• This record comes from PubMed

Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug

. 2020 Sep 18 ; 7 () : 4150-4159.

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
Wellcome Trust - United Kingdom
209173 Wellcome Trust - United Kingdom
209173/Z/17/Z Wellcome Trust - United Kingdom
G0701062 Medical Research Council - United Kingdom

The platinum(IV) prodrug trans,trans,trans-[Pt(N3)2(OH)2(py)2] (1) is stable and non-toxic in the dark, but potently cytotoxic to cancer cells when irradiated by visible light, including cisplatin-resistant cells. On irradiation with visible light, it generates reactive Pt(II) species which can attack DNA, and produces reactive oxygen species (ROS) and reactive nitrogen species (RNS) which exert unusual effects on biochemical pathways. We now show that its novel mechanism of action includes induction of immunogenic cell death (ICD). Treatment of cancer cells with 1 followed by photoirradiation with visible light induces calreticulin (CRT) expression at the surface of dying cancer cells. This is accompanied by release of high mobility group protein-1B (HMGB1) and the secretion of ATP. Autophagy appears to play a key role in this chemotherapeutically-stimulated ICD. The observed uneven distribution of ecto-CRT promotes phagocytosis, confirmed by the observation of engulfment of photoirradiated CT26 colorectal cancer cells treated with 1 by J774.A1 macrophages. The photoactivatable prodrug 1 has a unique mechanism of action which distinguishes it from other platinum drugs due to its immunomodulating properties, which may enhance its anticancer efficacy.

See more in PubMed

Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev. 2016;116:3436–3486. PubMed PMC

Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev. 2017;351:2–31.

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discovery. 2005;4:307–320. PubMed

Jung Y, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev. 2007;107:1387–1407. PubMed

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7:573–584. PubMed

Bednarski PJ, Mackay FS, Sadler PJ. Photoactivatable platinum complexes. Anti-Cancer Agents Med Chem. 2007;7:75–93. PubMed

Imberti C, Zhang P, Huang H, Sadler PJ. New Designs for Phototherapeutic Transition Metal Complexes. Angew Chem Int Ed. 2020;59:61–73. PubMed PMC

Zhao Y, Farrer NJ, Li H, Butler JS, McQuitty RJ, Habtemariam A, Wang F, Sadler PJ. De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex. Angew Chem, Int Ed. 2013;52:13633–13637. PubMed PMC

Shi HY, Imberti C, Sadler PJ. Diazido platinum(IV) complexes for photoactivated anticancer chemotherapy. Inorg Chem Front. 2019;6:1623–1638.

Pizarro M, McQuitty RJ, Mackay FS, Zhao Y, Woods JA, Sadler PJ. Cellular accumulation, lipophilicity and photocytotoxicity of diazido platinum(IV) anticancer complexes. ChemMedChem. 2014;9:1169–1175. PubMed

Farrer NJ, Woods JA, Salassa L, Zhao Y, Robinson KS, Clarkson GJ, Mackay FS, Sadler PJ. A potent trans-diimine platinum anticancer complex photoactivated by visible light. Angew Chem, Int Ed. 2010;49:1–5. PubMed

Pracharova J, Zerzankova L, Stepankova J, Novakova O, Farrer NJ, Sadler PJ, Brabec V, Kasparkova J. Interactions of DNA with a new platinum(IV) azide dipyridine complex activated by UVA and visible light: Relationship to toxicity in tumor cells. Chem Res Toxicol. 2012;25:1099–1111. PubMed

Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, Mendiboure J, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–491. PubMed

Jungwirth U, Xanthos DN, Gojo J, Bytzek AK, Korner W, Heffeter P, Abramkin SA, Jakupec MA, Hartinger CG, Windberger U, Galanski M, et al. Anticancer activity of methyl-substituted oxaliplatin analog. Mol Pharmacol. 2012;81:719–728. PubMed PMC

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. PubMed

Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metal drugs and immunogenic cell death. J Inorg Biochem. 2016;165:71–79. PubMed

Rébé C, Demontoux L, Pilot T, Ghiringhelli F. Platinum derivatives effects on anticancer immune response. Biomolecules. 2019;10:13. PubMed PMC

Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–875. PubMed

Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, Galluzzi L, et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24:311–318. PubMed

Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10:3349. PubMed PMC

Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot F, Schlemmer F, et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med. 2012;4:143ra199 PubMed

Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. PubMed

Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu Y-X, Xu MM. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21:1209–1215. PubMed PMC

Xiang Y, Chen L, Li L, Huang Y. Restoration and enhancement of immunogenic cell death of cisplatin by coadministration with digoxin and conjugation to HPMA copolymer. ACS Appl Mater Interfaces. 2020;12:1606–1616. PubMed

Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg P-A, Michalak M, Henson PM. Cellsurface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123:321–334. PubMed

Wong YQ, Ong WWF, Ang WH. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angew Chem, Int Ed. 2015;54:6483–6487. PubMed

Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother. 2012;61:215–221. PubMed PMC

Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–1059. PubMed

Apetoh L, Tesniere A, Ghiringhelli F, Kroemer G, Zitvogel L. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res. 2008;68:4026–4030. PubMed

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–1577. PubMed

Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Métivier D, Galluzzi L, Perfettini JL, Zitvogel L, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91. PubMed PMC

Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Métivier D, Galluzzi L, Perfettini JL, Zitvogel L, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21:79–91. PubMed PMC

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, et al. Autophagy-dependent anticancer immune responses Induced by chemotherapeutic agents in mice. Science. 2011;334:1573–1577. PubMed

Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer G, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, et al. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. OncoImmunology. 2015;4:e1008866. PubMed PMC

Dudek M, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24:319–333. PubMed

Xu X, Araki K, Li S, Han J-H, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL, Green DR, et al. Autophagy is essential for effector CD8+ T cell survival and memory formation. Nat Immunol. 2014;15:1152–1161. PubMed PMC

Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14:247–258. PubMed

Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema K-J, Coppes RP, Engedal N, Mari M, Reggiori F. Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy. 2018;14:1435–1455. PubMed PMC

Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget. 2015;6:29. PubMed PMC

Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: The calreticulin exposure pathway. Clin Cancer Res. 2010;16:3100–3104. PubMed

Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal drugs and the anticancer immune response. Chem Rev. 2019;119:1519–1624. PubMed

Wang Y-J, Fletcher R, Yu J, Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194–203. PubMed PMC

Wootton CA, Sanchez-Cano C, Lopez-Clavijo AF, Shaili E, Barrow MP, Sadler PJ, O’Connor PB. Sequence-dependent attack on peptides by photoactivated platinum anticancer complexes. Chem Sci. 2018;9:2733–2739. PubMed PMC

Du J, Wei Y, Zhao Y, Xu F, Wang Y, Zheng W, Luo Q, Wang M, Wang F. A photoactive platinum(IV) anticancer complex inhibits thioredoxin-thioredoxin reductase system activity by induced oxidization of the protein. Inorg Chem. 2018;57:5575–5584. PubMed

Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47. PubMed

Monro S, Colón KL, Yin H, Roque J, Konda P, Gujar S, Thummel P, Lilge L, Cameron CG, McFarland SA. Transition metal complexes and photo-dynamic therapy from a tumor-centered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chem Rev. 2019;119:797–828. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...