Origins of the Vertebrate Erythro/Megakaryocytic System
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26557683
PubMed Central
PMC4628740
DOI
10.1155/2015/632171
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace fyziologie MeSH
- erytrocyty cytologie MeSH
- lidé MeSH
- megakaryocyty cytologie MeSH
- obratlovci fyziologie MeSH
- trombocyty cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Vertebrate erythrocytes and thrombocytes arise from the common bipotent thrombocytic-erythroid progenitors (TEPs). Even though nonmammalian erythrocytes and thrombocytes are phenotypically very similar to each other, mammalian species have developed some key evolutionary improvements in the process of erythroid and thrombocytic differentiation, such as erythroid enucleation, megakaryocyte endoreduplication, and platelet formation. This brings up a few questions that we try to address in this review. Specifically, we describe the ontology of erythro-thrombopoiesis during adult hematopoiesis with focus on the phylogenetic origin of mammalian erythrocytes and thrombocytes (also termed platelets). Although the evolutionary relationship between mammalian and nonmammalian erythroid cells is clear, the appearance of mammalian megakaryocytes is less so. Here, we discuss recent data indicating that nonmammalian thrombocytes and megakaryocytes are homologs. Finally, we hypothesize that erythroid and thrombocytic differentiation evolved from a single ancestral lineage, which would explain the striking similarities between these cells.
Zobrazit více v PubMed
Orkin S. H. Diversification of haematopoietic stem cells to specific lineages. Nature Reviews Genetics. 2000;1(1):57–64. doi: 10.1038/35049577. PubMed DOI
Kaushansky K. Lineage-specific hematopoietic growth factors. The New England Journal of Medicine. 2006;354(19):2034–2045. doi: 10.1056/nejmra052706. PubMed DOI
Wickrema A., Crispino J. D. Erythroid and megakaryocytic transformation. Oncogene. 2007;26(47):6803–6815. doi: 10.1038/sj.onc.1210763. PubMed DOI
Crispino J. D., Weiss M. J. Erythro-megakaryocytic transcription factors associated with hereditary anemia. Blood. 2014;123(20):3080–3088. doi: 10.1182/blood-2014-01-453167. PubMed DOI PMC
Debili N., Coulombel L., Croisille L., et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 1996;88(4):1284–1296. PubMed
Broudy V. C., Kaushansky K. Thrombopoietin, the c-mpl ligand, is a major regulator of platelet production. Journal of Leukocyte Biology. 1995;57(5):719–725. PubMed
Kaushansky K., Broudy V. C., Grossmann A., et al. Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. The Journal of Clinical Investigation. 1995;96(3):1683–1687. doi: 10.1172/jci118210. PubMed DOI PMC
Kato T., Matsumoto A., Ogami K., Tahara T., Morita H., Miyazaki H. Native thrombopoietin: structure and function. Stem Cells. 1998;16(5):322–328. doi: 10.1002/stem.160322. PubMed DOI
Krantz S. B. Erythropoietin. Blood. 1991;77(3):419–434. PubMed
Broudy V. C. Stem cell factor and hematopoiesis. Blood. 1997;90(4):1345–1364. PubMed
Muir A. R., Kerr D. N. Erythropoiesis: an electron microscopical study. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences. 1958;43(1):106–114. doi: 10.1113/expphysiol.1958.sp001295. PubMed DOI
Simpson C. F., Kling J. M. The mechanism of denucleation in circulating erythroblasts. Journal of Cell Biology. 1967;35(1):237–245. doi: 10.1083/jcb.35.1.237. PubMed DOI PMC
Ratnoff O. D. The evolution of hemostatic mechanisms. Perspectives in Biology and Medicine. 1987;31(1):4–33. doi: 10.1353/pbm.1987.0003. PubMed DOI
Schneider W., Gattermann N. Megakaryocytes: origin of bleeding and thrombotic disorders. European Journal of Clinical Investigation. 1994;24(1):16–20. doi: 10.1111/j.1365-2362.1994.tb02420.x. PubMed DOI
Gulliver G. On the size and shape of red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proceedings of the Zoological Society of London. 1875;1875:474–495.
Bartunek P., Karafiat V., Bartunkova J., et al. Impact of chicken thrombopoietin and its receptor c-Mpl on hematopoietic cell development. Experimental Hematology. 2008;36(4):495–505. doi: 10.1016/j.exphem.2007.12.001. PubMed DOI
Svoboda O., Stachura D. L., Machoňová O., et al. Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood. 2014;124(2):220–228. doi: 10.1182/blood-2014-03-564682. PubMed DOI PMC
Smith L. G., Weissman I. L., Heimfeld S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1991;88(7):2788–2792. doi: 10.1073/pnas.88.7.2788. PubMed DOI PMC
Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993;81(11):2844–2853. PubMed
Akashi K., Traver D., Miyamoto T., Weissman I. L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–197. doi: 10.1038/35004599. PubMed DOI
Reya T., Morrison S. J., Clarke M. F., Weissman I. L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–111. doi: 10.1038/35102167. PubMed DOI
Adolfsson J., Månsson R., Buza-Vidas N., et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306. doi: 10.1016/j.cell.2005.02.013. PubMed DOI
Luc S., Buza-Vidas N., Jacobsen S. E. W. Delineating the cellular pathways of hematopoietic lineage commitment. Seminars in Immunology. 2008;20(4):213–220. doi: 10.1016/j.smim.2008.07.005. PubMed DOI
Kawamoto H., Wada H., Katsura Y. A revised scheme for developmental pathways of hematopoietic cells: the myeloid-based model. International Immunology. 2010;22(2):65–70. doi: 10.1093/intimm/dxp125.dxp125 PubMed DOI
Yamamoto R., Morita Y., Ooehara J., et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112–1126. doi: 10.1016/j.cell.2013.08.007. PubMed DOI
Sanjuan-Pla A., Macaulay I. C., Jensen C. T., et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–236. doi: 10.1038/nature12495. PubMed DOI
Nishikii H., Kanazawa Y., Umemoto T., et al. Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells. 2015;33(7):2196–2207. doi: 10.1002/stem.1985. PubMed DOI PMC
Bartůněk P., Pajer P., Karafiát V., Blendinger G., Dvořák M., Zenke M. bFGF signaling and v-Myb cooperate in sustained growth of primitive erythroid progenitors. Oncogene. 2002;21(3):400–410. doi: 10.1038/sj/onc/1205103. PubMed DOI
Miyagawa S.-I., Kobayashi M., Konishi N., Sato T., Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. British Journal of Haematology. 2000;109(3):555–562. doi: 10.1046/j.1365-2141.2000.02047.x. PubMed DOI
Krystal G., Lam V., Dragowska W., et al. Transforming growth factor β1 is an inducer of erythroid differentiation. The Journal of Experimental Medicine. 1994;180(3):851–860. doi: 10.1084/jem.180.3.851. PubMed DOI PMC
Gandrillon O., Schmidt U., Beug H., Samarut J. TGF-β cooperates with TGF-α to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO Journal. 1999;18(10):2764–2781. doi: 10.1093/emboj/18.10.2764. PubMed DOI PMC
Huber T. L., Zhou Y., Mead P. E., Zon L. I. Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm. Blood. 1998;92(11):4128–4137. PubMed
Fuchs O., Simakova O., Klener P., et al. Inhibition of Smad5 in human hematopoietic progenitors blocks erythroid differentiation induced by BMP4. Blood Cells, Molecules, and Diseases. 2002;28(2):221–233. doi: 10.1006/bcmd.2002.0487. PubMed DOI
Harandi O. F., Hedge S., Wu D.-C., Mckeone D., Paulson R. F. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. Journal of Clinical Investigation. 2010;120(12):4507–4519. doi: 10.1172/jci41291. PubMed DOI PMC
von Lindern M., Zauner W., Mellitzer G., et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550–559. PubMed
Gordon M. S., Hoffman R. Growth factors affecting human thrombocytopoiesis: potential agents for the treatment of thrombocytopenia. Blood. 1992;80(2):302–307. PubMed
McNiece I. K., Langley K. E., Zsebo K. M. Recombinant human stem cell factor synergises with GM-CSF, G-CSF, IL-3 and epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Experimental Hematology. 1991;19(3):226–231. PubMed
Steinlein P., Wessely O., Meyer S., Deiner E.-M., Hayman M. J., Beug H. Primary, self-renewing erythroid progenitors develop through activation of both tyrosine kinase and steroid hormone receptors. Current Biology. 1995;5(2):191–204. doi: 10.1016/S0960-9822(95)00040-6. PubMed DOI
de Sauvage F. J., Hass P. E., Spencer S. D., et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the C-MpI ligand. Nature. 1994;369(6481):533–538. doi: 10.1038/369533a0. PubMed DOI
Alexander W. S. Thrombopoietin. Growth Factors. 1999;17(1):13–24. doi: 10.3109/08977199909001059. PubMed DOI
Alexander W. S. Thrombopoietin and the c-Mpl receptor: insights from gene targeting. International Journal of Biochemistry and Cell Biology. 1999;31(10):1027–1035. doi: 10.1016/s1357-2725(99)00079-5. PubMed DOI
Park H., Park S. S., Jin E. H., et al. Identification of functionally important residues of human thrombopoietin. The Journal of Biological Chemistry. 1998;273(1):256–261. doi: 10.1074/jbc.273.1.256. PubMed DOI
Foster D., Lok S. Biological roles for the second domain of thrombopoietin. Stem Cells. 1996;14(supplement 1):102–107. doi: 10.1002/stem.5530140712. PubMed DOI
Linden H. M., Kaushansky K. The glycan domain of thrombopoietin enhances its secretion. Biochemistry. 2000;39(11):3044–3051. doi: 10.1021/bi991756h. PubMed DOI
Erslev A. J., Caro J. Physiologic and molecular biology of erythropoietin. Medical Oncology and Tumor Pharmacotherapy. 1986;3(3-4):159–164. PubMed
Mignotte V., Vigon I., de Crevecoeur E. B., Romeo P.-H., Lemarchandel V., Chretien S. Structure and transcription of the human c-mpl gene (MPL) Genomics. 1994;20(1):5–12. doi: 10.1006/geno.1994.1120. PubMed DOI
Youssoufian H., Longmore G., Neumann D., Yoshimura A., Lodish H. F. Structure, function, and activation of the erythropoietin receptor. Blood. 1993;81(9):2223–2236. PubMed
Robb L. Cytokine receptors and hematopoietic differentiation. Oncogene. 2007;26(47):6715–6723. doi: 10.1038/sj.onc.1210756. PubMed DOI
Constantinescu S. N., Ghaffari S., Lodish H. F. The erythropoietin receptor: structure, activation and intracellular signal transduction. Trends in Endocrinology & Metabolism. 1999;10(1):18–23. doi: 10.1016/s1043-2760(98)00101-5. PubMed DOI
Drachman J. G., Kaushansky K. Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(6):2350–2355. doi: 10.1073/pnas.94.6.2350. PubMed DOI PMC
Tilbrook P. A., Klinken S. P. The erythropoietin receptor. The International Journal of Biochemistry & Cell Biology. 1999;31(10):1001–1005. doi: 10.1016/s1357-2725(99)00071-0. PubMed DOI
Hitchcock I. S., Kaushansky K. Thrombopoietin from beginning to end. British Journal of Haematology. 2014;165(2):259–268. doi: 10.1111/bjh.12772. PubMed DOI
Kota J., Caceres N., Constantinescu S. N. Aberrant signal transduction pathways in myeloproliferative neoplasms. Leukemia. 2008;22(10):1828–1840. doi: 10.1038/leu.2008.236. PubMed DOI
Chin H., Arai A., Wakao H., Kamiyama R., Miyasaka N., Miura O. Lyn physically associates with the erythropoietin receptor and may play a role in activation of the Stat5 pathway. Blood. 1998;91(10):3734–3745. PubMed
Kaushansky K. Molecular mechanisms of thrombopoietin signaling. Journal of Thrombosis and Haemostasis. 2009;7(supplement 1):235–238. doi: 10.1111/j.1538-7836.2009.03419.x. PubMed DOI
Ingley E. Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life. 2012;64(5):402–410. doi: 10.1002/iub.1024. PubMed DOI
Doré L. C., Crispino J. D. Transcription factor networks in erythroid cell and megakaryocyte development. Blood. 2011;118(2):231–239. doi: 10.1182/blood-2011-04-285981. PubMed DOI PMC
Klimchenko O., Mori M., DiStefano A., et al. A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood. 2009;114(8):1506–1517. doi: 10.1182/blood-2008-09-178863. PubMed DOI
Shivdasani R. A. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells. 2001;19(5):397–407. doi: 10.1634/stemcells.19-5-397. PubMed DOI
Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998;392(6679):917–920. doi: 10.1038/31927. PubMed DOI
Ji P., Murata-Hori M., Lodish H. F. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends in Cell Biology. 2011;21(7):409–415. doi: 10.1016/j.tcb.2011.04.003. PubMed DOI PMC
Schmaier A. A., Stalker T. J., Runge J. J., et al. Occlusive thrombi arise in mammals but not birds in response to arterial injury: evolutionary insight into human cardiovascular disease. Blood. 2011;118(13):3661–3669. doi: 10.1182/blood-2011-02-338244. PubMed DOI PMC
Bartůněk P., Králová J., Blendinger G., Dvořák M., Zenke M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene. 2003;22(13):1927–1935. doi: 10.1038/sj.onc.1206281. PubMed DOI
de Jong J. L. O., Zon L. I. Use of the zebrafish system to study primitive and definitive hematopoiesis. Annual Review of Genetics. 2005;39:481–501. doi: 10.1146/annurev.genet.39.073003.095931. PubMed DOI
Dolznig H., Bartunek P., Nasmyth K., Mullner E. W., Beug H. Terminal differentiation of normal chicken erythroid progenitors: shortening of G1 correlates with loss of D-cyclin/cdk4 expression and altered cell size control. Cell Growth & Differentiation. 1995;6(11):1341–1352. PubMed
Kulkeaw K., Sugiyama D. Zebrafish erythropoiesis and the utility of fish as models of anemia. Stem Cell Research and Therapy. 2012;3(6, article 55) doi: 10.1186/scrt146. PubMed DOI PMC
Amigo J. D., Ackermann G. E., Cope J. J., et al. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish. Blood. 2009;114(21):4654–4663. doi: 10.1182/blood-2008-12-189910. PubMed DOI PMC
Kulessa H., Frampton J., Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes and Development. 1995;9(10):1250–1262. doi: 10.1101/gad.9.10.1250. PubMed DOI
Lin H.-F., Traver D., Zhu H., et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood. 2005;106(12):3803–3810. doi: 10.1182/blood-2005-01-0179. PubMed DOI PMC
Johnson H. J., Gandhi M. J., Shafizadeh E., et al. In vivo inactivation of MASTL kinase results in thrombocytopenia. Experimental Hematology. 2009;37(8):901–908. doi: 10.1016/j.exphem.2009.05.005. PubMed DOI PMC
Lang M. R., Gihr G., Gawaz M. P., Müller I. Hemostasis in Danio rerio: is the zebrafish a useful model for platelet research? Journal of Thrombosis and Haemostasis. 2010;8(6):1159–1169. doi: 10.1111/j.1538-7836.2010.03815.x. PubMed DOI
Hattangadi S. M., Wong P., Zhang L., Flygare J., Lodish H. F. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258–6268. doi: 10.1182/blood-2011-07-356006. PubMed DOI PMC
Tomer A., Harker L. A., Burstein S. A. Purification of human megakaryocytes by fluorescence-activated cell sorting. Blood. 1987;70(6):1735–1742. PubMed
Hartenstein V. Blood cells and blood cell development in the animal kingdom. Annual Review of Cell and Developmental Biology. 2006;22:677–712. doi: 10.1146/annurev.cellbio.22.010605.093317. PubMed DOI
Glomski C. A., Tamburlin J. The phylogenetic odyssey of the erythrocyte. I. Hemoglobin: the universal respiratory pigment. Histology and Histopathology. 1989;4(4):509–514. PubMed
Glomski C. A., Tamburlin J. The phylogenetic odyssey of the erythrocyte. II. The early or invertebrate prototypes. Histology and Histopathology. 1990;5(4):513–525. PubMed
Needham A. E. Haemostatic mechanisms in the invertebrata. Symposia of the Zoological Society of London. 1970;27:19–44.
Davidson C. J., Tuddenham E. G., McVey J. H. 450 million years of hemostasis. Journal of Thrombosis and Haemostasis. 2003;1(7):1487–1494. doi: 10.1046/j.1538-7836.2003.00334.x. PubMed DOI
Doolittle R. F., Jiang Y., Nand J. Genomic evidence for a simpler clotting scheme in jawless vertebrates. Journal of Molecular Evolution. 2008;66(2):185–196. doi: 10.1007/s00239-008-9074-8. PubMed DOI
Glomski C. A., Tamburlin J., Chainani M. The phylogenetic odyssey of the erythrocyte. III. Fish, the lower vertebrate experience. Histology and Histopathology. 1992;7(3):501–528. PubMed
Kobayashi M., Laver J. H., Kato T., Miyazaki H., Ogawa M. Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythroid progenitors. Blood. 1995;86(7):2494–2499. PubMed
Kieran M. W., Perkins A. C., Orkin S. H., Zon L. I. Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(17):9126–9131. doi: 10.1073/pnas.93.17.9126. PubMed DOI PMC
Broudy V. C., Lin N. L., Kaushansky K. Thrombopoietin (c-mpl ligand) acts synergistically with erythropoietin, stem cell factor, and interleukin-11 to enhance murine megakaryocyte colony growth and increases megakaryocyte ploidy in vitro. Blood. 1995;85(7):1719–1726. PubMed
Hematopoietic Cytokine Gene Duplication in Zebrafish Erythroid and Myeloid Lineages