Peripherally-driven myeloid NFkB and IFN/ISG responses predict malignancy risk, survival, and immunotherapy regime in ovarian cancer

. 2021 Nov ; 9 (11) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34795003

BACKGROUND: Tumors can influence peripheral immune macroenvironment, thereby creating opportunities for non-invasive serum/plasma immunobiomarkers for immunostratification and immunotherapy designing. However, current approaches for immunobiomarkers' detection are largely quantitative, which is unreliable for assessing functional peripheral immunodynamics of patients with cancer. Hence, we aimed to design a functional biomarker modality for capturing peripheral immune signaling in patients with cancer for reliable immunostratification. METHODS: We used a data-driven in silico framework, integrating existing tumor/blood bulk-RNAseq or single-cell (sc)RNAseq datasets of patients with cancer, to inform the design of an innovative serum-screening modality, that is, serum-functional immunodynamic status (sFIS) assay. Next, we pursued proof-of-concept analyses via multiparametric serum profiling of patients with ovarian cancer (OV) with sFIS assay combined with Luminex (cytokines/soluble immune checkpoints), CA125-antigen detection, and whole-blood immune cell counts. Here, sFIS assay's ability to determine survival benefit or malignancy risk was validated in a discovery (n=32) and/or validation (n=699) patient cohorts. Lastly, we used an orthotopic murine metastatic OV model, with anti-OV therapy selection via in silico drug-target screening and murine serum screening via sFIS assay, to assess suitable in vivo immunotherapy options. RESULTS: In silico data-driven framework predicted that peripheral immunodynamics of patients with cancer might be best captured via analyzing myeloid nuclear factor kappa-light-chain enhancer of activated B cells (NFκB) signaling and interferon-stimulated genes' (ISG) responses. This helped in conceptualization of an 'in sitro' (in vitro+in situ) sFIS assay, where human myeloid cells were exposed to patients' serum in vitro, to assess serum-induced (si)-NFκB or interferon (IFN)/ISG responses (as active signaling reporter activity) within them, thereby 'mimicking' patients' in situ immunodynamic status. Multiparametric serum profiling of patients with OV established that sFIS assay can: decode peripheral immunology (by indicating higher enrichment of si-NFκB over si-IFN/ISG responses), estimate survival trends (si-NFκB or si-IFN/ISG responses associating with negative or positive prognosis, respectively), and coestimate malignancy risk (relative to benign/borderline ovarian lesions). Biologically, we documented dominance of pro-tumorigenic, myeloid si-NFκB responseHIGHsi-IFN/ISG responseLOW inflammation in periphery of patients with OV. Finally, in an orthotopic murine metastatic OV model, sFIS assay predicted the higher capacity of chemo-immunotherapy (paclitaxel-carboplatin plus anti-TNF antibody combination) in achieving a pro-immunogenic peripheral milieu (si-IFN/ISG responseHIGHsi-NFκB responseLOW), which aligned with high antitumor efficacy. CONCLUSIONS: We established sFIS assay as a novel biomarker resource for serum screening in patients with OV to evaluate peripheral immunodynamics, patient survival trends and malignancy risk, and to design preclinical chemo-immunotherapy strategies.

Zobrazit více v PubMed

Nalejska E, Mączyńska E, Lewandowska MA. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn Ther 2014;18:273–84. 10.1007/s40291-013-0077-9 PubMed DOI PMC

Califf RM. Biomarker definitions and their applications. Exp Biol Med 2018;243:213–21. 10.1177/1535370217750088 PubMed DOI PMC

Vanmeerbeek I, Borras DM, Sprooten J, et al. . Early memory differentiation and cell death resistance in T cells predicts melanoma response to sequential anti-CTLA4 and anti-PD1 immunotherapy. Genes Immun 2021;22:108–19. 10.1038/s41435-021-00138-4 PubMed DOI

Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021;18:261–79. 10.1038/s41571-020-00459-9 PubMed DOI PMC

Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer 2021;21:345–59. 10.1038/s41568-021-00347-z PubMed DOI PMC

Chechlinska M, Kowalewska M, Nowak R. Systemic inflammation as a confounding factor in cancer biomarker discovery and validation. Nat Rev Cancer 2010;10:2–3. 10.1038/nrc2782 PubMed DOI

Bassez A, Vos H, Van Dyck L, et al. . A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer. Nat Med 2021;27:820–32. 10.1038/s41591-021-01323-8 PubMed DOI

Ferreira CG, Nicolini A, Dalurzo L, et al. . The value of biomarkers in optimizing the use of Immuno-oncologic therapy. Curr Drug Targets 2018;20:81–6. 10.2174/1389450119666180911093143 PubMed DOI

Mehnert JM, Monjazeb AM, Beerthuijzen JMT, et al. . The challenge for development of valuable Immuno-oncology biomarkers. Clin Cancer Res 2017;23:4970–9. 10.1158/1078-0432.CCR-16-3063 PubMed DOI PMC

Gnjatic S, Bronte V, Brunet LR, et al. . Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 2017;5:44. 10.1186/s40425-017-0243-4 PubMed DOI PMC

Chalabi M, Fanchi LF, Dijkstra KK, et al. . Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med 2020;26:566–76. 10.1038/s41591-020-0805-8 PubMed DOI

Versluis JM, Long GV, Blank CU. Learning from clinical trials of neoadjuvant checkpoint blockade. Nat Med 2020;26:475–84. 10.1038/s41591-020-0829-0 PubMed DOI

Knific T, Fishman D, Vogler A, et al. . Multiplex analysis of 40 cytokines do not allow separation between endometriosis patients and controls. Sci Rep 2019;9:16738. 10.1038/s41598-019-52899-8 PubMed DOI PMC

Krzystek-Korpacka M, Diakowska D, Kapturkiewicz B, et al. . Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett 2013;337:107–14. 10.1016/j.canlet.2013.05.033 PubMed DOI

Hu-Lieskovan S, Bhaumik S, Dhodapkar K, et al. . SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery. J Immunother Cancer 2020;8:e000705. 10.1136/jitc-2020-000705 PubMed DOI PMC

Murphy K, Weaver C. Janeway’s Immunobiology. 9th edn. New York, NY: Garland Science/Taylor & Francis: Garland Science, 2016.

Kaskas NM, Moore-Medlin T, McClure GB, et al. . Serum biomarkers in head and neck squamous cell cancer. JAMA Otolaryngol Head Neck Surg 2014;140:5–11. 10.1001/jamaoto.2013.5688 PubMed DOI

Adelaja A, Taylor B, Sheu KM, et al. . Six distinct NFκB signaling codons convey discrete information to distinguish stimuli and enable appropriate macrophage responses. Immunity 2021;54:916–30. 10.1016/j.immuni.2021.04.011 PubMed DOI PMC

Coosemans A, Baert T, Ceusters J, et al. . Myeloid-derived suppressor cells at diagnosis may discriminate between benign and malignant ovarian tumors. Int J Gynecol Cancer 2019;29:1381–8. 10.1136/ijgc-2019-000521 PubMed DOI

Landolfo C, Achten ETL, Ceusters J, et al. . Assessment of protein biomarkers for preoperative differential diagnosis between benign and malignant ovarian tumors. Gynecol Oncol 2020;159:811–9. 10.1016/j.ygyno.2020.09.025 PubMed DOI

Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 2007;117:1175–83. 10.1172/JCI31537 PubMed DOI PMC

Zhao H, Wu L, Yan G, et al. . Inflammation and tumor progression: signaling pathways and targeted intervention. Sig Transduct Target Ther 2021;6:263. 10.1038/s41392-021-00658-5 PubMed DOI PMC

Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. Int Rev Cell Mol Biol 2020;350:63–118. PubMed PMC

Elsworth B, Dawe K, Vincent EE, et al. . MELODI: mining enriched literature objects to derive intermediates. Int J Epidemiol 2018. PubMed PMC

Gadducci A, Cosio S, Tana R, et al. . Serum and tissue biomarkers as predictive and prognostic variables in epithelial ovarian cancer. Crit Rev Oncol Hematol 2009;69:12–27. 10.1016/j.critrevonc.2008.05.001 PubMed DOI

Tian B, Nowak DE, Jamaluddin M, et al. . Identification of direct genomic targets downstream of the nuclear factor-κB transcription factor mediating tumor necrosis factor signaling. J Biol Chem 2005;280:17435–48. 10.1074/jbc.M500437200 PubMed DOI

Moserle L, Indraccolo S, Ghisi M, et al. . The side population of ovarian cancer cells is a primary target of IFN-α antitumor effects. Cancer Res 2008;68:5658–68. 10.1158/0008-5472.CAN-07-6341 PubMed DOI

Hecker M, Hartmann C, Kandulski O, et al. . Interferon-beta therapy in multiple sclerosis: the short-term and long-term effects on the patients’ individual gene expression in peripheral blood. Mol Neurobiol 2013;48:737–56. 10.1007/s12035-013-8463-1 PubMed DOI

Sana T, Janatpour M, Sathe M, et al. . Microarray analysis of primary endothelial cells challenged with different inflammatory and immune cytokines. Cytokine 2005;29:256–69. 10.1016/j.cyto.2004.11.003 PubMed DOI

Rusinova I, Forster S, Yu S, et al. . Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 2013;41:D1040–6. 10.1093/nar/gks1215 PubMed DOI PMC

Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. Int Rev Cell Mol Biol 2019;348:217–62. PubMed

Wu TD, Madireddi S, de Almeida PE, et al. . Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 2020;579:274–8. 10.1038/s41586-020-2056-8 PubMed DOI

Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017;377:2500–1. 10.1056/NEJMc1713444 PubMed DOI PMC

Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013;73:6900–12. 10.1158/0008-5472.CAN-13-1550 PubMed DOI PMC

Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853–66. 10.1038/sj.onc.1203239 PubMed DOI

Boston University . NF-kB transcription factors. Available: https://www.bu.edu/nf-kb/ [Accessed Sep 2019].

Ueland FR. A perspective on ovarian cancer biomarkers: past, present and yet-to-come. Diagnostics 2017;7:14. 10.3390/diagnostics7010014 PubMed DOI PMC

Qian J, Olbrecht S, Boeckx B, et al. . A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res 2020;30:745–62. 10.1038/s41422-020-0355-0 PubMed DOI PMC

Wang Q, Zhang J, Tu H, et al. . Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J Immunother Cancer 2019;7:334. 10.1186/s40425-019-0810-y PubMed DOI PMC

Henry NL, Hayes DF. Cancer biomarkers. Mol Oncol 2012;6:140–6. 10.1016/j.molonc.2012.01.010 PubMed DOI PMC

Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 2009;101:1446–52. 10.1093/jnci/djp335 PubMed DOI PMC

Owyong M, Chou J, van den Bijgaart RJ, et al. . MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Sci Alliance 2019;2:e201800226. 10.26508/lsa.201800226 PubMed DOI PMC

Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 2013;48:222–72. 10.3109/10409238.2013.770819 PubMed DOI

Koivisto L, Heino J, Häkkinen L, et al. . Integrins in wound healing. Adv Wound Care 2014;3:762–83. 10.1089/wound.2013.0436 PubMed DOI PMC

Agresti R, Triulzi T, Sasso M, et al. . Wound healing fluid reflects the inflammatory nature and aggressiveness of breast tumors. Cells 2019;8:181. 10.3390/cells8020181 PubMed DOI PMC

Mazzocca A, Dituri F, De Santis F, et al. . Lysophosphatidic acid receptor LPAR6 supports the tumorigenicity of hepatocellular carcinoma. Cancer Res 2015;75:532–43. 10.1158/0008-5472.CAN-14-1607 PubMed DOI

Popnikolov NK, Dalwadi BH, Thomas JD, et al. . Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumor Biol 2012;33:2237–43. 10.1007/s13277-012-0485-1 PubMed DOI

Qing J, Liu C, Choy L, et al. . Transforming growth factor β/Smad3 signaling regulates IRF-7 function and transcriptional activation of the beta interferon promoter. Mol Cell Biol 2004;24:1411–25. 10.1128/MCB.24.3.1411-1425.2004 PubMed DOI PMC

Pokharel SM, Shil NK, Bose S. Autophagy, TGF-β, and SMAD-2/3 signaling regulates interferon-β response in respiratory syncytial virus infected macrophages. Front Cell Infect Microbiol 2016;6:174. 10.3389/fcimb.2016.00174 PubMed DOI PMC

Baert T, Van Camp J, Vanbrabant L, et al. . Influence of CA125, platelet count and neutrophil to lymphocyte ratio on the immune system of ovarian cancer patients. Gynecol Oncol 2018;150:31–7. 10.1016/j.ygyno.2018.05.004 PubMed DOI

Nixon AB, Schalper KA, Jacobs I, et al. . Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential? J Immunother Cancer 2019;7:325. 10.1186/s40425-019-0799-2 PubMed DOI PMC

Sprooten J, De Wijngaert P, Vanmeerbeerk I, et al. . Necroptosis in immuno-oncology and cancer immunotherapy. Cells 2020;9:1823. 10.3390/cells9081823 PubMed DOI PMC

Kaijser J, Bourne T, Valentin L, et al. . Improving strategies for diagnosing ovarian cancer: a summary of the International ovarian tumor analysis (iota) studies. Ultrasound Obstet Gynecol 2013;41:9–20. 10.1002/uog.12323 PubMed DOI

Kulbe H, Chakravarty P, Leinster DA, et al. . A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2012;72:66–75. 10.1158/0008-5472.CAN-11-2178 PubMed DOI PMC

Charles KA, Kulbe H, Soper R, et al. . The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 2009;119:3011–23. 10.1172/JCI39065 PubMed DOI PMC

Baert T, Vankerckhoven A, Riva M, et al. . Myeloid derived suppressor cells: key drivers of immunosuppression in ovarian cancer. Front Immunol 2019;10:1273. 10.3389/fimmu.2019.01273 PubMed DOI PMC

Lampert EJ, Zimmer A, Padget M, et al. . Combination of PARP inhibitor olaparib, and PD-L1 inhibitor Durvalumab, in recurrent ovarian cancer: a proof-of-concept phase II study. Clin Cancer Res 2020;26:4268–79. 10.1158/1078-0432.CCR-20-0056 PubMed DOI PMC

Lau TS, Chan LKY, Man GCW, et al. . Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-Dependent exocytosis. Cancer Immunol Res 2020;8:1099–111. 10.1158/2326-6066.CIR-19-0616 PubMed DOI

French R, Feng Y, Pauklin S. Targeting TGFβ signalling in cancer: toward context-specific strategies. Trends in Cancer 2020;6:538–40. 10.1016/j.trecan.2020.03.010 PubMed DOI

Odunsi K. Immunotherapy in ovarian cancer. Ann Oncol. 2017;28:viii1–7. 10.1093/annonc/mdx444 PubMed DOI PMC

Baert T, Garg AD, Vindevogel EVA, et al. . In vitro generation of murine dendritic cells for cancer immunotherapy: an optimized protocol. Anticancer Res 2016;36:5793–802. 10.21873/anticanres.11163 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace