Global freshwater distribution of Telonemia protists
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
20-12496X
Grant Agency of the Czech Republic
017/2022/P
GAJU
2021/03/Y/NZ8/00076
National Science Centre
PubMed
39303138
PubMed Central
PMC11512789
DOI
10.1093/ismejo/wrae177
PII: 7762897
Knihovny.cz E-zdroje
- Klíčová slova
- CARD-FISH, Telonemia, freshwater lakes, metagenomics, microbial food webs, predatory flagellate,
- MeSH
- biodiverzita MeSH
- fylogeneze * MeSH
- hybridizace in situ fluorescenční * MeSH
- jezera mikrobiologie parazitologie MeSH
- metagenom MeSH
- metagenomika MeSH
- RNA ribozomální 18S * genetika MeSH
- sladká voda * mikrobiologie parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 18S * MeSH
Telonemia are one of the oldest identified marine protists that for most part of their history have been recognized as a distinct incertae sedis lineage. Today, their evolutionary proximity to the SAR supergroup (Stramenopiles, Alveolates, and Rhizaria) is firmly established. However, their ecological distribution and importance as a natural predatory flagellate, especially in freshwater food webs, still remain unclear. To unravel the distribution and diversity of the phylum Telonemia in freshwater habitats, we examined over a thousand freshwater metagenomes from all over the world. In addition, to directly quantify absolute abundances, we analyzed 407 samples from 97 lakes and reservoirs using Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH). We recovered Telonemia 18S rRNA gene sequences from hundreds of metagenomic samples from a wide variety of habitats, indicating a global distribution of this phylum. However, even after this extensive sampling, our phylogenetic analysis did not reveal any new major clades, suggesting current molecular surveys are near to capturing the full diversity within this group. We observed excellent concordance between CARD-FISH analyses and estimates of abundances from metagenomes. Both approaches suggest that Telonemia are largely absent from shallow lakes and prefer to inhabit the colder hypolimnion of lakes and reservoirs in the Northern Hemisphere, where they frequently bloom, reaching 10%-20% of the total heterotrophic flagellate population, making them important predatory flagellates in the freshwater food web.
Biological Station Lake Neusiedl Seevorgelände 1 7142 Illmitz Austria
Center of Excellence for Science and Technology Integration of Mediterranean Region Zagreb Croatia
Centre for Limnology Estonian University of Life Sciences 6117 Vehendi Tartu County Estonia
Department of Ecology and Genetics Limnology Uppsala University SE 75236 Uppsala Sweden
Department of Fisheries Ministry of Natural Resources and Climate Change 593 Lilongwe Malawi
Division of Materials Chemistry Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
État de Vaud Direction de l'environnement industriel urbain et rural 1066 Epalinges Switzerland
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Hydrobiological Station Faculty of Biology University of Warsaw Pilchy 5 12 200 Pisz Poland
Institute of Biochemistry and Biology Potsdam University Maulbeerallee 2 D 14469 Potsdam Germany
Leibniz Institute for Baltic Sea Research Warnemünde Seestrasse 15 D 18119 Rostock Germany
NBFC National Biodiversity Future Center 90133 Palermo Italy
Research and Innovation Centre Fondazione Edmund Mach Via E Mach 1 38098 S Michele all'Adige Italy
Research Department for Limnology Mondsee University of Innsbruck A 5310 Mondsee Austria
School of Life Sciences University of Warwick CV4 7AL Coventry United Kingdom
Water Research Institute National Research Council Largo Tonolli 50 Verbania 28922 Italy
Zobrazit více v PubMed
Sommer U, Adrian R, De Senerpont DL et al. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 2012;43:429–48. 10.1146/annurev-ecolsys-110411-160251 DOI
Šimek K, Nedoma J, Znachor P et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 2014;59:1477–92. 10.4319/lo.2014.59.5.1477 DOI
Shabarova T, Salcher MM, Porcal P et al. Recovery of freshwater microbial communities after extreme rain events is mediated by cyclic succession. Nat Microbiol 2021;6:479–88. 10.1038/s41564-020-00852-1 PubMed DOI
Kavagutti VS, Bulzu P-A, Chiriac CM et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome 2023;11:15. 10.1186/s40168-022-01451-4 PubMed DOI PMC
Park H, Shabarova T, Salcher MM et al. In the right place, at the right time: the integration of bacteria into the plankton ecology group model. Microbiome 2023;11:112. 10.1186/s40168-023-01522-0 PubMed DOI PMC
Wetzel RG. Limnology: Lake and River Ecosystems. 3rd edn. Academic Press, San Diego, California, 2001.
Lampert W, Sommer U, Ulrich LS. Limnoecology: The Ecology of Lakes and Streams. Oxford, Oxford University Press, 1997.
Kalff J. Limnology: Inland Water Ecosystems. Prentice Hall, New Jersey 2002.
Villena-Alemany C, Mujakić I, Fecskeová LK et al. Phenology and ecological role of aerobic anoxygenic phototrophs in freshwaters. Microbiome 2024;12:65. 10.1186/s40168-024-01786-0 PubMed DOI PMC
Ram ASP, Palesse S, Colombet J et al. The relative importance of viral lysis and nanoflagellate grazing for prokaryote mortality in temperate lakes. Freshw Biol 2014;59:300–11. 10.1111/fwb.12265 DOI
Šimek K, Grujčić V, Mukherjee I et al. Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol 2020;96:fiaa121. 10.1093/femsec/fiaa121 PubMed DOI PMC
Grujcic V, Nuy JK, Salcher MM et al. Cryptophyta as major bacterivores in freshwater summer plankton. ISME J 2018;12:1668–81. 10.1038/s41396-018-0057-5 PubMed DOI PMC
Šimek K, Mukherjee I, Szöke-Nagy T et al. Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores. ISME J 2022;17:84–94. 10.1038/s41396-022-01326-4 PubMed DOI PMC
Mukherjee I, Hodoki Y, Nakano S. Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. Aquat Microb Ecol 2017;80:123–37. 10.3354/ame01843 DOI
Leander BS. Predatory protists. Curr Biol 2020;30:R510–6. 10.1016/j.cub.2020.03.052 PubMed DOI
Tashyreva D, Prokopchuk G, Votýpka J et al. Life cycle, ultrastructure, and phylogeny of new Diplonemids and their endosymbiotic bacteria. MBio 2018;9. 10.1128/mBio.02447-17 PubMed DOI PMC
Mukherjee I, Salcher MM, Andrei A-Ş et al. A freshwater radiation of diplonemids. Environ Microbiol 2020;22:4658–68. 10.1111/1462-2920.15209 PubMed DOI
Piwosz K, Pernthaler J. Enrichment of omnivorous cercozoan nanoflagellates from coastal Baltic Sea waters. PLoS One 2011;6:e24415. 10.1371/journal.pone.0024415 PubMed DOI PMC
Šimek K, Mukherjee I, Nedoma J et al. CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environ Microbiol 2021;24:4256–73. 10.1111/1462-2920.15846 PubMed DOI PMC
Piwosz K, Pernthaler J. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the southern Baltic Sea. Environ Microbiol 2010;12:364–77. 10.1111/j.1462-2920.2009.02074.x PubMed DOI
Klaveness D, Shalchian-Tabrizi K, Thomsen HA et al. Telonema antarcticum sp. nov., a common marine phagotrophic flagellate. Int J Syst Evol Microbiol 2005;55:2595–604. 10.1099/ijs.0.63652-0 PubMed DOI
Griessmann K. Über marine Flagellaten. Arch Protistenkd 1913;32:1–78.
Hollande A, Cachon J. Structure et affinités d’un flagellé marin peu connu: Telonema subtilis Griesm. Ann Sci Nat Zool Biol Anim 1950;109–13.
Vørs N. Heterotrophic amoebae, flagellates and Heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 1992;36:1–109. 10.1080/00785326.1992.10429930 DOI
Tong S, Vørs N, Patterson DJ. Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol 1997;18:91–106. 10.1007/s003000050163 DOI
Thomsen HA. Plankton i Indre Danske Farvande. En Analyse Af Forekomsten Af Alger Og Heterotrofe Protister (Ekskl. Ciliater) i Kattegat. Københavm: Miljøstyrelsen, Miljøministeriet, 1992.
Trier H. Marint Phytoplankton i Subarktis – Kvantitative Og Kvalitative Aspekter. M. Sc. University of Copenhagen, 1998.
Massana R, Balagué V, Guillou L et al. Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 2004;50:231–43. 10.1016/j.femsec.2004.07.001 PubMed DOI
Romari K, Vaulot D. Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 2004;49:784–98. 10.4319/lo.2004.49.3.0784 DOI
Shalchian-Tabrizi K, Eikrem W, Klaveness D et al. Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 2006;273:1833–42. 10.1098/rspb.2006.3515 PubMed DOI PMC
Shalchian-Tabrizi K, Kauserud H, Massana R et al. Analysis of environmental 18S ribosomal RNA sequences reveals unknown diversity of the cosmopolitan phylum Telonemia. Protist 2007;158:173–80. 10.1016/j.protis.2006.10.003 PubMed DOI
Lefèvre E, Roussel B, Amblard C et al. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One 2008;3:e2324. 10.1371/journal.pone.0002324 PubMed DOI PMC
Reeb VC, Peglar MT, Yoon HS et al. Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol 2009;53:202–11. 10.1016/j.ympev.2009.04.012 PubMed DOI
Burki F, Inagaki Y, Bråte J et al. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates. Genome Biol Evol 2009;1:231–8. 10.1093/gbe/evp022 PubMed DOI PMC
Cavalier-Smith T, Chao EE, Lewis R. Multiple origins of Heliozoa from flagellate ancestors: new cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista Hacrobia and Chromista. Mol Phylogenet Evol 2015;93:331–62. 10.1016/j.ympev.2015.07.004 PubMed DOI
Strassert JFH, Jamy M, Mylnikov AP et al. New Phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life. Mol Biol Evol 2019;36:757–65. 10.1093/molbev/msz012 PubMed DOI PMC
Thaler M, Lovejoy C. Biogeography of heterotrophic flagellate populations indicates the presence of generalist and specialist taxa in the Arctic Ocean. Appl Environ Microbiol 2015;81:2137–48. 10.1128/AEM.02737-14 PubMed DOI PMC
Bachy C, López-García P, Vereshchaka A et al. Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the north pole at the end of the polar night. Front Microbiol 2011;2:106. 10.3389/fmicb.2011.00106 PubMed DOI PMC
Ramond P, Siano R, Sourisseau M et al. Assembly processes and functional diversity of marine protists and their rare biosphere. Environ Microbiome 2023;18:59. 10.1186/s40793-023-00513-w PubMed DOI PMC
Orsi WD, Wilken S, Del Campo J et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ Microbiol 2018;20:815–27. 10.1111/1462-2920.14018 PubMed DOI
Piwosz K, Całkiewicz J, Gołębiewski M et al. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (gulf of Gdańsk, Baltic Sea). Estuar Coast Shelf Sci 2018;207:242–9. 10.1016/j.ecss.2018.04.013 DOI
Kammerlander B, Breiner H-W, Filker S et al. High diversity of protistan plankton communities in remote high mountain lakes in the European alps and the Himalayan mountains. FEMS Microbiol Ecol 2015;91. 10.1093/femsec/fiv010 PubMed DOI PMC
Bråte J, Klaveness D, Rygh T et al. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine-freshwater colonizations. BMC Microbiol 2010;10:168. 10.1186/1471-2180-10-168 PubMed DOI PMC
Mukherjee I, Grujčić V, Salcher MM et al. Integrating depth-dependent protist dynamics and microbial interactions in spring succession of a freshwater reservoir. Environmental Microbiome 2024;19:1–16. 10.1186/s40793-024-00574-5 PubMed DOI PMC
Qu Z, Forster D, Bruni EP et al. Aquatic food webs in deep temperate lakes: key species establish through their autecological versatility. Mol Ecol 2021;30:1053–71. 10.1111/mec.15776 PubMed DOI
Tikhonenkov DV, Jamy M, Borodina AS et al. On the origin of TSAR: morphology, diversity and phylogeny of Telonemia. Open Biol 2022;12:210325. 10.1098/rsob.210325 PubMed DOI PMC
Cruaud P, Vigneron A, Fradette M-S et al. Annual protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: the saint-Charles river (Canada). Front Microbiol 2019;10:2359. 10.3389/fmicb.2019.02359 PubMed DOI PMC
Blais M-A, Vincent WF, Vigneron A et al. Diverse winter communities and biogeochemical cycling potential in the under-ice microbial plankton of a subarctic river-to-sea continuum. Microbiol Spectr 2024;12:e0416023. 10.1128/spectrum.04160-23 PubMed DOI PMC
Li F, Peng Y, Fang W et al. Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers. Environ Sci Technol 2018;52:11708–19. 10.1021/acs.est.8b03869 PubMed DOI
Piwosz K, Mukherjee I, Salcher MM et al. CARD-FISH in the sequencing era: opening a new universe of Protistan ecology. Front Microbiol 2021;12:640066. 10.3389/fmicb.2021.640066 PubMed DOI PMC
Layoun P, López-Pérez M, Haro-Moreno JM et al. Flexible genomic island conservation across freshwater and marine Methylophilaceae. ISME J 2024;18. 10.1093/ismejo/wrad036 PubMed DOI PMC
Chiriac M-C, Bulzu P-A, Andrei A-S et al. Ecogenomics sheds light on diverse lifestyle strategies in freshwater CPR. Microbiome 2022;10:84. 10.1186/s40168-022-01274-3 PubMed DOI PMC
Tran PQ, Bachand SC, McIntyre PB et al. Depth-discrete metagenomics reveals the roles of microbes in biogeochemical cycling in the tropical freshwater Lake Tanganyika. ISME J 2021;15:1971–86. 10.1038/s41396-021-00898-x PubMed DOI PMC
Andrei A-Ş, Salcher MM, Mehrshad M et al. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 2019;13:1056–71. 10.1038/s41396-018-0332-5 PubMed DOI PMC
Cabello-Yeves PJ, Zemskaya TI, Zakharenko AS et al. Microbiome of the deep Lake Baikal, a unique oxic bathypelagic habitat. Limnol Oceanogr 2019;65:1471–88. 10.1002/lno.11401 DOI
Mehrshad M, Salcher MM, Okazaki Y et al. Hidden in plain sight-highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome 2018;6:176. 10.1186/s40168-018-0563-8 PubMed DOI PMC
Garner RE, Kraemer SA, Onana VE et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol 2023;8:1920–34. PubMed
Nawrocki EP, Structural RNA. Homology Search and Alignment Using Covariance Models. Ph.D. Washington University in Saint Louis School of Medicine, 2009.
Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–6. 10.1093/nar/gks1219 PubMed DOI PMC
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658–9. 10.1093/bioinformatics/btl158 PubMed DOI
Chen I-MA, Chu K, Palaniappan K et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res 2023;51:D723–32. 10.1093/nar/gkac976 PubMed DOI PMC
Ludwig W, Strunk O, Westram R et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–71. 10.1093/nar/gkh293 PubMed DOI PMC
Kahn P, Herfort L, Peterson TD et al. Discovery of a Katablepharis sp. in the Columbia River estuary that is abundant during the spring and bears a unique large ribosomal subunit sequence element. Microbiology 2014;3:764–76. 10.1002/mbo3.206 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–80. 10.1093/molbev/mst010 PubMed DOI PMC
Mirarab S, Nguyen N, Guo S et al. PASTA: ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol 2015;22:377–86. 10.1089/cmb.2014.0156 PubMed DOI PMC
Nguyen L-T, Schmidt HA, von Haeseler A et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–74. 10.1093/molbev/msu300 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018;35:518–22. 10.1093/molbev/msx281 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017;14:587–9. 10.1038/nmeth.4285 PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017;35:1026–8. 10.1038/nbt.3988 PubMed DOI
Core Team RR. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
Piwosz K, Shabarova T, Pernthaler J et al. Bacterial and eukaryotic small-subunit amplicon data do not provide a quantitative picture of microbial communities, but they are reliable in the context of ecological interpretations. mSphere 2020;5. 10.1128/mSphere.00052-20 PubMed DOI PMC
Mukherjee I, Hodoki Y, Okazaki Y et al. Widespread dominance of Kinetoplastids and unexpected presence of Diplonemids in deep Freshwater Lakes. Front Microbiol 2019;10:2375. 10.3389/fmicb.2019.02375 PubMed DOI PMC