A chromosome-scale reference genome of grasspea (Lathyrus sativus)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/X01097X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/P012523/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
24-10036S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
24-10036S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
24-10036S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
2017.00198.CEECIND
Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (Portuguese Science and Technology Foundation)
2017.00198
Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (Portuguese Science and Technology Foundation)
PubMed
39333203
PubMed Central
PMC11437036
DOI
10.1038/s41597-024-03868-y
PII: 10.1038/s41597-024-03868-y
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin * genetika MeSH
- genom rostlinný * MeSH
- Lathyrus * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
Grasspea (Lathyrus sativus L.) is an underutilised but promising legume crop with tolerance to a wide range of abiotic and biotic stress factors, and potential for climate-resilient agriculture. Despite a long history and wide geographical distribution of cultivation, only limited breeding resources are available. This paper reports a 5.96 Gbp genome assembly of grasspea genotype LS007, of which 5.03 Gbp is scaffolded into 7 pseudo-chromosomes. The assembly has a BUSCO completeness score of 99.1% and is annotated with 31719 gene models and repeat elements. This represents the most contiguous and accurate assembly of the grasspea genome to date.
Zobrazit více v PubMed
Dixit, G. P., Parihar, A. K., Bohra, A. & Singh, N. P. Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. The Crop Journal4, 407–416 (2016).
Kislev, M. E. Origins of the cultivation of Lathyrus sativus and L. cicera (Fabaceae). Economic Botany43, 262–270 (1989).
Coward, F., Shennan, S., Colledge, S., Conolly, J. & Collard, M. The spread of Neolithic plant economies from the Near East to northwest Europe: a phylogenetic analysis. Journal of Archaeological Science35, 42–56 (2008).
Lambein, F., Travella, S., Kuo, Y.-H., Van Montagu, M. & Heijde, M. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta10.1007/s00425-018-03084-0 (2019). PubMed
Campbell, C. G. Grass Pea: Lathyrus Sativus L. Promoting the conservation and use of underutilized and neglected crops vol. 18 (International Plant Genetic Resources Institute, 1997).
Rajarammohan, S. et al. Genome sequencing and assembly of Lathyrus sativus - a nutrient-rich hardy legume crop. Sci Data10, 32 (2023). PubMed PMC
Edwards, A. et al. Genomics and biochemical analyses reveal a metabolon key to β-L-ODAP biosynthesis in Lathyrus sativus. Nat Commun14, 876 (2023). PubMed PMC
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA10, 1 (2019). PubMed PMC
Macas, J., Koblízková, A. & Neumann, P. Characterization of Stowaway MITEs in pea (Pisum sativum L.) and identification of their potential master elements. Genome48, 831–839 (2005). PubMed
Macas, J., Neumann, P. & Pozárková, D. Zaba: a novel miniature transposable element present in genomes of legume plants. Mol Genet Genomics269, 624–631 (2003). PubMed
Yang, T. et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet54, 1553–1563 (2022). PubMed PMC
Sanches, M. et al. Grass pea (Lathyrus sativus) interesting panoply of mechanisms to cope with contrasting water stress conditions – a controlled study of sub populational differences in a worldwide collection of accessions. Agricultural Water Management292, 108664 (2024).
Jones, A. et al. High-molecular weight DNA extraction, clean-up and size selection for long-read sequencing. PLOS ONE16, e0253830 (2021). PubMed PMC
Schalamun, M. et al. Harnessing the MinION: An example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Molecular Ecology Resources19, 77–89 (2019). PubMed PMC
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods18, 170–175 (2021). PubMed PMC
Laetsch, D. R. & Blaxter, M. L. BlobTools: Interrogation of genome assemblies. Preprint at 10.12688/f1000research.12232.1 (2017).
Laetsch, D. R., Koutsovoulos, G., Booth, T., Stajich, J. & Kumar, S. DRL/blobtools: BlobTools v1.0.1. Zenodo10.5281/zenodo.845347 (2017).
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio] (2013).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience10, giab008 (2021). PubMed PMC
Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems3, 95–98 (2016). PubMed PMC
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95 (2017). PubMed PMC
Durand, N. C. et al. Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. Cell Systems3, 99–101 (2016). PubMed PMC
Vondrak, T. et al. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. The Plant Journal101, 484–500 (2020). PubMed PMC
Aliyeva-Schnorr, L., Ma, L. & Houben, A. A Fast Air-dry Dropping Chromosome Preparation Method Suitable for FISH in Plants. J Vis Exp e53470 10.3791/53470 (2015). PubMed PMC
Macas, J. et al. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS ONE10, e0143424 (2015). PubMed PMC
Macas, J., Neumann, P. & Navrátilová, A. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics8, 427 (2007). PubMed PMC
Macas, J. et al. Assembly of the 81.6 Mb centromere of pea chromosome 6 elucidates the structure and evolution of metapolycentric chromosomes. PLOS Genetics19, e1010633 (2023). PubMed PMC
Neumann, P. et al. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Molecular Biology and Evolution32, 1862–1879 (2015). PubMed PMC
Neumann, P. et al. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes. Frontiers in Plant Science7 (2016). PubMed PMC
Macas, J. et al. Long read sequencing and centromere characterization of Fabeae species (2022).
Ávila Robledillo, L. et al. Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae. Molecular Biology and Evolution37, 2341–2356 (2020). PubMed PMC
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120 (2014). PubMed PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods9, 357–359 (2012). PubMed PMC
Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: fast processing of NGS alignment formats. Bioinformatics31, 2032–2034 (2015). PubMed PMC
Stovner, E. B. & Sætrom, P. epic2 efficiently finds diffuse domains in ChIP-seq data. Bioinformatics35, 4392–4393 (2019). PubMed
Novak, P. kavonrtep/TideCluster: 0.0.8. Zenodo10.5281/zenodo.7885626 (2023).
Gao, Y., Liu, B., Wang, Y. & Xing, Y. TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-chain. Bioinformatics35, i200–i207 (2019). PubMed PMC
Novak, P. Domain based annotation of transposable elements - DANTE (2023).
Novak, P. kavonrtep/dante_ltr: 0.2.3.2. Zenodo10.5281/zenodo.8183566 (2023).
Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics29, 792–793 (2013). PubMed
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc15, 3745–3776 (2020). PubMed
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker (2013).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). PubMed PMC
Novak, P. Various bioinformatics utilities (2023).
Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics32, 767–769 (2016). PubMed PMC
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics3, lqaa108 (2021). PubMed PMC
Santos, C., Polanco, C., Rubiales, D. & Vaz Patto, M. C. The MLO1 powdery mildew susceptibility gene in Lathyrus species: The power of high-density linkage maps in comparative mapping and synteny analysis. The Plant Genome14, 1–15 (2021). PubMed
Santos, C., Martins, D., Rubiales, D. & Vaz Patto, M. C. Partial Resistance Against Erysiphe pisi and E. trifolii Under Different Genetic Control in Lathyrus cicera: Outcomes from a Linkage Mapping Approach. Plant Disease104, 2875–2884 (2020). PubMed
Kreplak, J. et al. A reference genome for pea provides insight into legume genome evolution. Nature Genetics51, 1411–1422 (2019). PubMed
BioBam Bioinformatics. OmicsBox – Bioinformatics Made Easy (2019).
Bayer, M. et al. Comparative visualization of genetic and physical maps with Strudel. Bioinformatics27, 1307–1308 (2011). PubMed PMC
Kuznetsov, D. et al. OrthoDB v11: annotation of orthologs in the widest sampling of organismal diversity. Nucleic Acids Res51, D445–D451 (2023). PubMed PMC
Vigouroux, M. et al. PRJEB70892 - Lathyrus sativus LS007 HiFi genome sequencing, PacBio raw data. European Nucleotide Archivehttps://www.ebi.ac.uk/ena/browser/view/PRJEB70892, https://identifiers.org/ena.embl:ERP155791 (2024).
Vigouroux, M. et al. PRJEB70892 - Lathyrus sativus LS007 HiFi genome sequencing, scaffolded genome assembly. NCBIhttps://www.ncbi.nlm.nih.gov/datasets/genome/GCA_963859935.3/, https://identifiers.org/ncbi/insdc.gca:GCA_963859935.3 (2024).
Vigouroux, M. et al. Supporting files for research paper ‘A chromosome-scale reference genome of Lathyrus sativus’ 10.5281/zenodo.10671532 (2024).
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). PubMed
Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Research49, D344–D354 (2021). PubMed PMC
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol Biol Evol38, 5825–5829 (2021). PubMed PMC
Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res47, D309–D314 (2019). PubMed PMC
Emmrich, P. M. F. et al. A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. 2020.04.24.058164 Preprint at 10.1101/2020.04.24.058164 (2020).