Zebrafish Kit ligands cooperate with erythropoietin to promote erythroid cell expansion
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33259600
PubMed Central
PMC7724902
DOI
10.1182/bloodadvances.2020001700
PII: S2473-9529(20)32016-4
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované MeSH
- erythropoetin * MeSH
- erytroidní buňky MeSH
- ligandy MeSH
- proteiny dánia pruhovaného genetika MeSH
- růstový faktor kmenových buněk genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- erythropoetin * MeSH
- kitlga protein, zebrafish MeSH Prohlížeč
- ligandy MeSH
- proteiny dánia pruhovaného MeSH
- růstový faktor kmenových buněk MeSH
Kit ligand (Kitlg) is pleiotropic cytokine with a prominent role in vertebrate erythropoiesis. Although the role of Kitlg in this process has not been reported in Danio rerio (zebrafish), in the present study we show that its function is evolutionarily conserved. Zebrafish possess 2 copies of Kitlg genes (Kitlga and Kitlgb) as a result of whole-genome duplication. To determine the role of each ligand in zebrafish, we performed a series of ex vivo and in vivo gain- and loss-of-function experiments. First, we tested the biological activity of recombinant Kitlg proteins in suspension culture from zebrafish whole-kidney marrow, and we demonstrate that Kitlga is necessary for expansion of erythroid progenitors ex vivo. To further address the role of kitlga and kitlgb in hematopoietic development in vivo, we performed gain-of-function experiments in zebrafish embryos, showing that both ligands cooperate with erythropoietin (Epo) to promote erythroid cell expansion. Finally, using the kita mutant (kitab5/b5 or sparse), we show that the Kita receptor is crucial for Kitlga/b cooperation with Epo in erythroid cells. In summary, using optimized suspension culture conditions with recombinant cytokines (Epo, Kitlga), we report, for the first time, ex vivo suspension cultures of zebrafish hematopoietic progenitor cells that can serve as an indispensable tool to study normal and aberrant hematopoiesis in zebrafish. Furthermore, we conclude that, although partial functional diversification of Kit ligands has been described in other processes, in erythroid development, both paralogs play a similar role, and their function is evolutionarily conserved.
Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic; and
Zobrazit více v PubMed
Krantz SB. Erythropoietin. Blood. 1991;77(3):419-434. PubMed
Goldwasser E, Krantz SB, Wang FF. Erythropoietin and erythroid differentiation. Symp Fundam Cancer Res. 1984;37:103-107. PubMed
Graber SE, Krantz SB. Erythropoietin and the control of red cell production. Annu Rev Med. 1978;29(1):51-66. PubMed
Antonchuk J, Hyland CD, Hilton DJ, Alexander WS. Synergistic effects on erythropoiesis, thrombopoiesis, and stem cell competitiveness in mice deficient in thrombopoietin and steel factor receptors. Blood. 2004;104(5):1306-1313. PubMed
Huang E, Nocka K, Beier DR, et al. . The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990;63(1):225-233. PubMed
Toksoz D, Zsebo KM, Smith KA, et al. . Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci USA. 1992;89(16):7350-7354. PubMed PMC
Andrews RG, Knitter GH, Bartelmez SH, et al. . Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in primates. Blood. 1991;78(8):1975-1980. PubMed
Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90(4):1345-1364. PubMed
Bartůnĕk P, Pichlíková L, Stengl G, et al. . Avian stem cell factor (SCF): production and characterization of the recombinant His-tagged SCF of chicken and its neutralizing antibody. Cytokine. 1996;8(1):14-20. PubMed
Panzenböck B, Bartunek P, Mapara MY, Zenke M. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood. 1998;92(10):3658-3668. PubMed
Katakura F, Yabu T, Yamaguchi T, et al. . Exploring erythropoiesis of common carp (Cyprinus carpio) using an in vitro colony assay in the presence of recombinant carp kit ligand A and erythropoietin. Dev Comp Immunol. 2015;53(1):13-22. PubMed
Bokemeyer C, Kuczyk MA, Dunn T, et al. . Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumours. J Cancer Res Clin Oncol. 1996;122(5):301-306. PubMed
Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619-1649. PubMed
Pesce M, Di Carlo A, De Felici M. The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mech Dev. 1997;68(1-2):37-44. PubMed
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457-462. PubMed PMC
Hayman MJ, Meyer S, Martin F, Steinlein P, Beug H. Self-renewal and differentiation of normal avian erythroid progenitor cells: regulatory roles of the TGF alpha/c-ErbB and SCF/c-kit receptors. Cell. 1993;74(1):157-169. PubMed
Grabbe J, Welker P, Dippel E, Czarnetzki BM. Stem cell factor, a novel cutaneous growth factor for mast cells and melanocytes. Arch Dermatol Res. 1994;287(1):78-84. PubMed
Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126(5):1102-1110. PubMed
Gong Y, He X, Li Q, et al. . SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development. 2019;146(20):dev174409. PubMed
Ashman LK. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol. 1999;31(10):1037-1051. PubMed
Abbaspour Babaei M, Kamalidehghan B, Saleem M, Huri HZ, Ahmadipour F. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells. Drug Des Devel Ther. 2016;10:2443-2459. PubMed PMC
Paffett-Lugassy N, Hsia N, Fraenkel PG, et al. . Functional conservation of erythropoietin signaling in zebrafish. Blood. 2007;110(7):2718-2726. PubMed PMC
Stachura DL, Svoboda O, Lau RP, et al. . Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood. 2011;118(5):1274-1282. PubMed PMC
Parichy DM, Rawls JF, Pratt SJ, Whitfield TT, Johnson SL. Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development. 1999;126(15):3425-3436. PubMed
Hultman KA, Bahary N, Zon LI, Johnson SL. Gene duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a. PLoS Genet. 2007;3(1):e17. PubMed PMC
Mellgren EM, Johnson SL. kitb, a second zebrafish ortholog of mouse kit. Dev Genes Evol. 2005;215(9):470-477. PubMed
Mahony CB, Pasche C, Bertrand JY. Oncostatin M and kit-ligand control hematopoietic stem cell fate during zebrafish embryogenesis. Stem Cell Reports. 2018;10(6):1920-1934. PubMed PMC
Mahony CB, Fish RJ, Pasche C, Bertrand JY. tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood. 2016;128(10):1336-1345. PubMed
von Lindern M, Zauner W, Mellitzer G, et al. . The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550-559. PubMed
Westerfield M. A Guide for the Laboratory Use of Zebrafish (Danio rerio). 4th ed. Eugene, OR: University of Oregon Press; 2000.
Alestrom P, et al. . Zebrafish: housing and husbandry recommendations. Lab Anim. 2020;54(3):213-224. PubMed PMC
Oltova J, Jindrich J, Skuta C, Svoboda O, Machonova O, Bartunek P. Zebrabase: an intuitive tracking solution for aquatic model organisms. Zebrafish. 2018;15(6):642-647. PubMed PMC
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238-1246. PubMed
Ganis JJ, Hsia N, Trompouki E, et al. . Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR. Dev Biol. 2012;366(2):185-194. PubMed PMC
Svoboda O, Stachura DL, Machonova O, Zon LI, Traver D, Bartunek P. Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nat Protoc. 2016;11(5):1007-1020. PubMed PMC
Stachura DL, Reyes JR, Bartunek P, Paw BH, Zon LI, Traver D. Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood. 2009;114(2):279-289. PubMed PMC
Stachura DL, Svoboda O, Campbell CA, et al. . The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918-3928. PubMed PMC
Kolbus A, Blázquez-Domingo M, Carotta S, et al. . Cooperative signaling between cytokine receptors and the glucocorticoid receptor in the expansion of erythroid progenitors: molecular analysis by expression profiling. Blood. 2003;102(9):3136-3146. PubMed
England SJ, McGrath KE, Frame JM, Palis J. Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood. 2011;117(9):2708-2717. PubMed PMC
Leberbauer C, Boulmé F, Unfried G, Huber J, Beug H, Müllner EW. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood. 2005;105(1):85-94. PubMed
Schroeder C, Gibson L, Nordström C, Beug H. The estrogen receptor cooperates with the TGF alpha receptor (c-erbB) in regulation of chicken erythroid progenitor self-renewal. EMBO J. 1993;12(3):951-960. PubMed PMC
Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004;59(2):190-203. PubMed
Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188(4):799-808. PubMed PMC
Nei M, Roychoudhury AK. Probability of fixation and mean fixation time of an overdominant mutation. Genetics. 1973;74(2):371-380. PubMed PMC
Takahata N, Maruyama T. Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc Natl Acad Sci USA. 1979;76(9):4521-4525. PubMed PMC
Watterson GA. On the time for gene silencing at duplicate loci. Genetics. 1983;105(3):745-766. PubMed PMC
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531-1545. PubMed PMC
Dolznig H, Bartunek P, Nasmyth K, Müllner EW, Beug H. Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth Differ. 1995;6(11):1341-1352. PubMed
Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988;335(6185):88-89. PubMed
Svoboda O, Stachura DL, Machoňová O, et al. . Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood. 2014;124(2):220-228. PubMed PMC
Ransom DG, Haffter P, Odenthal J, et al. . Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development. 1996;123:311-319. PubMed