M-CSFR/CSF1R signaling regulates myeloid fates in zebrafish via distinct action of its receptors and ligands
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34979548
PubMed Central
PMC8905693
DOI
10.1182/bloodadvances.2021005459
PII: 483305
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované * genetika MeSH
- hematopoéza MeSH
- ligandy MeSH
- receptor faktoru stimulujícího kolonie makrofágů * metabolismus MeSH
- signální transdukce MeSH
- transportní proteiny metabolismus MeSH
- tyrosinkinasové receptory metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- receptor faktoru stimulujícího kolonie makrofágů * MeSH
- transportní proteiny MeSH
- tyrosinkinasové receptory MeSH
Macrophage colony-stimulating factor receptor (M-CSFR/CSF1R) signaling is crucial for the differentiation, proliferation, and survival of myeloid cells. The CSF1R pathway is a promising therapeutic target in many human diseases, including neurological disorders and cancer. Zebrafish are commonly used for human disease modeling and preclinical therapeutic screening. Therefore, it is necessary to understand the proper function of cytokine signaling in zebrafish to reliably model human-related diseases. Here, we investigate the roles of zebrafish Csf1rs and their ligands (Csf1a, Csf1b, and Il34) in embryonic and adult myelopoiesis. The proliferative effect of exogenous Csf1a on embryonic macrophages is connected to both receptors, Csf1ra and Csf1rb, however there is no evident effect of Csf1b in zebrafish embryonic myelopoiesis. Furthermore, we uncover an unknown role of Csf1rb in zebrafish granulopoiesis. Deregulation of Csf1rb signaling leads to failure in myeloid differentiation, resulting in neutropenia throughout the whole lifespan. Surprisingly, Il34 signaling through Csf1rb seems to be of high importance as both csf1rbΔ4bp-deficient and il34Δ5bp-deficient zebrafish larvae lack granulocytes. Our single-cell RNA sequencing analysis of adult whole kidney marrow (WKM) hematopoietic cells suggests that csf1rb is expressed mainly by blood and myeloid progenitors, and the expression of csf1ra and csf1rb is nonoverlapping. We point out differentially expressed genes important in hematopoietic cell differentiation and immune response in selected WKM populations. Our findings could improve the understanding of myeloid cell function and lead to the further study of CSF1R pathway deregulation in disease, mostly in cancerogenesis.
Department of Clinical Genetics Erasmus University Medical Center Rotterdam The Netherlands; and
Max Planck Institute for Developmental Biology Tübingen Germany
Zobrazit více v PubMed
Knapp DJ, Hammond CA, Aghaeepour N, et al. . Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood. 2017;129(3):307-318. PubMed PMC
Buenrostro JD, Corces MR, Lareau CA, et al. . Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018;173(6):1535-1548.e1516. PubMed PMC
Chen X, Liu H, Focia PJ, Shim AH, He X. Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc Natl Acad Sci USA. 2008;105(47):18267-18272. PubMed PMC
Chihara T, Suzu S, Hassan R, et al. . IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 2010;17(12):1917-1927. PubMed
Lin W, Xu D, Austin CD, et al. . Function of CSF1 and IL34 in macrophage homeostasis, inflammation, and cancer. Front Immunol. 2019;10:2019. PubMed PMC
Bencheikh L, Diop MK, Rivière J, et al. . Dynamic gene regulation by nuclear colony-stimulating factor 1 receptor in human monocytes and macrophages. Nat Commun. 2019;10(1):1935. PubMed PMC
Liu H, Leo C, Chen X, et al. . The mechanism of shared but distinct CSF-1R signaling by the non-homologous cytokines IL-34 and CSF-1. Biochim Biophys Acta. 2012;1824(7):938-945. PubMed PMC
Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, et al. . Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse [published correction appears in Proc Natl Acad Sci USA. 1991;88(13):5937]. Proc Natl Acad Sci USA. 1990;87(12):4828-4832. PubMed PMC
Dai XM, Ryan GR, Hapel AJ, et al. . Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111-120. PubMed
Van Wesenbeeck L, Odgren PR, MacKay CA, et al. . The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci USA. 2002;99(22):14303-14308. PubMed PMC
Garcia-Morales C, Rothwell L, Moffat L, et al. . Production and characterisation of a monoclonal antibody that recognises the chicken CSF1 receptor and confirms that expression is restricted to macrophage-lineage cells. Dev Comp Immunol. 2014;42(2):278-285. PubMed
Hume DA, Gutowska-Ding MW, Garcia-Morales C, et al. . Functional evolution of the colony-stimulating factor 1 receptor (CSF1R) and its ligands in birds. J Leukoc Biol. 2020;107(2):237-250. PubMed
Wang T, Kono T, Monte MM, et al. . Identification of IL-34 in teleost fish: differential expression of rainbow trout IL-34, MCSF1 and MCSF2, ligands of the MCSF receptor. Mol Immunol. 2013;53(4):398-409. PubMed
Hume DA, Irvine KM, Pridans C. The mononuclear phagocyte system: the relationship between monocytes and macrophages. Trends Immunol. 2019;40(2):98-112. PubMed
Caetano-Lopes J, Henke K, Urso K, et al. . Correction: Unique and non-redundant function of csf1r paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development. 2020;147(10):dev192211. PubMed PMC
Liu W, Di Q, Li K, et al. . The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies. J Genet Genomics. 2020;47(9):535-546. PubMed
Rademakers R, Baker M, Nicholson AM, et al. . Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2011;44(2):200-205. PubMed PMC
Oosterhof N, Holtman IR, Kuil LE, et al. . Identification of a conserved and acute neurodegeneration-specific microglial transcriptome in the zebrafish. Glia. 2017;65(1):138-149. PubMed PMC
Oosterhof N, Chang IJ, Karimiani EG, et al. . Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am J Hum Genet. 2019;104(5):936-947. PubMed PMC
Hagan N, Kane JL, Grover D, et al. . CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis. 2020;11(10):904. PubMed PMC
Boultwood J, Rack K, Kelly S, et al. . Loss of both CSF1R (FMS) alleles in patients with myelodysplasia and a chromosome 5 deletion. Proc Natl Acad Sci USA. 1991;88(14):6176-6180. PubMed PMC
Gu TL, Mercher T, Tyner JW, et al. . A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia. Blood. 2007;110(1):323-333. PubMed PMC
Roh-Johnson M, Shah AN, Stonick JA, et al. . Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev Cell. 2017; 43(5):549-562.e6. PubMed PMC
Durham BH, Lopez Rodrigo E, Picarsic J, et al. . Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839-1842. PubMed PMC
Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol. 2019.107(2):205-219. PubMed
Guillonneau C, Bézie S, Anegon I. Immunoregulatory properties of the cytokine IL-34. Cell Mol Life Sci. 2017;74(14):2569-2586. PubMed PMC
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. PubMed PMC
Peranzoni E, Donnadieu E. Improving efficacy of cancer immunotherapy through targeting of macrophages. Hum Vaccin Immunother. 2019;15(1):189-192. PubMed PMC
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5(1):53. PubMed PMC
Czako B, Marszalek JR, Burke JP, et al. . Discovery of IACS-9439, a potent, exquisitely selective, and orally bioavailable inhibitor of CSF1R. J Med Chem. 2020;63(17):9888-9911. PubMed
Ransom DG, Haffter P, Odenthal J, et al. . Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development. 1996; 123(1):311-319. PubMed
Howe K, Clark MD, Torroja CF, et al. . The zebrafish reference genome sequence and its relationship to the human genome [published correction appears in Nature. 2014;505(7482):248]. Nature. 2013;496(7446):498-503. PubMed PMC
Britto DD, Wyroba B, Chen W, et al. . Macrophages enhance Vegfa-driven angiogenesis in an embryonic zebrafish tumour xenograft model. Dis Model Mech. 2018;11(12):dmm035998. PubMed PMC
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3): 253-310. PubMed
Yan C, Brunson DC, Tang Q, et al. . Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish. Cell. 2019;177(7):1903-1914.e14. PubMed PMC
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer. 2020;20(5):263-273. PubMed PMC
Xiao J, Glasgow E, Agarwal S. Zebrafish xenografts for drug discovery and personalized medicine. Trends Cancer. 2020;6(7):569-579. PubMed PMC
Ablain J, Liu S, Moriceau G, Lo RS, Zon LI. SPRED1 deletion confers resistance to MAPK inhibition in melanoma. J Exp Med. 2021;218(3):e20201097. PubMed PMC
Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res. 2003;13(3):382-390. PubMed PMC
Oltova J, Svoboda O, Bartunek P. Hematopoietic cytokine gene duplication in zebrafish erythroid and myeloid lineages. Front Cell Dev Biol. 2018;6:174. PubMed PMC
Pazhakh V, Lieschke GJ. Hematopoietic growth factors: the scenario in zebrafish. Growth Factors. 2018;36(5-6):196-212. PubMed
Oosterhof N, Kuil LE, van der Linde HC, et al. . Colony-stimulating factor 1 receptor (CSF1R) regulates microglia density and distribution, but not microglia differentiation in vivo. Cell Rep. 2018;24(5):1203-1217.e6. PubMed
Wu S, Xue R, Hassan S, et al. . Il34-Csf1r pathway regulates the migration and colonization of microglial precursors. Dev Cell. 2018;46(5): 552-563.e4. PubMed
Ferrero G, Miserocchi M, Di Ruggiero E, Wittamer V. A csf1rb mutation uncouples two waves of microglia development in zebrafish. Development. 2021;148(1):dev.194241. PubMed
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392-404. PubMed
Aleström P, D’Angelo L, Midtlyng PJ, et al. . Zebrafish: Housing and husbandry recommendations. Lab Anim. 2020;54(3):213-224. PubMed PMC
Oltova J, Jindrich J, Skuta C, Svoboda O, Machonova O, Bartunek P. Zebrabase: an intuitive tracking solution for aquatic model organisms. Zebrafish. 2018;15(6):642-647. PubMed PMC
Parichy DM, Ransom DG, Paw B, Zon LI, Johnson SL. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development. 2000;127(14):3031-3044. PubMed
Kuil LE, Oosterhof N, Geurts SN, van der Linde HC, Meijering E, van Ham TJ. Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. Dis Model Mech. 2019;12(3):dmm037762. PubMed PMC
Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117(4):e49-e56. PubMed PMC
Gray C, Loynes CA, Whyte MK, Crossman DC, Renshaw SA, Chico TJ. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost. 2011;105(5):811-819. PubMed
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108(13):3976-3978. PubMed
Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW. Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev Dyn. 2011;240(11):2440-2451. PubMed
Choi HM, Calvert CR, Husain N, et al. . Mapping a multiplexed zoo of mRNA expression. Development. 2016;143(19):3632-3637. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-682. PubMed PMC
Svoboda O, Stachura DL, Machonova O, Zon LI, Traver D, Bartunek P. Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nat Protoc. 2016;11(5):1007-1020. PubMed PMC
Fleming SJ, Marioni JC, Babadi M. CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. bioRxiv. 2019;791699.
Stuart T, Butler A, Hoffman P, et al. . Comprehensive integration of single-cell data. Cell. 2019;177(7):1888-1902.e1821. PubMed PMC
Mahalwar P, Walderich B, Singh AP, Nüsslein-Volhard C. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Science. 2014;345(6202):1362-1364. PubMed
Stachura DL, Svoboda O, Campbell CA, et al. . The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood. 2013;122(24):3918-3928. PubMed PMC
Dai X-M, Zong X-H, Sylvestre V, Stanley ER. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood. 2004;103(3):1114-1123. PubMed
Hibbs ML, Quilici C, Kountouri N, et al. . Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J Immunol. 2007;178(10):6435-6443. PubMed
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med. 2020;217(3):e20190290. PubMed PMC
Wang Y, Szretter KJ, Vermi W, et al. . IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753-760. PubMed PMC
Gomez Perdiguero E, Klapproth K, Schulz C, et al. . Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547-551. PubMed PMC
Ginhoux F, Greter M, Leboeuf M, et al. . Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010; 330(6005):841-845. PubMed PMC
Hoeffel G, Chen J, Lavin Y, et al. . C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42(4):665-678. PubMed PMC
Wu Y, Hirschi KK. Tissue-resident macrophage development and function. Front Cell Dev Biol. 2021;8:617879. PubMed PMC
Patterson LB, Parichy DM. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLoS Genet. 2013;9(5):e1003561. PubMed PMC
Kuil LE, Oosterhof N, Ferrero G, et al. . Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. eLife. 2020;9:e53403. PubMed PMC
Pagán AJ, Yang CT, Cameron J, et al. . Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment. Cell Host Microbe. 2015;18(1):15-26. PubMed PMC
Morales RA, Allende ML. Peripheral macrophages promote tissue regeneration in zebrafish by fine-tuning the inflammatory response. Front Immunol. 2019;10:253. PubMed PMC
Sasmono RT, Ehrnsperger A, Cronau SL, et al. . Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J Leukoc Biol. 2007;82(1):111-123. PubMed
Ranzoni AM, Tangherloni A, Berest I, et al. . Integrative single-cell RNA-Seq and ATAC-Seq analysis of human developmental hematopoiesis. Cell Stem Cell. 2021;28(3):472-487.e7. PubMed PMC
Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001;98(10):3087-3096. PubMed
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238-1246. PubMed
Dahl R, Walsh JC, Lancki D, et al. . Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol. 2003;4(10):1029-1036. PubMed
Jin H, Li L, Xu J, et al. . Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu.1 expression. Blood. 2012;119(22):5239-5249. PubMed PMC
Bresciani E, Carrington B, Wincovitch S, et al. . CBFβ and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood. 2014;124(1):70-78. PubMed PMC
Jin H, Huang Z, Chi Y, et al. . c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood. 2016; 128(3):415-426. PubMed
Dai Y, Zhu L, Huang Z, et al. . Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish. J Genet Genomics. 2016;43(10):593-600. PubMed
Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318-324. PubMed PMC
Robson RL, McLoughlin RM, Witowski J, et al. . Differential regulation of chemokine production in human peritoneal mesothelial cells: IFN-gamma controls neutrophil migration across the mesothelium in vitro and in vivo. J Immunol. 2001;167(2):1028-1038. PubMed
Fan HB, Liu YJ, Wang L, et al. . miR-142-3p acts as an essential modulator of neutrophil development in zebrafish. Blood. 2014;124(8):1320-1330. PubMed
Wang J, Cao Z, Zhang X, et al. . Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 2014;75(2):306-15. PubMed
Groth C, Hu X, Weber R, et al. . Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 2019;120(1):16-25. PubMed PMC
Tulotta C, Stefanescu C, Chen Q, Torraca V, Meijer AH, Snaar-Jagalska BE. CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci Rep. 2019;9(1):2399. PubMed PMC
Edwards DKV V, Watanabe-Smith K, Rofelty A, et al. . CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood. 2019;133(6):588-599. PubMed PMC