• This record comes from PubMed

Trial watch: chemotherapy-induced immunogenic cell death in oncology

. 2023 ; 12 (1) : 2219591. [epub] 20230603

Language English Country United States Media electronic-ecollection

Document type Journal Article, Review, Research Support, Non-U.S. Gov't

Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.

Cancer Research Insitute Ghent Ghent University Ghent Belgium

Cell Death and Inflammation Unit VIB Ugent Center for Inflammation Research Ghent Belgium

Cell Death Investigation and Therapy Laboratory Department of Human Structure and Repair Ghent University Ghent Belgium

Cell Stress and Immunity Lab Department of Cellular and Molecular Medicine KU Leuven Leuven Belgium

Center for Cell Therapy and Regenerative Medicine Antwerp University Hospital Antwerp Belgium

Center for Oncological Research University of Antwerp Antwerp Belgium

Centre de Recherche des Cordeliers Equipe Labellisée Par la Liguecontre le Cancer Université de Paris sorbonne Université Inserm U1138 Institut Universitaire de France Paris France

Department Neuroscience Laboratory for Experimental Neurosurgery and Neuroanatomy KU Leuven Leuven Belgium

Department Neurosurgery University Hospitals Leuven Leuven Belgium

Department of Biology Hôpital Européen Georges Pompidou AP HP Institut du Cancer Paris CARPEM Paris France

Department of Immunology Charles University 2ndFaculty of Medicine and University Hospital Motol Prague Czech Republic

Department of Radiation Oncology GROW School for Oncology and Reproduction Maastricht University Medical Center Maastricht The Netherlands

Department of Radiotherapy Erasmus University Medical Center Rotterdam The Netherlands

Laboratory of Experimental Oncology Department of Oncology Leuven Cancer Institute KU Leuven Leuven Belgium

Laboratory of Respiratory Diseases and Thoracic Surgery Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium

Laboratory of Tumor Immunology and Immunotherapy Department of Oncology Leuven Cancer Institute KU Leuven Leuven Belgium

Leuven Brain Institute KU Leuven Leuven Belgium

Metabolomics and Cell Biology Platforms Institut Gustave Roussy Cancer Center Université Paris Saclay Villejuif France

Molecular Digestive Oncology Department of Oncology Katholiek Universiteit Leuven Leuven Belgium

Molecular Signaling and Cell Death Unit Department of Biomedical Molecular Biology Ghent University Ghent Belgium

Sotio Biotech Prague Czech Republic

Tumour Immunology and Immunotherapy of Cancer European Academy of Tumor Immunology Gustave Roussy Cancer Center Inserm Villejuif France

See more in PubMed

Ahmed A, Tait SWG.. Targeting immunogenic cell death in cancer. Mol Oncol. 2020;14:2994–18. PubMed PMC

Troitskaya OS, Novak DD, Richter VA, Koval OA. Immunogenic cell death in cancer therapy. Acta Naturae. 2022;14:40–53. doi:10.32607/actanaturae.11523. PubMed DOI PMC

Fumet J-D, Limagne E, Thibaudin M, Ghiringhelli F. Immunogenic cell death and elimination of immunosuppressive cells: a double-edged sword of chemotherapy. Cancers (Basel). 2020;12:12. doi:10.3390/cancers12092637. PubMed DOI PMC

Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Martinez AB, Chan TA, Coukos G, Demaria S, Deutsch E, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J ImmunoTher Cancer. 2020;8. PubMed PMC

Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS, Vandenabeele P. Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 2022;13:3676. doi:10.1038/s41467-022-31218-2. PubMed DOI PMC

Zi M, Xingyu C, Yang C, Xiaodong S, Shixian L, Shicheng W. Improved antitumor immunity of chemotherapy in OSCC treatment by Gasdermin-E mediated pyroptosis. Apoptosis. 2022;28:348–361. doi:10.1007/s10495-022-01792-3. PubMed DOI

Oltean T, Lippens L, Lemeire K, De Tender C, Vuylsteke M, Denys H, Vandecasteele K, Vandenabeele P, Adjemian S. Association of cell death markers with tumor immune cell infiltrates after chemo-radiation in cervical cancer. Front Oncol. 2022;12:892813. doi:10.3389/fonc.2022.892813. PubMed DOI PMC

Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krysko DV. Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Disease. 2022;13:455. doi:10.1038/s41419-022-04851-4. PubMed DOI PMC

Santofimia-Castaño P, Iovanna J. Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways. Pancreatology. 2021;21:522–529. doi:10.1016/j.pan.2021.01.010. PubMed DOI

Wang M, Wu M, Liu X, Shao S, Huang J, Liu B, Liang T. Pyroptosis remodeling tumor microenvironment to enhance pancreatic cancer immunotherapy driven by membrane anchoring photosensitizer. Adv Sci (Weinh). 2022;9:e2202914. doi:10.1002/advs.202202914. PubMed DOI PMC

Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, Delrue I, Taminau J, Wiernicki B, De Groote P, et al. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep. 2016;15:274–287. doi:10.1016/j.celrep.2016.03.037. PubMed DOI

Sprooten J, De Wijngaert P, Vanmeerbeerk I, Martin S, Vangheluwe P, Schlenner S, Krysko DV, Parys JB, Bultynck G, Vandenabeele P, et al. Necroptosis in immuno-oncology and cancer immunotherapy. Cells. 2020;9:1823. doi:10.3390/cells9081823. PubMed DOI PMC

Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al. Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J ImmunoTher Cancer. 2020;8:e001369. doi:10.1136/jitc-2020-001369. PubMed DOI PMC

Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020;21:678–695. doi:10.1038/s41580-020-0270-8. PubMed DOI

Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 2017;18:127–136. doi:10.1038/nrm.2016.149. PubMed DOI

Kepp O, Kroemer G. Is ferroptosis immunogenic? The devil is in the details! Oncoimmunology. 2022;11:2127273. doi:10.1080/2162402X.2022.2127273. PubMed DOI PMC

Liu J, Dai E, Kang R, Kroemer G, Tang D. The dark side of ferroptosis in pancreatic cancer. Oncoimmunology. 2021;10:1868691. doi:10.1080/2162402X.2020.1868691. PubMed DOI PMC

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–1072. PubMed PMC

Li J-Y, Yao Y-M, Y-P T. Ferroptosis: a trigger of proinflammatory state progression to immunogenicity in necroinflammatory disease. Front Immunol. 2021;12:701163. doi:10.3389/fimmu.2021.701163. PubMed DOI PMC

Demuynck R, Efimova I, Naessens F, Krysko DV. Immunogenic ferroptosis and where to find it? J ImmunoTher Cancer. 2021;9:e003430. doi:10.1136/jitc-2021-003430. PubMed DOI PMC

Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, Liu D, Zhang F, Ning S, Yao J, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26:2284–2299. doi:10.1038/s41418-019-0299-4. PubMed DOI PMC

Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L, Yang L. HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRASQ61L cells. Am J Cancer Res. 2019;9:730–739. PubMed PMC

Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J, Tang D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020;16:2069–2083. doi:10.1080/15548627.2020.1714209. PubMed DOI PMC

Jeong SD, Jung B-K, Lee D, Ha J, Chang H-G, Lee J, Lee S, Yun C-O, Kim Y-C. Enhanced immunogenic cell death by apoptosis/ferroptosis hybrid pathway potentiates PD-L1 blockade cancerimmunotherapy. ACS Biomater Sci Eng. 2022;8:5188–5198. doi:10.1021/acsbiomaterials.2c00950. PubMed DOI

Tang X, Liu J, Yao S, Zheng J, Gong X, Xiao B. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. Pharm Biol. 2022;60:2286–2294. doi:10.1080/13880209.2022.2147549. PubMed DOI PMC

He L, Wang B, Wang X, Liu Y, Song X, Zhang Y, Li X, Yang H. Uncover diagnostic immunity/hypoxia/ferroptosis/epithelial mesenchymal transformation-related CCR5. CD86, CD8A, ITGAM, And PTPRC In Kidney Transplantation Patients With Allograft Rejection. Ren Fail. 2022;44:1850–1865. doi:10.1080/0886022X.2022.2141648. PubMed DOI PMC

Giuliani KTK, Grivei A, Nag P, Wang X, Rist M, Kildey K, Law B, Ng MS, Wilkinson R, Ungerer J, et al. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Disease. 2022;13:739. doi:10.1038/s41419-022-05191-z. PubMed DOI PMC

Veglia F, Tyurin VA, Mohammadyani D, Blasi M, Duperret EK, Donthireddy L, Hashimoto A, Kapralov A, Amoscato A, Angelini R, et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat Commun. 2017;8:2122. doi:10.1038/s41467-017-02186-9. PubMed DOI PMC

Klöditz K, Fadeel B. Three cell deaths and a funeral: macrophage clearance of cells undergoing distinct modes of cell death. Cell Death Discov. 2019;5:65. doi:10.1038/s41420-019-0146-x. PubMed DOI PMC

Ramakrishnan R, Tyurin VA, Veglia F, Condamine T, Amoscato A, Mohammadyani D, Johnson JJ, Zhang LM, Klein-Seetharaman J, Celis E, et al. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J Immunol. 2014;192:2920–2931. doi:10.4049/jimmunol.1302801. PubMed DOI PMC

Ugolini A, Tyurin VA, Tyurina YY, Tcyganov EN, Donthireddy L, Kagan VE, Gabrilovich DI, Veglia F. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insight. 2020;5. doi:10.1172/jci.insight.138581. PubMed DOI PMC

Wiernicki B, Dubois H, Tyurina YY, Hassannia B, Bayir H, Kagan VE, Vandenabeele P, Wullaert A, Vanden Berghe T. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Disease. 2020;11:922. doi:10.1038/s41419-020-03118-0. PubMed DOI PMC

Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, Zhang Z, Wang X. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell. 2021;81:355–369.e10. doi:10.1016/j.molcel.2020.11.024. PubMed DOI

Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, Zhao Y, Miao S, Lv C, Zhao J. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol. 2022;59:1619–1631. doi:10.1007/s12035-021-02706-1. PubMed DOI

Li Y, Wang J, Chen S, Wu P, Xu S, Wang C, Shi H, Bihl J. MiR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther. 2020;11:330. doi:10.1186/s13287-020-01836-y. PubMed DOI PMC

Hayashi K, Nikolos F, Lee YC, Jain A, Tsouko E, Gao H, Kasabyan A, Leung HE, Osipov A, Jung SY, et al. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun. 2020;11:6299. doi:10.1038/s41467-020-19970-9. PubMed DOI PMC

Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, Fu S, Sehgal M, Garcia-Gerique L, Kossenkov A, et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature. 2022;612:338–346. doi:10.1038/s41586-022-05443-0. PubMed DOI PMC

Li C, Zhang Y, Yan S, Zhang G, Wei W, Qi Z, Li B. Alternol triggers immunogenic cell death via reactive oxygen species generation. Oncoimmunology. 2021;10:1952539. doi:10.1080/2162402X.2021.1952539. PubMed DOI PMC

Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19:731–745. doi:10.1038/s41580-018-0068-0. PubMed DOI

Nayagom B, Amara I, Habiballah M, Amrouche F, Beaune P, de Waziers I. Immunogenic cell death in a combined synergic gene- and immune-therapy against cancer. Oncoimmunology. 2019;8:e1667743. doi:10.1080/2162402X.2019.1667743. PubMed DOI PMC

Clemen R, Arlt K, von Woedtke T, Bekeschus S. Gas plasma protein oxidation increases immunogenicity and human antigen-presenting cell maturation and activation. Vaccines (Basel). 2022;10:10. doi:10.3390/vaccines10111814. PubMed DOI PMC

Wang J, Li J, Wu Y, Xu X, Qian X, Lei Y, Liu H, Zhang Z, Li Y. ROS-Responsive nanocomplex of Apd-L1 and cabazitaxel improves intratumor delivery and potentiates radiation-mediated antitumor immunity. Nano Lett. 2022;22:8312–8320. doi:10.1021/acs.nanolett.2c03227. PubMed DOI

Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund A-C, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. Embo J. 2009;28:578–590. doi:10.1038/emboj.2009.1. PubMed DOI PMC

Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJM, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. Embo J. 2012;31:1062–1079. doi:10.1038/emboj.2011.497. PubMed DOI PMC

Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. doi:10.1038/nm1523. PubMed DOI

Giglio P, Gagliardi M, Bernardini R, Mattei M, Cotella D, Santoro C, Piacentini M, Corazzari M. Ecto-calreticulin is essential for an efficient immunogenic cell death stimulation in mouse melanoma. Genes Immun. 2019;20:509–513. doi:10.1038/s41435-018-0047-7. PubMed DOI

Fucikova J, Kasikova L, Truxova I, Laco J, Skapa P, Ryska A, Spisek R. Relevance of the chaperone-like protein calreticulin for the biological behavior and clinical outcome of cancer. Immunol Lett. 2018;193:25–34. doi:10.1016/j.imlet.2017.11.006. PubMed DOI

Venkateswaran K, Verma A, Bhatt AN, Shrivastava A, Manda K, Raj HG, Prasad A, Len C, Parmar VS, Dwarakanath BS. Emerging roles of calreticulin in cancer: implications for therapy. Curr Protein Pept Sci. 2018;19:344–357. doi:10.2174/1389203718666170111123253. PubMed DOI

Vaes RDW, Reynders K, Sprooten J, Nevola KT, Rouschop KMA, Vooijs M, Garg AD, Lambrecht M, Hendriks LEL, Rucevic M, et al. Identification of potential prognostic and predictive immunological biomarkers in patients with stage i and stage iii non-small cell lung cancer (NSCLC): a prospective exploratory study. Cancers (Basel). 2021;13:6259. doi:10.3390/cancers13246259. PubMed DOI PMC

Xiu Z, Sun T, Yang Y, He Y, Yang S, Xue X, Yang W, Wang B. Curcumin enhanced ionizing radiation-induced immunogenic cell death in glioma cells through endoplasmic reticulum stress signaling pathways. Oxid Med Cell Longev. 2022;2022:1–17. doi:10.1155/2022/5424411. PubMed DOI PMC

Zhao L, Li D, Zhang Y, Huang Q, Zhang Z, Chen C, Xu C-F, Chu X, Zhang Y, Yang X. HSP70-promoter-driven CRISPR/Cas9 system activated by reactive oxygen species for multifaceted anticancer immune response and potentiated immunotherapy. Acs Nano. 2022;16:13821–13833. doi:10.1021/acsnano.2c01885. PubMed DOI

Luo Y, Chihara Y, Fujimoto K, Sasahira T, Kuwada M, Fujiwara R, Fujii K, Ohmori H, Kuniyasu H. High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy. Eur J Cancer. 2013;49:741–751. doi:10.1016/j.ejca.2012.09.016. PubMed DOI

Kroemer G, Kepp O. Radiochemotherapy-induced elevations of plasma HMGB1 levels predict therapeutic responses in cancer patients. Oncoimmunol. 2021;10:2005859. doi:10.1080/2162402X.2021.2005859. PubMed DOI PMC

He C, Sun S, Zhang Y, Xie F, Li S. The role of irreversible electroporation in promoting M1 macrophage polarization via regulating the HMGB1-RAGE-MAPK axis in pancreatic cancer. Oncoimmunol. 2021;10:1897295. doi:10.1080/2162402X.2021.1897295. PubMed DOI PMC

Turubanova VD, Mishchenko TA, Balalaeva IV, Efimova I, Peskova NN, Klapshina LG, Lermontova SA, Bachert C, Krysko O, Vedunova MV, et al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. null. 2021;11:7205. doi:10.1038/s41598-021-86354-4. PubMed DOI PMC

Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN, Efimova I, Bachert C, Mitroshina EV, Krysko O, et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J ImmunoTher Cancer. 2019;7:350. doi:10.1186/s40425-019-0826-3. PubMed DOI PMC

Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Disease. 2020;11:1013. doi:10.1038/s41419-020-03221-2. PubMed DOI PMC

Arai H, Xiao Y, Loupakis F, Kawanishi N, Wang J, Battaglin F, Soni S, Zhang W, Mancao C, Salhia B, et al. Immunogenic cell death pathway polymorphisms for predicting oxaliplatin efficacy in metastatic colorectal cancer. J ImmunoTher Cancer. 2020;8:e001714. doi:10.1136/jitc-2020-001714. PubMed DOI PMC

Baracco EE, Petrazzuolo A, Kroemer G. Assessment of annexin A1 release during immunogenic cell death. Methods Enzymol. 2019;629:71–79. PubMed

Baracco EE, Stoll G, Van Endert P, Zitvogel L, Vacchelli E, Kroemer G. Contribution of annexin A1 to anticancer immunosurveillance. Oncoimmunology. 2019;8:e1647760. doi:10.1080/2162402X.2019.1647760. PubMed DOI PMC

Zhang J, Sun X, Zhao X, Yang C, Shi M, Zhang B, Hu H, Qiao M, Chen D, Zhao X. Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharm Sin B. 2022;12:3694–3709. doi:10.1016/j.apsb.2022.05.008. PubMed DOI PMC

Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L. ATP and cancer immunosurveillance. Embo J. 2021;40:e108130. doi:10.15252/embj.2021108130. PubMed DOI PMC

Serrano Del Valle A, Beltrán-Visiedo M, de Poo-Rodríguez V, Jiménez-Alduán N, Azaceta G, Díez R, Martínez-Lázaro B, Izquierdo I, Palomera L, Naval J, et al. Ecto-calreticulin expression in multiple myeloma correlates with a failed anti-tumoral immune response and bad prognosis. Oncoimmunology. 2022;11:2141973. doi:10.1080/2162402X.2022.2141973. PubMed DOI PMC

Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood. 2007;109:4839–4845. doi:10.1182/blood-2006-10-054221. PubMed DOI PMC

Sprooten J, Vanmeerbeek I, Datsi A, Govaerts J, Borras D, Naulaerts S, Laureano R, Calvet A, Kuballa M, Sabel M, et al. A lymph node-to-tumour PD-L1+macrophage circuit antagonizes dendritic cell immunotherapy. bioRxiv. 2023. doi:10.1101/2023.03.14.532534;. DOI

Pan C, Wang Y, Liu Q, Hu Y, Fu J, Xie X, Zhang S, Xi M, Wen J. Phenotypic profiling and prognostic significance of immune infiltrates in esophageal squamous cell carcinoma. Oncoimmunology. 2021;10:1883890. doi:10.1080/2162402X.2021.1883890. PubMed DOI PMC

Schafer ZT, Brugge JS. IL-6 involvement in epithelial cancers. J Clin Invest. 2007;117:3660–3663. doi:10.1172/JCI34237. PubMed DOI PMC

Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, Khaled AR. Cytokines in immunogenic cell death: applications for cancer immunotherapy. Cytokine. 2017;97:123–132. doi:10.1016/j.cyto.2017.05.024. PubMed DOI PMC

De Martino M, Vanpouille-Box C. Type I interferon induces cancer stem cells-mediated chemotherapy resistance. Oncoimmunology. 2022;11:2127274. doi:10.1080/2162402X.2022.2127274. PubMed DOI PMC

Vanmeerbeek I, Govaerts J, Laureano RS, Sprooten J, Naulaerts S, Borras DM, Laoui D, Mazzone M, Van Ginderachter JA, Garg AD. The interface of tumour-associated macrophages with dying cancer cells in immuno-oncology. Cells. 2022;11(23):3890. doi:10.3390/cells11233890. PubMed DOI PMC

Murgaski A, Kiss M, Van Damme H, Kancheva D, Vanmeerbeek I, Keirsse J, Hadadi E, Brughmans J, Arnouk SM, Hamouda AEI, et al. Efficacy of CD40 agonists is mediated by distinct cdc subsets and subverted by suppressive macrophages. Cancer Res. 2022;82:3785–3801. doi:10.1158/0008-5472.CAN-22-0094. PubMed DOI PMC

Sprooten J, Coosemans A, Garg AD. A first-in-class, non-invasive, immunodynamic biomarker approach for precision immuno-oncology. Oncoimmunology. 2022;11:2024692. doi:10.1080/2162402X.2021.2024692. PubMed DOI PMC

Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J, Van Woensel M, Koks C, Vanthillo N, Graf N, et al. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ. 2017;24:832–843. doi:10.1038/cdd.2017.15. PubMed DOI PMC

Castiello L, Zevini A, Vulpis E, Muscolini M, Ferrari M, Palermo E, Peruzzi G, Krapp C, Jakobsen M, Olagnier D, et al. An optimized retinoic acid-inducible gene I agonist M8 induces immunogenic cell death markers in human cancer cells and dendritic cell activation. Cancer Immunol Immunother. 2019;68:1479–1492. doi:10.1007/s00262-019-02380-2. PubMed DOI PMC

Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, McNeish IA, Kwong J. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-Dependent exocytosis. Cancer Immunol Res. 2020;8:1099–1111. doi:10.1158/2326-6066.CIR-19-0616. PubMed DOI

Forveille S, Sauvat A, Zhang S, Zhao L, Kroemer G, Kepp O. Assessment of type I interferon responses as a feature of immunogenic cell death. Methods Cell Biol. 2022;172:135–143. PubMed

Sansone C, Bruno A, Piscitelli C, Baci D, Fontana A, Brunet C, Noonan DM, Albini A. Natural compounds of marine origin as inducers of immunogenic cell death (ICD): potential role for cancer interception and therapy. Cells. 2021;10:10. doi:10.3390/cells10020231. PubMed DOI PMC

Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–148. doi:10.1111/imr.12574. PubMed DOI

Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. Int Rev Cell Mol Biol. 2020;350:63–118. PubMed PMC

Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. Int Rev Cell Mol Biol. 2019;348:217–262. PubMed

Klein JC, Wild CA, Lang S, Brandau S. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands. Cancer Immunol Immunother. 2016;65:689–700. doi:10.1007/s00262-016-1828-3. PubMed DOI PMC

Lopez-Pelaez M, Young L, Vazquez-Chantada M, Nelson N, Durant S, Wilkinson RW, Poon E, Gaspar M, Valge-Archer V, Smith P, et al. Targeting DNA damage response components induces enhanced STING-dependent type-I IFN response in ATM deficient cancer cells and drives dendritic cell activation. Oncoimmunology. 2022;11:2117321. doi:10.1080/2162402X.2022.2117321. PubMed DOI PMC

Roussot N, Ghiringhelli F, Rébé C. Tumor immunogenic cell death as a mediator of intratumor CD8 T-Cell recruitment. Cells. 2022;11(20). PubMed PMC

Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochem Pharmacol. 2018;153:12–23. PubMed

Maher J, Adami AA. Antitumor immunity: easy as 1, 2, 3 with monoclonal bispecific trifunctional antibodies? Cancer Res. 2013;73:5613–5617. doi:10.1158/0008-5472.CAN-13-1852. PubMed DOI

Pocaterra A, Catucci M, Mondino A. Adoptive T cell therapy of solid tumors: time to team up with immunogenic chemo/radiotherapy. Curr Opin Immunol. 2022;74:53–59. doi:10.1016/j.coi.2021.10.004. PubMed DOI

Darmon A, Zhang P, Marill J, Mohamed Anesary N, Da Silva J, Paris S. Radiotherapy-activated NBTXR3 nanoparticles modulate cancer cell immunogenicity and TCR repertoire. Cancer Cell Int. 2022;22:208. doi:10.1186/s12935-022-02615-w. PubMed DOI PMC

Minute L, Teijeira A, Sanchez-Paulete AR, Ochoa MC, Alvarez M, Otano I, Etxeberrria I, Bolaños E, Azpilikueta A, Garasa S, et al. Cellular cytotoxicity is a form of immunogenic cell death. J ImmunoTher Cancer. 2020;8:8. doi:10.1136/jitc-2019-000325. PubMed DOI PMC

Malviya V, Yshii L, Junius S, Garg AD, Humblet-Baron S, Schlenner SM. Regulatory T cell stability and functional plasticity in health and disease. Immunol Cell Biol. 2022;101:112–129. doi:10.1111/imcb.12613. PubMed DOI

Dillard P, Casey N, Pollmann S, Vernhoff P, Gaudernack G, Kvalheim G, Wälchli S, Inderberg EM. Targeting KRAS mutations with HLA class II-restricted TCRs for the treatment of solid tumors. Oncoimmunology. 2021;10:1936757. doi:10.1080/2162402X.2021.1936757. PubMed DOI PMC

Naulaerts S, Datsi A, Borras DM, Antoranz Martinez A, Messiaen J, Vanmeerbeek I, Sprooten J, Laureano RS, Govaerts J, Panovska D, et al. Multiomics and spatial mapping characterizes human CD8+ T cell states in cancer. Sci Transl Med. 2023;15:eadd1016. doi:10.1126/scitranslmed.add1016. PubMed DOI

Luo R, Onyshchenko K, Wang L, Gaedicke S, Grosu A-L, Firat E, Niedermann G. Necroptosis-dependent immunogenicity of cisplatin: implications for enhancing the radiation-induced abscopal effect. Clin Cancer Res. 2022;29(3):667–683. PubMed

Bian Q, Huang L, Xu Y, Wang R, Gu Y, Yuan A, Ma X, Hu J, Rao Y, Xu D, et al. A facile low-dose photosensitizer-incorporated dissolving microneedles-based composite system for eliciting antitumor immunity and the abscopal effect. Acs Nano. 2021;15:19468–19479. doi:10.1021/acsnano.1c06225. PubMed DOI

Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, et al. Abscopal effect and drug-induced xenogenization: a strategic alliance in cancer treatment? Int J Mol Sci. 2021;22:22. doi:10.3390/ijms221910672. PubMed DOI PMC

Arabpour M, Paul S, Grauers Wiktorin H, Kaya M, Kiffin R, Lycke N, Hellstrand K, Martner A. An adjuvant-containing cDC1-targeted recombinant fusion vaccine conveys strong protection against murine melanoma growth and metastasis. Oncoimmunology. 2022;11:2115618. doi:10.1080/2162402X.2022.2115618. PubMed DOI PMC

Koerner J, Horvath D, Oliveri F, Li J, Basler M. Suppression of prostate cancer and amelioration of the immunosuppressive tumor microenvironment through selective immunoproteasome inhibition. Oncoimmunology. 2023;12:2156091. doi:10.1080/2162402X.2022.2156091. PubMed DOI PMC

Yasmin-Karim S, Ziberi B, Wirtz J, Bih N, Moreau M, Guthier R, Ainsworth V, Hesser J, Makrigiorgos GM, Chuong MD, et al. Boosting the abscopal effect using immunogenic biomaterials with varying radiation therapy field sizes. Int J Radiat Oncol Biol Phys. 2022;112:475–486. doi:10.1016/j.ijrobp.2021.09.010. PubMed DOI PMC

Xing D, Siva S, Hanna GG. The abscopal effect of stereotactic radiotherapy and immunotherapy: fool’s gold or el dorado? Clin Oncol (R Coll Radiol. 2019;31:432–443. doi:10.1016/j.clon.2019.04.006. PubMed DOI

Moreau M, Yasmin-Karim S, Kunjachan S, Sinha N, Gremse F, Kumar R, Chow KF, Ngwa W. Priming the abscopal effect using multifunctional smart radiotherapy biomaterials loaded with immunoadjuvants. Front Oncol. 2018;8:56. doi:10.3389/fonc.2018.00056. PubMed DOI PMC

Jin C, Wang Y, Li Y, Li J, Zhou S, Yu J, Wang Z, Yu Y, Zhang H, Wang D, et al. Doxorubicin-Near infrared dye conjugate induces immunogenic cell death to enhance cancer immunotherapy. Int J Pharm. 2021;607:121027. doi:10.1016/j.ijpharm.2021.121027. PubMed DOI

Zhou M, Luo C, Zhou Z, Li L, Huang Y. Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release. 2021;334:248–262. doi:10.1016/j.jconrel.2021.04.029. PubMed DOI

Zheng J, Sun J, Chen J, Zhu S, Chen S, Liu Y, Hao L, Wang Z, Chang S. Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. J Control Release. 2021;332:448–459. doi:10.1016/j.jconrel.2021.02.032. PubMed DOI

Galaine J, Turco C, Vauchy C, Royer B, Mercier-Letondal P, Queiroz L, Loyon R, Mouget V, Boidot R, Laheurte C, et al. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int J Cancer. 2019;145:3112–3125. doi:10.1002/ijc.32620. PubMed DOI

Zhou Y, Bastian IN, Long MD, Dow M, Li W, Liu T, Ngu RK, Antonucci L, Huang JY, Phung QT, et al. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc Natl Acad Sci USA. 2021;118:118. doi:10.1073/pnas.2025840118. PubMed DOI PMC

Lei X, Khatri I, de Wit T, de Rink I, Nieuwland M, Kerkhoven R, van Eenennaam H, Sun C, Garg AD, Borst J, et al. CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat Commun. 2023;14:217. doi:10.1038/s41467-022-35615-5. PubMed DOI PMC

Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C, et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–1309. doi:10.1038/nm.3708. PubMed DOI

Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol. 2022;13:1017400. doi:10.3389/fimmu.2022.1017400. PubMed DOI PMC

Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23:487–500. doi:10.1038/s41590-022-01132-2. PubMed DOI

Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21:298–312. doi:10.1038/s41568-021-00339-z. PubMed DOI

Vanmeerbeek I, Borras DM, Sprooten J, Bechter O, Tejpar S, Garg AD. Early memory differentiation and cell death resistance in T cells predicts melanoma response to sequential anti-CTLA4 and anti-PD1 immunotherapy. Genes Immun. 2021;22:108–119. doi:10.1038/s41435-021-00138-4. PubMed DOI

Gong T, Liu L, Jiang W, Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95–112. doi:10.1038/s41577-019-0215-7. PubMed DOI

Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, et al. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol. 2015;6:402. doi:10.3389/fimmu.2015.00402. PubMed DOI PMC

Rodrigues MC, Morais JAV, Ganassin R, Oliveira GRT, Costa FC, Morais AAC, Silveira AP, Silva VCM, Longo JPF, Muehlmann LA. An overview on immunogenic cell death in cancer biology and therapy. Pharmaceutics. 2022;14:14. doi:10.3390/pharmaceutics14081564. PubMed DOI PMC

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–875. doi:10.1038/nrc3380. PubMed DOI

Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends Cancer. 2017;3:643–658. doi:10.1016/j.trecan.2017.07.002. PubMed DOI

Wang J, Zhang H, Yin X, Bian Y, Zhang J. Oxaliplatin induces immunogenic cell death in human and murine laryngeal cancer. J Oncol. 2022;2022:1–12. doi:10.1155/2022/3760766. PubMed DOI PMC

Shi M, Zhang J, Wang Y, Han Y, Zhao X, Hu H, Qiao M, Chen D. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater. 2022;150:353–366. doi:10.1016/j.actbio.2022.07.022. PubMed DOI

Lévesque S, Le Naour J, Pietrocola F, Paillet J, Kremer M, Castoldi F, Baracco EE, Wang Y, Vacchelli E, Stoll G, et al. A synergistic triad of chemotherapy, immune checkpoint inhibitors, and caloric restriction mimetics eradicates tumors in mice. Oncoimmunology. 2019;8:e1657375. doi:10.1080/2162402X.2019.1657375. PubMed DOI PMC

Vienot A, Pallandre J-R, Renaude E, Viot J, Bouard A, Spehner L, Kroemer M, Abdeljaoued S, van der Woning B, de Haard H, et al. Chemokine switch regulated by TGF-β1 in cancer-associated fibroblast subsets determines the efficacy of chemo-immunotherapy. Oncoimmunology. 2022;11:2144669. doi:10.1080/2162402X.2022.2144669. PubMed DOI PMC

Kim R, Kin T. Current and future therapies for immunogenic cell death and related molecules to potentially cure primary breast cancer. Cancers (Basel). 2021;13:4756. doi:10.3390/cancers13194756. PubMed DOI PMC

Chen Y, Xiong T, Zhao X, Du J, Sun W, Fan J, Peng X. Tumor cell-responsive photodynamic immunoagent for immunogenicity-enhanced orthotopic and remote tumor therapy. Adv Healthcare Mater. 2022;12:e2202085. doi:10.1002/adhm.202202085. PubMed DOI

Liu X, Liu Y, Li X, Huang J, Guo X, Zhang J, Luo Z, Shi Y, Jiang M, Qin B, et al. ER-Targeting PDT converts tumors into in situ therapeutic tumor vaccines. Acs Nano. 2022;16:9240–9253. doi:10.1021/acsnano.2c01669. PubMed DOI

Zeng Q, Yang J, Ji J, Wang P, Zhang L, Yan G, Wu Y, Chen Q, Liu J, Zhang G, et al. PD-L1 blockade potentiates the antitumor effects of ALA-PDT and optimizes the tumor microenvironment in cutaneous squamous cell carcinoma. Oncoimmunology. 2022;11:2061396. doi:10.1080/2162402X.2022.2061396. PubMed DOI PMC

Kudling TV, Clubb JHA, Quixabeira DCA, Santos JM, Havunen R, Kononov A, Heiniö C, Cervera-Carrascon V, Pakola S, Basnet S, et al. Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression. Oncoimmunology. 2022;11:2096572. doi:10.1080/2162402X.2022.2096572. PubMed DOI PMC

Chang X, Bian M, Liu L, Yang J, Yang Z, Wang Z, Lu Y, Liu W. Induction of immunogenic cell death by novel platinum-based anticancer agents. Pharmacol Res. 2022;187:106556. doi:10.1016/j.phrs.2022.106556. PubMed DOI

Nishimura J, Deguchi S, Tanaka H, Yamakoshi Y, Yoshii M, Tamura T, Toyokawa T, Lee S, Muguruma K, Ohira M. Induction of immunogenic cell death of esophageal squamous cell carcinoma by 5-fluorouracil and cisplatin. Vivo. 2021;35:743–752. doi:10.21873/invivo.12315. PubMed DOI PMC

Liu P, Chen J, Zhao L, Hollebecque A, Kepp O, Zitvogel L, Kroemer G. PD-1 blockade synergizes with oxaliplatin-based, but not cisplatin-based, chemotherapy of gastric cancer. Oncoimmunology. 2022;11:2093518. doi:10.1080/2162402X.2022.2093518. PubMed DOI PMC

Bag A, Schultz A, Bhimani S, Stringfield O, Dominguez W, Mo Q, Cen L, Adeegbe D. Coupling the immunomodulatory properties of the HDAC6 inhibitor ACY241 with Oxaliplatin promotes robust anti-tumor response in non-small cell lung cancer. Oncoimmunology. 2022;11:2042065. doi:10.1080/2162402X.2022.2042065. PubMed DOI PMC

Krackhardt AM, Anliker B, Hildebrandt M, Bachmann M, Eichmüller SB, Nettelbeck DM, Renner M, Uharek L, Willimsky G, Schmitt M, et al. Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies—the German cancer consortium approach. Cancer Immunol Immunother. 2018;67:513–523. doi:10.1007/s00262-018-2119-y. PubMed DOI PMC

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541. doi:10.1038/s41418-017-0012-4. PubMed DOI PMC

Krysko DV, Demuynck R, Efimova I, Naessens F, Krysko O, Catanzaro E. In Vitro veritas: from 2D cultures to organ-on-a-chip models to study immunogenic cell death in the tumor microenvironment. Cells. 2022;11:11. doi:10.3390/cells11223705. PubMed DOI PMC

Sun T, Li Y, Yang Y, Liu B, Cao Y, Yang W. Enhanced radiation-induced immunogenic cell death activates chimeric antigen receptor T cells by targeting CD39 against glioblastoma. Cell Death Disease. 2022;13:875. doi:10.1038/s41419-022-05319-1. PubMed DOI PMC

Vergato C, Doshi KA, Roblyer D, Waxman DJ. Type-I interferon signaling is essential for robust metronomic chemo-immunogenic tumor regression in murine breast cancer. Cancer Res Commun. 2022;2:246–257. doi:10.1158/2767-9764.CRC-21-0148. PubMed DOI PMC

Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med. 2016;8:328ra27. doi:10.1126/scitranslmed.aae0105. PubMed DOI

Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ. 2021;28:843–860. doi:10.1038/s41418-020-00658-y. PubMed DOI PMC

Uscanga-Palomeque AC, Calvillo-Rodríguez KM, Gómez-Morales L, Lardé E, Denèfle T, Caballero-Hernández D, Merle-Béral H, Susin SA, Karoyan P, Martínez-Torres AC, et al. CD47 agonist peptide PKHB1 induces immunogenic cell death in T-cell acute lymphoblastic leukemia cells. Cancer Sci. 2019;110:256–268. doi:10.1111/cas.13885. PubMed DOI PMC

Chen J, Jin Z, Zhang S, Zhang X, Li P, Yang H, Ma Y. Arsenic trioxide elicits prophylactic and therapeutic immune responses against solid tumors by inducing necroptosis and ferroptosis. Cell Mol Immunol. 2022;20:51–64. doi:10.1038/s41423-022-00956-0. PubMed DOI PMC

Martínez-Torres AC, Calvillo-Rodríguez KM, Uscanga-Palomeque AC, Gómez-Morales L, Mendoza-Reveles R, Caballero-Hernández D, Karoyan P, Rodríguez-Padilla C. PKHB1 tumor cell lysate induces antitumor immune system stimulation and tumor regression in syngeneic mice with tumoral T lymphoblasts. J Oncol. 2019;2019:9852361. doi:10.1155/2019/9852361. PubMed DOI PMC

Fang S, Agostinis P, Salven P, Garg AD. Decoding cancer cell death-driven immune cell recruitment: an in vivo method for site-of-vaccination analyses. Methods Enzymol. 2020;636:185–207. PubMed

Workenhe ST, Pol J, Kroemer G. Tumor-intrinsic determinants of immunogenic cell death modalities. Oncoimmunology. 2021;10:1893466. doi:10.1080/2162402X.2021.1893466. PubMed DOI PMC

Oduro PK, Zheng X, Wei J, Yang Y, Wang Y, Zhang H, Liu E, Gao X, Du M, Wang Q. The Cgas-STING signaling in cardiovascular and metabolic diseases: future novel target option for pharmacotherapy. Acta Pharm Sin B. 2022;12:50–75. doi:10.1016/j.apsb.2021.05.011. PubMed DOI PMC

Kim EH, Wong S-W, Martinez J. Programmed necrosis and disease: we interrupt your regular programming to bring you necroinflammation. Cell Death Differ. 2019;26:25–40. doi:10.1038/s41418-018-0179-3. PubMed DOI PMC

Faiz A, Heijink IH, Vermeulen CJ, Guryev V, van den Berge M, Nawijn MC, Pouwels SD. Cigarette smoke exposure decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung epithelial cell death and DAMP release. null. 2018;8:12426. doi:10.1038/s41598-018-30602-7. PubMed DOI PMC

Chiang S-F, Huang K-Y, Chen W-L, Chen T-W, Ke T-W, Chao KSC. An independent predictor of poor prognosis in locally advanced rectal cancer: rs867228 in formyl peptide receptor 1 (FPR1). Oncoimmunology. 2021;10:1926074. doi:10.1080/2162402X.2021.1926074. PubMed DOI PMC

Liu P, Zhao L, Loos F, Marty C, Xie W, Martins I, Lachkar S, Qu B, Waeckel-Énée E, Plo I, et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol Cell. 2020;77:748–760.e9. doi:10.1016/j.molcel.2019.11.004. PubMed DOI

Brieske C, Lamprecht P, Kerstein-Staehle A. Immunogenic cell death as driver of autoimmunity in granulomatosis with polyangiitis. Front Immunol. 2022;13:1007092. doi:10.3389/fimmu.2022.1007092. PubMed DOI PMC

Novohradsky V, Pracharova J, Kasparkova J, Imberti C, Bridgewater HE, Sadler PJ, Brabec V. Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg Chem Front. 2020;7:4150–4159. doi:10.1039/D0QI00991A. PubMed DOI PMC

Matsusaka K, Azuma Y, Kaga Y, Uchida S, Takebayashi Y, Tsuyama T, Tada S. Distinct roles in phagocytosis of the early and late increases of cell surface calreticulin induced by oxaliplatin. Biochem Biophys Rep. 2022;29:101222. doi:10.1016/j.bbrep.2022.101222. PubMed DOI PMC

Li F, Zheng X, Wang X, Xu J, Zhang Q. Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis. Transl Oncol. 2021;14:101202. doi:10.1016/j.tranon.2021.101202. PubMed DOI PMC

Sequeira GR, Sahores A, Dalotto-Moreno T, Perrotta RM, Pataccini G, Vanzulli SI, Polo ML, Radisky DC, Sartorius CA, Novaro V, et al. Enhanced antitumor immunity via endocrine therapy prevents mammary tumor relapse and increases immune checkpoint blockade sensitivity. Cancer Res. 2021;81:1375–1387. doi:10.1158/0008-5472.CAN-20-1441. PubMed DOI

Tomić S, Petrović A, Puač N, Škoro N, Bekić M, Petrović ZL, Čolić M. Plasma-activated medium potentiates the immunogenicity of tumor cell lysates for dendritic cell-based cancer vaccines. Cancers (Basel). 2021;13:1626. doi:10.3390/cancers13071626. PubMed DOI PMC

Truxova I, Kasikova L, Salek C, Hensler M, Lysak D, Holicek P, Bilkova P, Holubova M, Chen X, Mikyskova R, et al. Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica. 2020;105:1868–1878. doi:10.3324/haematol.2019.223933. PubMed DOI PMC

Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J, et al. Trial watch: dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology. 2022;11:2096363. doi:10.1080/2162402X.2022.2096363. PubMed DOI PMC

Hensler M, Rakova J, Kasikova L, Lanickova T, Pasulka J, Holicek P, Hraska M, Hrnciarova T, Kadlecova P, Schoenenberger A, et al. Peripheral gene signatures reveal distinct cancer patient immunotypes with therapeutic implications for autologous DC-based vaccines. Oncoimmunology. 2022;11:2101596. doi:10.1080/2162402X.2022.2101596. PubMed DOI PMC

Das S, Shapiro B, Vucic EA, Vogt S, Bar-Sagi D. Tumor cell-derived IL1β promotes desmoplasia and immune suppression in pancreatic cancer. Cancer Res. 2020;80:1088–1101. doi:10.1158/0008-5472.CAN-19-2080. PubMed DOI PMC

Tang AC, Rahavi SM, Fung S-Y, Lu HY, Yang H, Lim CJ, Reid GS, Turvey SE. Combination therapy with proteasome inhibitors and TLR agonists enhances tumour cell death and IL-1β production. Cell Death Disease. 2018;9:162. doi:10.1038/s41419-017-0194-1. PubMed DOI PMC

Petrovski G, Ayna G, Majai G, Hodrea J, Benko S, Mádi A, Fésüs L. Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1β release in human macrophages. Autophagy. 2011;7:321–330. doi:10.4161/auto.7.3.14583. PubMed DOI

Tang L, Cai D, Qin M, Lu S, Hu M-H, Ruan S, Jin G, Wang Z. Oxaliplatin-based platinum(IV) prodrug bearing toll-like receptor 7 agonist for enhanced immunochemotherapy. ACS Omega. 2020;5:726–734. doi:10.1021/acsomega.9b03381. PubMed DOI PMC

Beltrán Hernández I, Angelier ML, Del Buono D’Ondes T, Di Maggio A, Yu Y, Oliveira S. The potential of nanobody-targeted photodynamic therapy to trigger immune responses. Cancers (Basel). 2020;12:12. doi:10.3390/cancers12040978. PubMed DOI PMC

Tang X, Guo D, Yang X, Chen R, Jiang Q, Zeng Z, Li Y, Li Z. Upregulated immunogenic cell-death-associated gene signature predicts reduced responsiveness to immune-checkpoint-blockade therapy and poor prognosis in high-grade gliomas. Cells. 2022;11(22). PubMed PMC

Bent EH, Millán-Barea LR, Zhuang I, Goulet DR, Fröse J, Hemann MT. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat Commun. 2021;12:6218. doi:10.1038/s41467-021-26407-4. PubMed DOI PMC

Wang D, Cong J, Fu B, Zheng X, Sun R, Tian Z, Wei H. Immunogenic chemotherapy effectively inhibits KRAS-Driven lung cancer. Cancer Lett. 2020;492:31–43. doi:10.1016/j.canlet.2020.07.043. PubMed DOI

Ishii K, Shimizu M, Kogo H, Negishi Y, Tamura H, Morita R, Takahashi H. A combination of check-point blockade and α-galactosylceramide elicits long-lasting suppressive effects on murine hepatoma cell growth in vivo. Immunobiology. 2020;225:151860. PubMed

Varga Z, Rácz E, Mázló A, Korodi M, Szabó A, Molnár T, Szöőr Á, Veréb Z, Bácsi A, Koncz G. Cytotoxic activity of human dendritic cells induces RIPK1-dependent cell death. Immunobiology. 2021;226:152032. doi:10.1016/j.imbio.2020.152032. PubMed DOI

Serrano R, Lettau M, Zarobkiewicz M, Wesch D, Peters C, Kabelitz D. Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncoimmunology. 2022;11:2030021. doi:10.1080/2162402X.2022.2030021. PubMed DOI PMC

Sprooten J, Vankerckhoven A, Vanmeerbeek I, Borras DM, Berckmans Y, Wouters R, Laureano RS, Baert T, Boon L, Landolfo C, et al. Peripherally-driven myeloid NFkB and IFN/ISG responses predict malignancy risk, survival, and immunotherapy regime in ovarian cancer. J ImmunoTher Cancer. 2021;9:e003609. doi:10.1136/jitc-2021-003609. PubMed DOI PMC

Leclercq G, Servera LA, Danilin S, Challier J, Steinhoff N, Bossen C, Odermatt A, Nicolini V, Umaña P, Klein C, et al. Dissecting the mechanism of cytokine release induced by T-cell engagers highlights the contribution of neutrophils. Oncoimmunology. 2022;11:2039432. doi:10.1080/2162402X.2022.2039432. PubMed DOI PMC

Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–1178. doi:10.1038/nm.2028. PubMed DOI

Liu J, Meng Y, Li B, Wang P, Wan X, Huang W, Li R. Ferroptosis-related biotargets and network mechanisms of fucoidan against colorectal cancer: an integrated bioinformatic and experimental approach. Int J Biol Macromol. 2022;222:1522–1530. doi:10.1016/j.ijbiomac.2022.09.255. PubMed DOI

Zhu C, Fang Z, Peng L, Gao F, Peng W, Song F. Curcumin suppresses the progression of colorectal cancer by improving immunogenic cell death caused by irinotecan. Chemotherapy. 2022;67:211–222. doi:10.1159/000518121. PubMed DOI

Jeong H, Lee S-Y, Seo H, Kim DH, Lee D, Kim B-J. Potential of Mycobacterium tuberculosis chorismate mutase (Rv1885c) as a novel TLR4-mediated adjuvant for dendritic cell-based cancer immunotherapy. Oncoimmunology. 2022;11:2023340. doi:10.1080/2162402X.2021.2023340. PubMed DOI PMC

Pipperger L, Riepler L, Kimpel J, Siller A, Stoitzner P, Bánki Z, von Laer D. Differential infection of murine and human dendritic cell subsets by oncolytic vesicular stomatitis virus variants. Oncoimmunology. 2021;10:1959140. doi:10.1080/2162402X.2021.1959140. PubMed DOI PMC

Rébé C, Demontoux L, Pilot T, Ghiringhelli F. Platinum derivatives effects on anticancer immune response. Biomolecules. 2019;10:10. doi:10.3390/biom10010013. PubMed DOI PMC

Lamberti MJ, Montico B, Ravo M, Nigro A, Giurato G, Iorio R, Tarallo R, Weisz A, Stellato C, Steffan A, et al. Integration of miRNA: mRNA co-expression revealed crucial mechanisms modulated in immunogenic cancer cell death. Biomedicines. 2022;10:1896. doi:10.3390/biomedicines10081896. PubMed DOI PMC

Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, et al. Immunogenic cell death, damps and prothymosin α as a putative anticancer immune response biomarker. Cells. 2022;11:11. doi:10.3390/cells11091415. PubMed DOI PMC

Cacan E, Ozmen ZC. Regulation of Fas in response to bortezomib and epirubicin in colorectal cancer cells. J Chemother. 2020;32:193–201. doi:10.1080/1120009X.2020.1740389. PubMed DOI

Jie Y, Yang X, Chen W. Pulsatilla decoction combined with 5-fluorouracil triggers immunogenic cell death in the colorectal cancer cells. Cancer Biother Radiopharm. 2021;37:945–954. doi:10.1089/cbr.2020.4369. PubMed DOI

Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. Nanoscale. 2021;13:17218–17235. doi:10.1039/D1NR05512G. PubMed DOI

Pol JG, Le Naour J, Kroemer G. FLT3LG - a biomarker reflecting clinical responses to the immunogenic cell death inducer oxaliplatin. Oncoimmunology. 2020;9:1755214. doi:10.1080/2162402X.2020.1755214. PubMed DOI PMC

Krysko DV, Kaczmarek A, Krysko O, Heyndrickx L, Woznicki J, Bogaert P, Cauwels A, Takahashi N, Magez S, Bachert C, et al. TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death Differ. 2011;18:1316–1325. doi:10.1038/cdd.2011.4. PubMed DOI PMC

Kepp O, Cerrato G, Sauvat A, Kroemer G. Nanoparticles releasing immunogenic cell death inducers upon near-infrared light exposure. Oncoimmunology. 2022;11:2131227. doi:10.1080/2162402X.2022.2131227. PubMed DOI PMC

Pol JG, Plantureux C, Pérez-Lanzón M, Kroemer G. PDIA3 as a potential bridge between immunogenic cell death and autoreactivity. Oncoimmunology. 2022;11:2130558. doi:10.1080/2162402X.2022.2130558. PubMed DOI PMC

Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, Fimia GM, Lovat PE, Piacentini M. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell Death Differ. 2015;22:946–958. doi:10.1038/cdd.2014.183. PubMed DOI PMC

Wen H, Zhong Y, Yin Y, Qin K, Yang L, Li D, Yu W, Yang C, Deng Z, Hong K. A marine-derived small molecule induces immunogenic cell death against triple-negative breast cancer through ER stress-CHOP pathway. Int J Biol Sci. 2022;18:2898–2913. doi:10.7150/ijbs.70975. PubMed DOI PMC

Li X, Zheng J, Chen S, Meng F-D, Ning J, Sun S-L. Oleandrin, a cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/CHOP pathway in breast cancer. Cell Death Disease. 2021;12:314. doi:10.1038/s41419-021-03605-y. PubMed DOI PMC

Xu Q, Chen C, Lin A, Xie Y. Endoplasmic reticulum stress-mediated membrane expression of CRT/ERp57 induces immunogenic apoptosis in drug-resistant endometrial cancer cells. Oncotarget. 2017;8:58754–58764. doi:10.18632/oncotarget.17678. PubMed DOI PMC

Verfaillie T, van Vliet A, Garg AD, Dewaele M, Rubio N, Gupta S, de Witte P, Samali A, Agostinis P. Pro-apoptotic signaling induced by photo-oxidative ER stress is amplified by Noxa, not Bim. Biochem Biophys Res Commun. 2013;438:500–506. doi:10.1016/j.bbrc.2013.07.107. PubMed DOI

Fang C, Weng T, Hu S, Yuan Z, Xiong H, Huang B, Cai Y, Li L, Fu X. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells. Oncoimmunology. 2021;10:1962591. doi:10.1080/2162402X.2021.1962591. PubMed DOI PMC

Yadollahvandmiandoab R, Jalalizadeh M, Buosi K, Garcia-Perdomo HA, Reis LO. Immunogenic cell death role in urothelial cancer therapy. Curr Oncol. 2022;29:6700–6713. doi:10.3390/curroncol29090526. PubMed DOI PMC

Wang X, Huang H, Liu X, Li J, Wang L, Li L, Li Y, Han T. Immunogenic cell death-related classifications in breast cancer identify precise immunotherapy biomarkers and enable prognostic stratification. Front Genet. 2022;13:1052720. doi:10.3389/fgene.2022.1052720. PubMed DOI PMC

Zhang W, Liu T, Jiang L, Chen J, Li Q, Wang J. Immunogenic cell death-related gene landscape predicts the overall survival and immune infiltration status of ovarian cancer. Front Genet. 2022;13:1001239. doi:10.3389/fgene.2022.1001239. PubMed DOI PMC

Han Y, Cai Q, Xie X, Gao S, Fan X. Development and validation of prognostic index based on immunogenic cell death-related genes with melanoma. Front Oncol. 2022;12:1011046. doi:10.3389/fonc.2022.1011046. PubMed DOI PMC

Cao X, Zhou X, Chen C, Wang Z, Sun Q. Identification of tumor antigens and immunogenic cell death-related subtypes for the improvement of immunotherapy of breast cancer. Front Cell Dev Biol. 2022;10:962389. doi:10.3389/fcell.2022.962389. PubMed DOI PMC

Fu J, Zhang W, Jiang T. Immunogenic cell death mediation patterns reveal novel paradigm for characterizing the immune microenvironment and immunotherapeutic responses in bladder cancer. Front Genet. 2022;13:1035484. doi:10.3389/fgene.2022.1035484. PubMed DOI PMC

Liao X, Liu H, Zhang Z, Zhang J, Zhang C, Zhao W. An immunogenic cell death-associated classification predictions are important for breast invasive carcinoma prognosis and immunotherapy. Front Genet. 2022;13:1010787. doi:10.3389/fgene.2022.1010787. PubMed DOI PMC

Ding D, Zhao Y, Su Y, Yang H, Wang X, Chen L. Prognostic value of antitumor drug targets prediction using integrated bioinformatic analysis for immunogenic cell death-related lncRNA model based on stomach adenocarcinoma characteristics and tumor immune microenvironment. Front Pharmacol. 2022;13:1022294. doi:10.3389/fphar.2022.1022294. PubMed DOI PMC

Kofla G, Radecke C, Frentsch M, Walther W, Stintzing S, Riess H, Bullinger L, Na IK. Conventional amphotericin B elicits markers of immunogenic cell death on leukemic blasts, mediates immunostimulatory effects on phagocytic cells, and synergizes with PD-L1 blockade. Oncoimmunology. 2022;11:2068109. doi:10.1080/2162402X.2022.2068109. PubMed DOI PMC

Eid M, Ostřížková L, Kunovský L, Brančíková D, Kala Z, Hlavsa J, Janeček P, Kosíková I, Blažková M, Slabý O, et al. Current view of neoadjuvant chemotherapy in primarily resectable pancreatic adenocarcinoma. Neoplasma. 2021;68:1–9. doi:10.4149/neo_2020_200408N372. PubMed DOI

Iacoboni G, Zucca E, Ghielmini M, Stathis A. Methodology of clinical trials evaluating the incorporation of new drugs in the first-line treatment of patients with diffuse large B-cell lymphoma (DLBCL): a critical review. Ann Oncol. 2018;29:1120–1129. doi:10.1093/annonc/mdy113. PubMed DOI

Wei D, Qi J, Hamblin MR, Wen X, Jiang X, Yang H. Near-infrared photoimmunotherapy: design and potential applications for cancer treatment and beyond. Theranostics. 2022;12:7108–7131. doi:10.7150/thno.74820. PubMed DOI PMC

Brennan L, Brouwer-Visser J, Nüesch E, Karpova M, Heller A, Gaire F, Schneider M, Gomes B, Korski K. T-Cell heterogeneity in baseline tumor samples: implications for early clinical trial design and analysis. Front Immunol. 2022;13:760763. doi:10.3389/fimmu.2022.760763. PubMed DOI PMC

Van Gool SW, Makalowski J, Fiore S, Sprenger T, Prix L, Schirrmacher V, Stuecker W. Randomized controlled immunotherapy clinical trials for GBM challenged. Cancers (Basel). 2020;13:13. doi:10.3390/cancers13010032. PubMed DOI PMC

Cho H, Kim JE, Hong YS, Kim SY, Kim J, Ryu Y-M, Kim S-Y, Kim TW. Comprehensive evaluation of the tumor immune microenvironment and its dynamic changes in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy: from the phase II ADORE study. Oncoimmunology. 2022;11:2148374. doi:10.1080/2162402X.2022.2148374. PubMed DOI PMC

Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12:145. doi:10.1038/s41467-020-20243-8. PubMed DOI PMC

Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol. 2020;21:120–134. doi:10.1038/s41590-019-0561-4. PubMed DOI

Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells. 2021;10:10. doi:10.3390/cells10040930. PubMed DOI PMC

Prasit KK, Ferrer-Font L, Burn OK, Anderson RJ, Compton BJ, Schmidt AJ, Mayer JU, Chen C-J, Dasyam N, Ritchie DS, et al. Intratumoural administration of an NKT cell agonist with CpG promotes NKT cell infiltration associated with an enhanced antitumour response and abscopal effect. Oncoimmunology. 2022;11:2081009. doi:10.1080/2162402X.2022.2081009. PubMed DOI PMC

Patel RB, Hernandez R, Carlson P, Grudzinski J, Bates AM, Jagodinsky JC, Erbe A, Marsh IR, Arthur I, Aluicio-Sarduy E, et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med. 2021;13. doi:10.1126/scitranslmed.abb3631. PubMed DOI PMC

Lejeune P, Cruciani V, Berg-Larsen A, Schlicker A, Mobergslien A, Bartnitzky L, Berndt S, Zitzmann-Kolbe S, Kamfenkel C, Stargard S, et al. Immunostimulatory effects of targeted thorium-227 conjugates as single agent and in combination with anti-PD-L1 therapy. J ImmunoTher Cancer. 2021;9:e002387. doi:10.1136/jitc-2021-002387. PubMed DOI PMC

Shekarian T, Sivado E, Jallas A-C, Depil S, Kielbassa J, Janoueix-Lerosey I, Hutter G, Goutagny N, Bergeron C, Viari A, et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci Transl Med. 2019;11:11. doi:10.1126/scitranslmed.aat5025. PubMed DOI

Li X, Lu M, Yuan M, Ye J, Zhang W, Xu L, Wu X, Hui B, Yang Y, Wei B, et al. CXCL10-armed oncolytic adenovirus promotes tumor-infiltrating T-cell chemotaxis to enhance anti-PD-1 therapy. Oncoimmunology. 2022;11:2118210. doi:10.1080/2162402X.2022.2118210. PubMed DOI PMC

Wang Q, Ma X, Wu H, Zhao C, Chen J, Li R, Yan S, Li Y, Zhang Q, Song K, et al. Oncolytic adenovirus with MUC16-BiTE shows enhanced antitumor immune response by reversing the tumor microenvironment in PDX model of ovarian cancer. Oncoimmunology. 2022;11:2096362. doi:10.1080/2162402X.2022.2096362. PubMed DOI PMC

Tappe KA, Budida R, Stankov MV, Frenz T, Shah R, Volz A, Sutter G, Kalinke U, Behrens GMN. Immunogenic cell death of dendritic cells following modified vaccinia virus Ankara infection enhances CD8+ T cell proliferation. Eur J Immunol. 2018;48:2042–2054. doi:10.1002/eji.201847632. PubMed DOI

He T, Hao Z, Lin M, Xin Z, Chen Y, Ouyang W, Yang Q, Chen X, Zhou H, Zhang W, et al. Oncolytic adenovirus promotes vascular normalization and nonclassical tertiary lymphoid structure formation through STING-mediated DC activation. Oncoimmunology. 2022;11:2093054. doi:10.1080/2162402X.2022.2093054. PubMed DOI PMC

Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, et al. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology. 2020;9:1703449. doi:10.1080/2162402X.2019.1703449. PubMed DOI PMC

Mandula JK, Chang S, Mohamed E, Jimenez R, Sierra-Mondragon RA, Chang DC, Obermayer AN, Moran-Segura CM, Das S, Vazquez-Martinez JA, et al. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell. 2022;40:1145–1160.e9. doi:10.1016/j.ccell.2022.08.016. PubMed DOI PMC

Oresta B, Pozzi C, Braga D, Hurle R, Lazzeri M, Colombo P, Frego N, Erreni M, Faccani C, Elefante G, et al. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer. Sci Transl Med. 2021;13. doi:10.1126/scitranslmed.aba6110. PubMed DOI

Lucarini V, Melaiu O, D’Amico S, Pastorino F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D’Oria V, Cilli M, et al. Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma. J Exp Clin Cancer Res. 2022;41:326. doi:10.1186/s13046-022-02525-9. PubMed DOI PMC

Humeau J, Sauvat A, Cerrato G, Xie W, Loos F, Iannantuoni F, Bezu L, Lévesque S, Paillet J, Pol J, et al. Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. EMBO Mol Med. 2020;12:e11622. doi:10.15252/emmm.201911622. PubMed DOI PMC

Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer drugs: recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules. 2022;27:27. doi:10.3390/molecules27175436. PubMed DOI PMC

Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini C-O, Prats N, López-Domínguez JA, et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 2023;13:410–431. doi:10.1158/2159-8290.CD-22-0523. PubMed DOI PMC

Kepp O, Kroemer G. A nanoparticle-based tour de force for enhancing immunogenic cell death elicited by photodynamic therapy. Oncoimmunology. 2022;11:2098658. doi:10.1080/2162402X.2022.2098658. PubMed DOI PMC

Zhou Z, Yang R, Dong J, Di Y, Yang Y, Huang Y, Yang X, Liu W, Wang J, Liu P, et al. Pore forming–mediated intracellular protein delivery for enhanced cancer immunotherapy. Sci Adv. 2022;8:eabq4659. doi:10.1126/sciadv.abq4659. PubMed DOI PMC

Yang Q, Ma X, Xiao Y, Zhang T, Yang L, Yang S, Liang M, Wang S, Wu Z, Xu Z, et al. Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to enhance antitumor immunity. Acta Pharm Sin B. 2022;12:3139–3155. doi:10.1016/j.apsb.2022.02.024. PubMed DOI PMC

Song H, Cai Z, Li J, Xiao H, Qi R, Zheng M. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J Nanobiotechnology. 2022;20:329. doi:10.1186/s12951-022-01531-5. PubMed DOI PMC

Tatarova Z, Blumberg DC, Korkola JE, Heiser LM, Muschler JL, Schedin PJ, Ahn SW, Mills GB, Coussens LM, Jonas O, et al. A multiplex implantable microdevice assay identifies synergistic combinations of cancer immunotherapies and conventional drugs. Nat Biotechnol. 2022;40:1823–1833. doi:10.1038/s41587-022-01379-y. PubMed DOI PMC

Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Hrynyk R, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci. 2021;163:105838. doi:10.1016/j.ejps.2021.105838. PubMed DOI

Lamberti MJ, Nigro A, Casolaro V, Rumie Vittar NB, Dal Col J. Damage-associated molecular patterns modulation by microRNA: relevance on immunogenic cell death and cancer treatment outcome. Cancers (Basel). 2021;13:2566. doi:10.3390/cancers13112566. PubMed DOI PMC

Yan X, Yu H, Liu Y, Hou J, Yang Q, Zhao Y. MiR-27a-3p functions as a tumor suppressor and regulates non-small cell lung cancer cell proliferation via targeting HOXB8. Technol Cancer Res Treat. 2019;18:1533033819861971. doi:10.1177/1533033819861971. PubMed DOI PMC

Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, Milone MR, Budillon A, Santopaolo M, Mazzoccoli G, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Disease. 2016;7:e2108. doi:10.1038/cddis.2016.29. PubMed DOI PMC

He S-J, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget. 2017;8:64534–64550. doi:10.18632/oncotarget.17885. PubMed DOI PMC

Son G-H, Kim Y, Lee JJ, Lee K-Y, Ham H, Song J-E, Park ST, Kim Y-H. MicroRNA-548 regulates high mobility group box 1 expression in patients with preterm birth and chorioamnionitis. null. 2019;9:19746. doi:10.1038/s41598-019-56327-9. PubMed DOI PMC

Lv X, Yao L, Nie YQ, Xu XY. MicroRNA-520a-3p suppresses non-small-cell lung carcinoma by inhibition of high mobility group box 1 (HMGB1). Eur Rev Med Pharmacol Sci. 2018;22:1700–1708. doi:10.26355/eurrev_201803_14583. PubMed DOI

Yun Z, Meng F, Jiang P, Yue M, Li S. MicroRNA-548b suppresses aggressive phenotypes of hepatocellular carcinoma by directly targeting high-mobility group box 1 mRNA. Cancer Manag Res. 2019;11:5821–5834. doi:10.2147/CMAR.S198615. PubMed DOI PMC

Tatsuno K, Han P, Edelson R, Hanlon D. Detection of immunogenic cell death in tumor vaccination mouse model. Methods Mol Biol. 2021;2255:171–186. PubMed

Zhang Y, Thangam R, You S-H, Sultonova RD, Venu A, Min J-J, Hong Y. Engineering calreticulin-targeting monobodies to detect immunogenic cell death in cancer chemotherapy. Cancers (Basel). 2021;13:2801. doi:10.3390/cancers13112801. PubMed DOI PMC

Kim D-Y, Pyo A, Yun M, Thangam R, You S-H, Zhang Y, Jung Y-R, Nguyen D-H, Venu A, Kim HS, et al. Imaging calreticulin for early detection of immunogenic cell death during anticancer treatment. J Nucl Med. 2021;62:956–960. doi:10.2967/jnumed.120.245290. PubMed DOI PMC

Chumsri S, Serie DJ, Li Z, Pogue-Geile KL, Soyano-Muller AE, Mashadi-Hossein A, Warren S, Lou Y, Colon-Otero G, Knutson KL, et al. Effects of age and immune landscape on outcome in HER2-positive breast cancer in the NCCTG N9831 (Alliance) and NSABP B-31 (NRG) Trials. Clin Cancer Res. 2019;25:4422–4430. doi:10.1158/1078-0432.CCR-18-2206. PubMed DOI PMC

Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Henschel V, Molinero L, Chui SY, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21:44–59. doi:10.1016/S1470-2045(19)30689-8. PubMed DOI

de Boo L, Cimino-Mathews A, Lubeck Y, Daletzakis A, Opdam M, Sanders J, Hooijberg E, van Rossum A, Loncova Z, Rieder D, et al. Tumour-infiltrating lymphocytes (TILs) and BRCA-like status in stage III breast cancer patients randomised to adjuvant intensified platinum-based chemotherapy versus conventional chemotherapy. Eur J Cancer. 2020;127:240–250. doi:10.1016/j.ejca.2019.12.003. PubMed DOI

Emens LA, Molinero L, Loi S, Rugo HS, Schneeweiss A, Diéras V, Iwata H, Barrios CH, Nechaeva M, Nguyen-Duc A, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. J Natl Cancer Inst. 2021;113:1005–1016. doi:10.1093/jnci/djab004. PubMed DOI PMC

Page DB, Pucilowska J, Sanchez KG, Conrad VK, Conlin AK, Acheson AK, Perlewitz KS, Imatani JH, Aliabadi-Wahle S, Moxon N, et al. A phase ib study of preoperative, locoregional IRX-2 cytokine immunotherapy to prime immune responses in patients with early-stage breast cancer. Clin Cancer Res. 2020;26:1595–1605. doi:10.1158/1078-0432.CCR-19-1119. PubMed DOI

Ishihara M, Kitano S, Kageyama S, Miyahara Y, Yamamoto N, Kato H, Mishima H, Hattori H, Funakoshi T, Kojima T, et al. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J ImmunoTher Cancer. 2022;10:e003811. doi:10.1136/jitc-2021-003811. PubMed DOI PMC

Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, Soulen MC, Tian L, McGarvey M, Nelson AM, et al. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther. 2019;27:1919–1929. doi:10.1016/j.ymthe.2019.07.015. PubMed DOI PMC

Somaiah N, Chawla SP, Block MS, Morris JC, Do K, Kim JW, Druta M, Sankhala KK, Hwu P, Jones RL, et al. A phase 1b study evaluating the safety, tolerability, and immunogenicity of CMB305, a lentiviral-based prime-boost vaccine regimen, in patients with locally advanced, relapsed, or metastatic cancer expressing NY-ESO-1. Oncoimmunology. 2020;9:1847846. doi:10.1080/2162402X.2020.1847846. PubMed DOI PMC

Chang K, Pastan I. Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancers. Proc Natl Acad Sci USA. 1996;93:136–140. doi:10.1073/pnas.93.1.136. PubMed DOI PMC

Ordóñez NG. Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol. 2003;27:1418–1428. doi:10.1097/00000478-200311000-00003. PubMed DOI

Steinbach D, Onda M, Voigt A, Dawczynski K, Wittig S, Hassan R, Gruhn B, Pastan I. Mesothelin, a possible target for immunotherapy, is expressed in primary AML cells. Eur J Haematol. 2007;79:281–286. doi:10.1111/j.1600-0609.2007.00928.x. PubMed DOI

Takamizawa S, Yazaki S, Kojima Y, Yoshida H, Kitadai R, Nishikawa T, Shimoi T, Sudo K, Okuma HS, Tanioka M, et al. High mesothelin expression is correlated with non-squamous cell histology and poor survival in cervical cancer: a retrospective study. Bmc Cancer. 2022;22:1215. doi:10.1186/s12885-022-10277-0. PubMed DOI PMC

Pusztai L, Yau C, Wolf DM, Han HS, Du L, Wallace AM, String-Reasor E, Boughey JC, Chien AJ, Elias AD, et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: results from the adaptively randomized I-SPY2 trial. Cancer Cell. 2021;39:989–998.e5. doi:10.1016/j.ccell.2021.05.009. PubMed DOI PMC

Yin W, Wang Y, Wu Z, Ye Y, Zhou L, Xu S, Lin Y, Du Y, Yan T, Yang F, et al. Neoadjuvant trastuzumab and pyrotinib for locally advanced HER2-positive breast cancer (NeoATP): primary analysis of a phase II study. Clin Cancer Res. 2022;28:3677–3685. doi:10.1158/1078-0432.CCR-22-0446. PubMed DOI

Lee J-Y, Kim B-G, Kim J-W, Lee JB, Park E, Joung J-G, Kim S, Choi CH, Kim HS. Korean Gynecologic Oncology Group (KGOG) investigators. Biomarker-guided targeted therapy in platinum-resistant ovarian cancer (AMBITION; KGOG 3045): a multicentre, open-label, five-arm, uncontrolled, umbrella trial. J Gynecol Oncol. 2022;33:e45. doi:10.3802/jgo.2022.33.e45. PubMed DOI PMC

Cortes J, Rugo HS, Cescon DW, Im S-A, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Perez-Garcia J, Iwata H, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387:217–226. PubMed

Jiang Y-Z, Liu Y, Xiao Y, Hu X, Jiang L, Zuo W-J, Ma D, Ding J, Zhu X, Zou J, et al. Molecular subtyping and genomic profiling expand precision medicine in refractory metastatic triple-negative breast cancer: the FUTURE trial. Cell Res. 2021;31:178–186. doi:10.1038/s41422-020-0375-9. PubMed DOI PMC

Sang W, Wang X, Geng H, Li T, Li D, Zhang B, Zhou Y, Song X, Sun C, Yan D, et al. Anti-PD-1 therapy enhances the efficacy of CD30-directed chimeric antigen receptor T cell therapy in patients with relapsed/refractory CD30+ lymphoma. Front Immunol. 2022;13:858021. doi:10.3389/fimmu.2022.858021. PubMed DOI PMC

Ozaki Y, Tsurutani J, Mukohara T, Iwasa T, Takahashi M, Tanabe Y, Kawabata H, Masuda N, Futamura M, Minami H, et al. Safety and efficacy of nivolumab plus bevacizumab, paclitaxel for HER2-negative metastatic breast cancer: primary results and biomarker data from a phase 2 trial (WJOG9917B). Eur J Cancer. 2022;171:193–202. doi:10.1016/j.ejca.2022.05.014. PubMed DOI

Blumenschein GR, Devarakonda S, Johnson M, Moreno V, Gainor J, Edelman MJ, Heymach JV, Govindan R, Bachier C, Doger de Spéville B, et al. Phase I clinical trial evaluating the safety and efficacy of ADP-A2M10 SPEAR T cells in patients with MAGE-A10+ advanced non-small cell lung cancer. J ImmunoTher Cancer. 2022;10:e003581. doi:10.1136/jitc-2021-003581. PubMed DOI PMC

Creelan BC, Wang C, Teer JK, Toloza EM, Yao J, Kim S, Landin AM, Mullinax JE, Saller JJ, Saltos AN, et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med. 2021;27:1410–1418. doi:10.1038/s41591-021-01462-y. PubMed DOI PMC

Sang W, Shi M, Yang J, Cao J, Xu L, Yan D, Yao M, Liu H, Li W, Zhang B, et al. Phase II trial of co-administration of CD19- and CD20-targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma. Cancer Med. 2020;9:5827–5838. doi:10.1002/cam4.3259. PubMed DOI PMC

Shah BD, Bishop MR, Oluwole OO, Logan AC, Baer MR, Donnellan WB, O’Dwyer KM, Holmes H, Arellano ML, Ghobadi A, et al. KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: zUMA-3 phase 1 results. Blood. 2021;138:11–22. doi:10.1182/blood.2020009098. PubMed DOI PMC

Wang F, Wei XL, Wang FH, Xu N, Shen L, Dai GH, Yuan XL, Chen Y, Yang SJ, Shi JH, et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD-1 antibody in phase Ib/II clinical trial NCT02915432. Ann Oncol. 2019;30:1479–1486. doi:10.1093/annonc/mdz197. PubMed DOI PMC

Narayan P, Wahby S, Gao JJ, Amiri-Kordestani L, Ibrahim A, Bloomquist E, Tang S, Xu Y, Liu J, Fu W, et al. FDA approval summary: atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin Cancer Res. 2020;26:2284–2289. doi:10.1158/1078-0432.CCR-19-3545. PubMed DOI

Smith SD, Till BG, Shadman MS, Lynch RC, Cowan AJ, Wu QV, Voutsinas J, Rasmussen HA, Blue K, Ujjani CS, et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. Br J Haematol. 2020;189:1119–1126. doi:10.1111/bjh.16494. PubMed DOI

Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, Grischke EM, Furlanetto J, Tesch H, Hanusch C, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol. 2019;30:1279–1288. doi:10.1093/annonc/mdz158. PubMed DOI

Kohli K, Yao L, Nowicki TS, Zhang S, Black RG, Schroeder BA, Farrar EA, Cao J, Sloan H, Stief D, et al. IL-15 mediated expansion of rare durable memory T cells following adoptive cellular therapy. J ImmunoTher Cancer. 2021;9:e002232. doi:10.1136/jitc-2020-002232. PubMed DOI PMC

Pasqualini C, Rubino J, Brard C, Cassard L, André N, Rondof W, Scoazec J-Y, Marchais A, Nebchi S, Boselli L, et al. Phase II and biomarker study of programmed cell death protein 1 inhibitor nivolumab and metronomic cyclophosphamide in paediatric relapsed/refractory solid tumours: arm G of AcSé-ESMART, a trial of the European innovative therapies for children with cancer consortium. Eur J Cancer. 2021;150:53–62. doi:10.1016/j.ejca.2021.03.032. PubMed DOI

Pusztai L. The effectiveness of immune checkpoint inhibitors in the neoadjuvant and post-neoadjuvant breast cancer settings. Clin Adv Hematol Oncol. 2022;20:552–555. PubMed

Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi:10.1080/2162402X.2017.1386829. PubMed DOI PMC

Zhao Y-Y, Lian J-X, Lan Z, Zou K-L, Wang W-M, Yu G-T. Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis. 2021;29:933–941. doi:10.1111/odi.14077. PubMed DOI

Ye T, Jiang K, Wei L, Barr MP, Xu Q, Zhang G, Ding C, Meng S, Piao H. Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells. Am J Cancer Res. 2018;8:1514–1527. PubMed PMC

Rosato RR, Dávila-González D, Choi DS, Qian W, Chen W, Kozielski AJ, Wong H, Dave B, Chang JC. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res. 2018;20:108. doi:10.1186/s13058-018-1037-4. PubMed DOI PMC

Pasquereau-Kotula E, Habault J, Kroemer G, Poyet J-L, Ma W-L. The anticancer peptide RT53 induces immunogenic cell death. PLos One. 2018;13:e0201220. doi:10.1371/journal.pone.0201220. PubMed DOI PMC

Nebot-Bral L, Coutzac C, Kannouche PL, Chaput N. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull Cancer. 2019;106:105–113. doi:10.1016/j.bulcan.2018.08.007. PubMed DOI

Frey B, Rückert M, Deloch L, Rühle PF, Derer A, Fietkau R, Gaipl US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280:231–248. doi:10.1111/imr.12572. PubMed DOI

Goéré D, Flament C, Rusakiewicz S, Poirier-Colame V, Kepp O, Martins I, Pesquet J, Eggermont A, Elias D, Chaput N, et al. Potent immunomodulatory effects of the trifunctional antibody catumaxomab. Cancer Res. 2013;73:4663–4673. doi:10.1158/0008-5472.CAN-12-4460. PubMed DOI

Pasquiers B, Benamara S, Felices M, Nguyen L, Declèves X. Review of the existing translational pharmacokinetics modeling approaches specific to monoclonal antibodies (mAbs) to support the First-In-Human (FIH) dose selection. Int J Mol Sci. 2022;23:23. doi:10.3390/ijms232112754. PubMed DOI PMC

Kaestner SA, Sewell GJ. Chemotherapy dosing part I: scientific basis for current practice and use of body surface area. Clin Oncol (R Coll Radiol). 2007;19:23–37. doi:10.1016/j.clon.2006.10.010. PubMed DOI

Martin JH, Dimmitt S. The rationale of dose-response curves in selecting cancer drug dosing. Br J Clin Pharmacol. 2019;85:2198–2204. doi:10.1111/bcp.13979. PubMed DOI PMC

Flieswasser T, Van Loenhout J, Freire Boullosa L, Van den Eynde A, De Waele J, Van Audenaerde J, Lardon F, Smits E, Pauwels P, Jacobs J. Clinically relevant chemotherapeutics have the ability to induce immunogenic cell death in non-small cell lung cancer. Cells. 2020;9:1474. doi:10.3390/cells9061474. PubMed DOI PMC

McCormick M, Richardson T, Rapkin L, Kalpatthi R. Risk factors for readmission following febrile neutropenia in pediatric oncology patients. J Pediatr Hematol Oncol. 2022;45:e496–e501. doi:10.1097/MPH.0000000000002585. PubMed DOI

Xu T, Liu Y, Lu X, Liang J. Toxicity profile of combined immune checkpoint inhibitors and thoracic radiotherapy in esophageal cancer: a meta-analysis and systematic review. Front Immunol. 2022;13:1039020. doi:10.3389/fimmu.2022.1039020. PubMed DOI PMC

Panchenko AV, Tyndyk ML, Maydin MA, Baldueva IA, Artemyeva AS, Kruglov SS, Kireeva GS, Golubev AG, Belyaev AM, Anisimov VN. Melatonin administered before or after a cytotoxic drug increases mammary cancer stabilization rates in HER2/Neu mice. Chemotherapy. 2020;65:42–50. doi:10.1159/000509238. PubMed DOI

Bawankar PR, Ankar R. Evidence generation of standard nursing protocol on chemotherapy-induced neutropenia among oncology nurses. Cureus. 2022;14:e31217. doi:10.7759/cureus.31217. PubMed DOI PMC

Gwak H, Lim S-T, Jeon Y-W, Park HS, Kim SH, Suh Y-J. COVID-19 prevention guidance and the incidence of febrile neutropenia in patients with breast cancer receiving TAC Chemotherapy with Prophylactic Pegfilgrastim. J Clin Med. 2022;11(23): 7053. PubMed PMC

Xu Z, Yang L, Yu H, Guo L. A machine learning model for grade 4 lymphopenia prediction during pelvic radiotherapy in patients with cervical cancer. Front Oncol. 2022;12:905222. doi:10.3389/fonc.2022.905222. PubMed DOI PMC

Ni W, Xiao Z, Zhou Z, Chen D, Feng Q, Liang J, Lv J. Severe radiation-induced lymphopenia during postoperative radiotherapy or chemoradiotherapy has poor prognosis in patients with stage IIB-III after radical esophagectomy: a post hoc analysis of a randomized controlled trial. Front Oncol. 2022;12:936684. doi:10.3389/fonc.2022.936684. PubMed DOI PMC

Mayr P, Lutz M, Schmutz M, Hoeppner J, Liesche-Starnecker F, Schlegel J, Gaedcke J, Claus R. Progressive multifocal leukoencephalopathy associated with chemotherapy induced lymphocytopenia in solid tumors - case report of an underestimated complication. Front Oncol. 2022;12:905103. doi:10.3389/fonc.2022.905103. PubMed DOI PMC

Hsiehchen D, Naqash AR, Espinoza M, Von Itzstein MS, Cortellini A, Ricciuti B, Owen DH, Laharwal M, Toi Y, Burke M, et al. Association between immune-related adverse event timing and treatment outcomes. Oncoimmunology. 2022;11:2017162. doi:10.1080/2162402X.2021.2017162. PubMed DOI PMC

Yang S-H, Lu L-C, Kao H-F, Chen B-B, Kuo T-C, Kuo S-H, Tien Y-W, Bai L-Y, Cheng A-L, Yeh K-H. Negative prognostic implications of splenomegaly in nivolumab-treated advanced or recurrent pancreatic adenocarcinoma. Oncoimmunology. 2021;10:1973710. doi:10.1080/2162402X.2021.1973710. PubMed DOI PMC

Kaczmarek A, Brinkman BM, Heyndrickx L, Vandenabeele P, Krysko DV. Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways. J Pathol. 2012;226:598–608. doi:10.1002/path.3009. PubMed DOI

Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. Chemotherapeutics-induced intestinal mucositis: pathophysiology and potential treatment strategies. Front Pharmacol. 2021;12:681417. doi:10.3389/fphar.2021.681417. PubMed DOI PMC

Roberti MP, Yonekura S, Duong CPM, Picard M, Ferrere G, Tidjani Alou M, Rauber C, Iebba V, Lehmann CHK, Amon L, et al. Chemotherapy-induced ileal crypt apoptosis and the ileal microbiome shape immunosurveillance and prognosis of proximal colon cancer. Nat Med. 2020;26:919–931. doi:10.1038/s41591-020-0882-8. PubMed DOI

Morano WF, Aggarwal A, Love P, Richard SD, Esquivel J, Bowne WB. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 2016;23:373–381. doi:10.1038/cgt.2016.49. PubMed DOI

Aghanejad A, Bonab SF, Sepehri M, Haghighi FS, Tarighatnia A, Kreiter C, Nader ND, Tohidkia MR. A review on targeting tumor microenvironment: the main paradigm shift in the mAb-based immunotherapy of solid tumors. Int J Biol Macromol. 2022;207:592–610. doi:10.1016/j.ijbiomac.2022.03.057. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...