S, et al. Assaying hematopoiesis using zebrafish. Blood Cells Mol Dis. 2013;51:271–276. PubMed PMC
Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37:264–278. PubMed PMC
Goessling W, North TE. Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis Model Mech. 2014;7:769–776. PubMed PMC
White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13:624–636. PubMed PMC
Yen J, White RM, Stemple DL. Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev. 2014;24:38–45. PubMed PMC
Bertrand JY, et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature. 2010;464:108–111. PubMed PMC
Espin-Palazon R, et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell. 2014;159:1070–1085. PubMed PMC
Kim AD, et al. Discrete Notch signaling requirements in the specification of hematopoietic stem cells. EMBO J. 2014;33:2363–2373. PubMed PMC
Kim AD, Stachura DL, Traver D. Cell signaling pathways involved in hematopoietic stem cell specification. Exp Cell Res. 2014;329:227–233. PubMed PMC
Bock TA. Assay systems for hematopoietic stem and progenitor cells. Stem Cells. 1997;15:185–195. PubMed
Beug H, Steinlein P, Bartunek P, Hayman MJ. Avian hematopoietic cell culture: in vitro model systems to study oncogenic transformation of hematopoietic cells. Methods Enzymol. 1995;254:41–76. PubMed
Alexander WS, Begley CG. Thrombopoietin in vitro and in vivo. Cytokines Cell Mol Ther. 1998;4:25–34. PubMed
Stachura DL, et al. Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood. 2009;114:279–289. PubMed PMC
Stachura DL, et al. Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood. 2011;118:1274–1282. PubMed PMC
Stachura DL, Traver D. Cellular dissection of zebrafish hematopoiesis. Methods Cell Biol. 2011;101:75–110. PubMed
Svoboda O, et al. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood. 2014;124:220–228. PubMed PMC
Moore MA, Williams N, Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst. 1973;50:603–623. PubMed
McCulloch EA. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982) Blood. 1983;62:1–13. PubMed
Coulombel L. Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene. 2004;23:7210–7222. PubMed
Quelen C, et al. Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants. Blood. 2011;117:5719–5722. PubMed
Stachura DL, et al. The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122:3918–3928. PubMed PMC
Surdziel E, et al. Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways. Blood. 2011;117:4338–4348. PubMed
Gerlach GF, Schrader LN, Wingert RA. Dissection of the adult zebrafish kidney. J Vis Exp. 2011;54:2839–2844. PubMed PMC
Traver D, et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4:1238–1246. PubMed
Lin HF, et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood. 2005;106:3803–3810. PubMed PMC
Renshaw SA, et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108:3976–3978. PubMed
Davidson AJ, Zon LI. The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene. 2004;23:7233–7246. PubMed
Murtha JM, Qi W, Keller ET. Hematologic and serum biochemical values for zebrafish (Danio rerio) Comp Med. 2003;53:37–41. PubMed
Pedroso GL, et al. Blood collection for biochemical analysis in adult zebrafish. J Vis Exp. 2012:3865–3868. PubMed PMC
Napier I, Ponka P, Richardson DR. Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood. 2005;105:1867–1874. PubMed
Katzenback BA, Belosevic M. Molecular and functional characterization of kita and kitla of the goldfish (Carassius auratus L.) Dev Comp Immunol. 2009;33:1165–1175. PubMed
Liongue C, Hall CJ, O’Connell BA, Crosier P, Ward AC. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood. 2009;113:2535–2546. PubMed
Paffett-Lugassy N, et al. Functional conservation of erythropoietin signaling in zebrafish. Blood. 2007;110:2718–2726. PubMed PMC
Santos MD, Yasuike M, Hirono I, Aoki T. The granulocyte colony-stimulating factors (CSF3s) of fish and chicken. Immunogenetics. 2006;58:422–432. PubMed
Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11:699–704. PubMed
Meyer A, Van de Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD) Bioessays. 2005;27:937–945. PubMed
Chen K, et al. The evaluation of rapid cooling as an anesthetic method for the zebrafish. Zebrafish. 2014;11:71–75. PubMed
Wilson JM, Bunte RM, Carty AJ. Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio) J Am Assoc Lab Anim Sci. 2009;48:785–789. PubMed PMC
Pugach EK, Li P, White R, Zon L. Retro-orbital injection in adult zebrafish. J Vis Exp. 2009:1645–1648. PubMed PMC
Hall C, Flores MV, Storm T, Crosier K, Crosier P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol. 2007;7:42. PubMed PMC
Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117:49–56. PubMed PMC
Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development. 2008;135:1853–1862. PubMed PMC
Balla KM, et al. Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood. 2010;116:3944–3954. PubMed PMC
Wittamer V, Bertrand JY, Gutschow PW, Traver D. Characterization of the mononuclear phagocyte system in zebrafish. Blood. 2011;117:7126–7135. PubMed
Gardiner MR, Gongora MM, Grimmond SM, Perkins AC. A global role for zebrafish klf4 in embryonic erythropoiesis. Mech Dev. 2007;124:762–774. PubMed
Tiedke J, Gerlach F, Mitz SA, Hankeln T, Burmester T. Ontogeny of globin expression in zebrafish (Danio rerio) J Comp Physiol B. 2011;181:1011–1021. PubMed
Kondo H, Watabe S. Growth promoting effects of carp serum components on goldfish culture cells. Fisheries Sci. 2006;72:4.
Zebrafish Kit ligands cooperate with erythropoietin to promote erythroid cell expansion