Hematopoietic Cytokine Gene Duplication in Zebrafish Erythroid and Myeloid Lineages

. 2018 ; 6 () : 174. [epub] 20181220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30619854

Hematopoiesis is a precisely orchestrated process regulated by the activity of hematopoietic cytokines and their respective receptors. Due to an extra round of whole genome duplication during vertebrate evolution in teleost fish, zebrafish have two paralogs of many important genes, including genes involved in hematopoiesis. Importantly, these duplication events brought increased level of complexity in such cases, where both ligands and receptors have been duplicated in parallel. Therefore, precise understanding of binding specificities between duplicated ligand-receptor signalosomes as well as understanding of their differential expression provide an important basis for future studies to better understand the role of duplication of these genes. However, although many recent studies in the field have partly addressed functional redundancy or sub-specialization of some of those duplicated paralogs, this information remains to be scattered over many publications and unpublished data. Therefore, the focus of this review is to provide an overview of recent findings in the zebrafish hematopoietic field regarding activity, role and specificity of some of the hematopoietic cytokines with emphasis on crucial regulators of the erythro-myeloid lineages.

Zobrazit více v PubMed

Abbaspour Babaei M., Kamalidehghan B., Saleem M., Huri H. Z., Ahmadipour F. (2016). Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells. Drug Des. Dev. Ther. 10 2443–2459. 10.2147/DDDT.S89114 PubMed DOI PMC

Akashi K., Traver D., Miyamoto T., Weissman I. L. (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404 193–197. 10.1038/35004599 PubMed DOI

Alexander W. S. (1999a). Thrombopoietin and the c-Mpl receptor: insights from gene targeting. Int. J. Biochem. Cell Biol. 31 1027–1035. PubMed

Alexander W. S. (1999b). Thrombopoietin. Growth Factors 17 13–24. 10.3109/08977199909001059 PubMed DOI

Amores A., Catchen J., Ferrara A., Fontenot Q., Postlethwait J. H. (2011). Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics 188 799–808. 10.1534/genetics.111.127324 PubMed DOI PMC

Ashman L. K. (1999). The biology of stem cell factor and its receptor C-kit. Int. J. Biochem. Cell Biol. 31 1037–1051. 10.1016/S1357-2725(99)00076-X PubMed DOI

Avery S., Rothwell L., Degen W. D., Schijns V. E., Young J., Kaufman J., et al. (2004). Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J. Interferon Cytokine Res. 24 600–610. 10.1089/jir.2004.24.600 PubMed DOI

Bartunek P., Pajer P., Karafiat V., Blendinger G., Dvorak M. (2002). bFGF signaling and v-Myb cooperate in sustained growth of primitive erythroid progenitors. Oncogene 21 400–410. 10.1038/sj/onc/1205103 PubMed DOI

Braasch I., Salzburger W., Meyer A. (2006). Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Mol. Biol. Evol. 23 1192–1202. 10.1093/molbev/msk003 PubMed DOI

Broudy V. C. (1997). Stem cell factor and hematopoiesis. Blood 90 1345–1364. PubMed

Butko E., Distel M., Pouget C., Weijts B., Kobayashi I., Ng K., et al. (2015). Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development 142 1050–1061. 10.1242/dev.119180 PubMed DOI PMC

Constantinescu S. N., Ghaffari S., Lodish H. F. (1999). The Erythropoietin receptor: structure. activation and intracellular signal transduction. Trends Endocrinol. Metab. 10 18–23. 10.1016/S1043-2760(98)00101-5 PubMed DOI

de Sauvage F. J., Hass P. E., Spencer S. D., Malloy B. E., Gurney A. L., Spencer S. A., et al. (1994). Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 369 533–538. 10.1038/369533a0 PubMed DOI

Drachman J. G., Kaushansky K. (1997). Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proc. Natl. Acad. Sci. U.S.A. 94 2350–2355. 10.1073/pnas.94.6.2350 PubMed DOI PMC

Force A., Lynch M., Pickett F. B., Amores A., Yan Y. L., Postlethwait J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151 1531–1545. PubMed PMC

Fuchs O., Simakova O., Klener P., Cmejlova J., Zivny J., Zavadil J., et al. (2002). Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. Blood Cells Mol. Dis. 28 221–233. 10.1006/bcmd.2002.0487 PubMed DOI

Gandrillon O., Schmidt U., Beug H., Samarut J. (1999). TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J. 18 2764–2781. 10.1093/emboj/18.10.2764 PubMed DOI PMC

Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330 841–845. 10.1126/science.1194637 PubMed DOI PMC

Gordon M. S., Hoffman R. (1992). Growth factors affecting human thrombocytopoiesis: potential agents for the treatment of thrombocytopenia. Blood 80 302–307. PubMed

Greter M., Lelios I., Pelczar P., Hoeffel G., Price J., Leboeuf M., et al. (2012). Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity 37 1050–1060. 10.1016/j.immuni.2012.11.001 PubMed DOI PMC

Guermonprez P., Helft J., Claser C., Deroubaix S., Karanje H., Gazumyan A., et al. (2013). Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat. Med. 19 730–738. 10.1038/nm.3197 PubMed DOI PMC

Hamilton J. A. (2008). Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8 533–544. 10.1038/nri2356 PubMed DOI

Hamilton J. A., Achuthan A. (2013). Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 34 81–89. 10.1016/j.it.2012.08.006 PubMed DOI

Harandi O. F., Hedge S., Wu D. C., McKeone D., Paulson R. F. (2010). Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J. Clin. Invest. 120 4507–4519. 10.1172/JCI41291 PubMed DOI PMC

Hayman M. J., Meyer S., Martin F., Steinlein P., Beug H. (1993). Self-renewal and differentiation of normal avian erythroid progenitor cells: regulatory roles of the TGF alpha/c-ErbB and SCF/c-kit receptors. Cell 74 157–169. 10.1016/0092-8674(93)90303-8 PubMed DOI

He B. L., Shi X., Man C. H., Ma A. C., Ekker S. C., Chow H. C., et al. (2014). Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 123 2518–2529. 10.1182/blood-2013-02-486688 PubMed DOI PMC

Heinrich P. C., Behrmann I., Haan S., Hermanns H. M., Muller-Newen G., Schaper F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374(Pt 1), 1–20. 10.1042/bj20030407 PubMed DOI PMC

Herbomel P., Thisse B., Thisse C. (1999). Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126 3735–3745. PubMed

Hoegg S., Brinkmann H., Taylor J. S., Meyer A. (2004). Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J. Mol. Evol. 59 190–203. 10.1007/s00239-004-2613-z PubMed DOI

Huang T., Cui J., Li L., Hitchcock P. F., Li Y. (2012). The role of microglia in the neurogenesis of zebrafish retina. Biochem. Biophys. Res. Commun. 421 214–220. 10.1016/j.bbrc.2012.03.139 PubMed DOI PMC

Huber T. L., Zhou Y., Mead P. E., Zon L. I. (1998). Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm. Blood 92 4128–4137. PubMed

Huising M. O., Kruiswijk C. P., Flik G. (2006). Phylogeny and evolution of class-I helical cytokines. J. Endocrinol. 189 1–25. 10.1677/joe.1.06591 PubMed DOI

Huising M. O., Kruiswijk C. P., van Schijndel J. E., Savelkoul H. F., Flik G., Verburg-van Kemenade B. M. (2005). Multiple and highly divergent IL-11 genes in teleost fish. Immunogenetics 57 432–443. 10.1007/s00251-005-0012-2 PubMed DOI

Hultman K. A., Bahary N., Zon L. I., Johnson S. L. (2007). Gene Duplication of the zebrafish kit ligand and partitioning of melanocyte development functions to kit ligand a. PLoS Genet. 3:e17. 10.1371/journal.pgen.0030017 PubMed DOI PMC

Jacobsen R. N., Nowlan B., Brunck M. E., Barbier V., Winkler I. G., Levesque J. P. (2016). Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp. Hematol. 44 207–212e204. 10.1016/j.exphem.2015.11.004 PubMed DOI

Kato T., Matsumoto A., Ogami K., Tahara T., Morita H., Miyazaki H. (1998). Native thrombopoietin: structure and function. Stem Cells 16 322–328. 10.1002/stem.160322 PubMed DOI

Kaushansky K. (2006). Lineage-specific hematopoietic growth factors. N. Engl. J. Med. 354 2034–2045. 10.1056/NEJMra052706 PubMed DOI

Kaushansky K., Broudy V. C., Grossmann A., Humes J., Lin N., Ren H. P., et al. (1995). Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J. Clin. Invest. 96 1683–1687. 10.1172/JCI118210 PubMed DOI PMC

Kosmider O., Denis N., Lacout C., Vainchenker W., Dubreuil P., Moreau-Gachelin F. (2005). Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice. Cancer Cell 8 467–478. 10.1016/j.ccr.2005.11.009 PubMed DOI

Krantz S. B. (1991). Erythropoietin. Blood 77 419–434. PubMed

Krystal G. (1994). Transforming growth factor beta 1 is an inducer of erythroid differentiation. J. Exp. Med. 180 851–860. 10.1084/jem.180.3.851 PubMed DOI PMC

Lieschke G. J., Grail D., Hodgson G., Metcalf D., Stanley E., Cheers C., et al. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84 1737–1746. PubMed

Liongue C., Ward A. C. (2007). Evolution of Class I cytokine receptors. BMC Evol. Biol. 7:120. 10.1186/1471-2148-7-120 PubMed DOI PMC

Liu F., Wu H. Y., Wesselschmidt R., Kornaga T., Link D. C. (1996). Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5 491–501. 10.1016/S1074-7613(00)80504-X PubMed DOI

Macaulay I. C., Svensson V., Labalette C., Ferreira L., Hamey F., Voet T., et al. (2016). Single-Cell RNA-Sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep. 14 966–977. 10.1016/j.celrep.2015.12.082 PubMed DOI PMC

Mahony C. B., Fish R. J., Pasche C., Bertrand J. Y. (2016). tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood 128 1336–1345. 10.1182/blood-2016-04-710137 PubMed DOI

Mahony C. B., Pasche C., Bertrand J. Y. (2018). Oncostatin M and kit-ligand control hematopoietic stem cell fate during zebrafish embryogenesis. Stem Cell Rep. 10 1920–1934. 10.1016/j.stemcr.2018.04.016 PubMed DOI PMC

Martinez F. O., Gordon S. (2014). The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13. 10.12703/P6-13 PubMed DOI PMC

McNiece I. K., Langley K. E., Zsebo K. M. (1991). Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. Hematol. 19 226–231. PubMed

Mellgren E. M., Johnson S. L. (2005). kitb, a second zebrafish ortholog of mouse Kit. Dev. Genes Evol. 215 470–477. 10.1007/s00427-005-0001-3 PubMed DOI

Metcalf D. (1985). The granulocyte-macrophage colony-stimulating factors. Science 229 16–22. 10.1126/science.2990035 PubMed DOI

Metcalf D., Nicola N. A. (1983). Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J. Cell. Physiol. 116 198–206. 10.1002/jcp.1041160211 PubMed DOI

Migliaccio G., Migliaccio A. R., Adamson J. W. (1988). In vitro differentiation of human granulocyte/macrophage and erythroid progenitors: comparative analysis of the influence of recombinant human erythropoietin, G-CSF, GM-CSF, and IL-3 in serum-supplemented and serum-deprived cultures. Blood 72 248–256. PubMed

Migliaccio G., Migliaccio A. R., Adamson J. W. (1991). In vitro differentiation and proliferation of human hematopoietic progenitors: the effects of interleukins 1 and 6 are indirectly mediated by production of granulocyte-macrophage colony-stimulating factor and interleukin 3. Exp. Hematol. 19 3–10. PubMed

Miyagawa S., Kobayashi M., Konishi N., Sato T., Ueda K. (2000). Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br. J. Haematol. 109 555–562. 10.1046/j.1365-2141.2000.02047.x PubMed DOI

Muir A. R., Kerr D. N. (1958). Erythropoiesis: an electron microscopical study. Q. J. Exp. Physiol. Cogn. Med. Sci. 43 106–114. 10.1113/expphysiol.1958.sp001295 PubMed DOI

Nei M., Roychoudhury A. K. (1973). Probability of fixation and mean fixation time of an overdominant mutation. Genetics 74 371–380. PubMed PMC

Nicola N. A. (1994). Cytokine pleiotropy and redundancy: a view from the receptor. Stem Cells 12(Suppl. 1) 3–12; discussion 12–14. PubMed

Nicola N. A., Begley C. G., Metcalf D. (1985). Identification of the human analogue of a regulator that induces differentiation in murine leukaemic cells. Nature 314 625–628. 10.1038/314625a0 PubMed DOI

Nicola N. A., Metcalf D., Matsumoto M., Johnson G. R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J. Biol. Chem. 258 9017–9023. PubMed

Paffett-Lugassy N., Hsia N., Fraenkel P. G., Paw B., Leshinsky I., Barut B., et al. (2007). Functional conservation of erythropoietin signaling in zebrafish. Blood 110 2718–2726. 10.1182/blood-2006-04-016535 PubMed DOI PMC

Pagan A. J., Yang C. T., Cameron J., Swaim L. E., Ellett F., Lieschke G. J., et al. (2015). Myeloid growth factors promote resistance to mycobacterial infection by curtailing Granuloma necrosis through macrophage replenishment. Cell Host Microbe 18 15–26. 10.1016/j.chom.2015.06.008 PubMed DOI PMC

Parichy D. M., Rawls J. F., Pratt S. J., Whitfield T. T., Johnson S. L. (1999). Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126 3425–3436. PubMed

Patterson L. B., Bain E. J., Parichy D. M. (2014). Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution. Nat. Commun. 5:5299. 10.1038/ncomms6299 PubMed DOI PMC

Paul S. R., Bennett F., Calvetti J. A., Kelleher K., Wood C. R., O’Hara R. M., et al. (1990). Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl. Acad. Sci. U.S.A. 87 7512–7516. 10.1073/pnas.87.19.7512 PubMed DOI PMC

Pixley F. J., Stanley E. R. (2004). CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14 628–638. 10.1016/j.tcb.2004.09.016 PubMed DOI

Ratnoff O. D. (1987). The evolution of hemostatic mechanisms. Perspect. Biol. Med. 31 4–33. 10.1353/pbm.1987.0003 PubMed DOI

Schneider W., Gattermann N. (1994). Megakaryocytes: origin of bleeding and thrombotic disorders. Eur. J. Clin. Invest. 24(Suppl. 1) 16–20. 10.1111/j.1365-2362.1994.tb02420.x PubMed DOI

Simpson C. F. (1967). The mechanism of denucleation in circulating erythroblasts. J. Cell Biol. 35 237–245. 10.1083/jcb.35.1.237 PubMed DOI PMC

Stachura D. L., Reyes J. R., Bartunek P., Paw B. H., Zon L. I., Traver D. (2009). Zebrafish kidney stromal cell lines support multilineage hematopoiesis. Blood 114 279–289. 10.1182/blood-2009-02-203638 PubMed DOI PMC

Stachura D. L., Svoboda O., Campbell C. A., Espin-Palazon R., Lau R. P., Zon L. I., et al. (2013). The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122 3918–3928. 10.1182/blood-2012-12-475392 PubMed DOI PMC

Stachura D. L., Svoboda O., Lau R. P., Balla K. M., Zon L. I., Bartunek P., et al. (2011). Clonal analysis of hematopoietic progenitor cells in the zebrafish. Blood 118 1274–1282. 10.1182/blood-2011-01-331199 PubMed DOI PMC

Steinlein P., Wessely O., Meyer S., Deiner E. M., Hayman M. J., Beug H. (1995). Primary, self-renewing erythroid progenitors develop through activation of both tyrosine kinase and steroid hormone receptors. Curr. Biol. 5 191–204. 10.1016/S0960-9822(95)00040-6 PubMed DOI

Svoboda O., Bartunek P. (2015). Origins of the vertebrate erythro/megakaryocytic system. Biomed. Res. Int. 2015:632171. 10.1155/2015/632171 PubMed DOI PMC

Svoboda O., Stachura D. L., Machonova O., Pajer P., Brynda J., Zon L. I., et al. (2014). Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 124 220–228. 10.1182/blood-2014-03-564682 PubMed DOI PMC

Takahata N., Maruyama T. (1979). Polymorphism and loss of duplicate gene expression: a theoretical study with application of tetraploid fish. Proc. Natl. Acad. Sci. U.S.A. 76 4521–4525. 10.1073/pnas.76.9.4521 PubMed DOI PMC

Tan Y. Y., Kodzius R., Tay B. H., Tay A., Brenner S., Venkatesh B. (2012). Sequencing and analysis of full-length cDNAs, 5′-ESTs and 3′-ESTs from a cartilaginous fish, the elephant shark (Callorhinchus milii). PLoS One 7:e47174. 10.1371/journal.pone.0047174 PubMed DOI PMC

Tang Q., Iyer S., Lobbardi R., Moore J. C., Chen H., Lareau C., et al. (2017). Dissecting hematopoietic and renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA sequencing. J. Exp. Med. 214 2875–2887. 10.1084/jem.20170976 PubMed DOI PMC

Tornack J., Kawano Y., Garbi N., Hammerling G. J., Melchers F., Tsuneto M. (2017). Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150(+) long-term repopulating murine hematopoietic stem cells. Eur. J. Immunol. 47 1477–1487. 10.1002/eji.201646730 PubMed DOI

Touw I. P., van de Geijn G. J. (2007). Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders. Front. Biosci. 12:800–815. 10.2741/2103 PubMed DOI

van Ham T. J., Oosterhof N., Kuil L. E., van der Linde H. C., Geurts S. N., Meijering E. (2018). Reverse genetic screen reveals that Il34 facilitates yolk sac macrophage distribution and seeding of the brain. bioRxiv [Preprint]. 10.1101/406553 PubMed DOI PMC

Wang T., Hanington P. C., Belosevic M., Secombes C. J. (2008). Two macrophage colony-stimulating factor genes exist in fish that differ in gene organization and are differentially expressed. J. Immunol. 181 3310–3322. 10.4049/jimmunol.181.5.3310 PubMed DOI

Wang Y., Szretter K. J., Vermi W., Gilfillan S., Rossini C., Cella M., et al. (2012). IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13 753–760. 10.1038/ni.2360 PubMed DOI PMC

Watterson G. A. (1983). On the time for gene silencing at duplicate Loci. Genetics 105 745–766. PubMed PMC

Wu S., Xue R., Hassan S., Nguyen T. M. L., Wang T., Pan H., et al. (2018). Il34-Csf1r pathway regulates the migration and colonization of microglial precursors. Dev. Cell 46 552.e4–563.e4. 10.1016/j.devcel.2018.08.005 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...