Platinum(IV) Derivatives of [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)] with Diclofenac Ligands in the Axial Positions: A New Class of Potent Multi-action Agents Exhibiting Selectivity to Cancer Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37285472
PubMed Central
PMC10291556
DOI
10.1021/acs.jmedchem.3c00269
Knihovny.cz E-zdroje
- MeSH
- antiflogistika nesteroidní farmakologie MeSH
- antitumorózní látky * MeSH
- diklofenak farmakologie MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- nádory * MeSH
- organoplatinové sloučeniny farmakologie MeSH
- platina MeSH
- prekurzory léčiv * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1,10-phenanthroline MeSH Prohlížeč
- antiflogistika nesteroidní MeSH
- antitumorózní látky * MeSH
- diklofenak MeSH
- ligandy MeSH
- organoplatinové sloučeniny MeSH
- platina MeSH
- prekurzory léčiv * MeSH
The platinum(II) complex [Pt(1S,2S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (PtII56MeSS, 1) exhibits high potency across numerous cancer cell lines acting by a multimodal mechanism. However, 1 also displays side toxicity and in vivo activity; all details of its mechanism of action are not entirely clear. Here, we describe the synthesis and biological properties of new platinum(IV) prodrugs that combine 1 with one or two axially coordinated molecules of diclofenac (DCF), a non-steroidal anti-inflammatory cancer-selective drug. The results suggest that these Pt(IV) complexes exhibit mechanisms of action typical for Pt(II) complex 1 and DCF, simultaneously. The presence of DCF ligand(s) in the Pt(IV) complexes promotes the antiproliferative activity and selectivity of 1 by inhibiting lactate transporters, resulting in blockage of the glycolytic process and impairment of mitochondrial potential. Additionally, the investigated Pt(IV) complexes selectively induce cell death in cancer cells, and the Pt(IV) complexes containing DCF ligands induce hallmarks of immunogenic cell death in cancer cells.
Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 CZ 61200 Brno Czech Republic
School of Science Western Sydney University Penrith South DC 1797 New South Wales Australia
Zobrazit více v PubMed
Johnstone T. C.; Park G. Y.; Lippard S. J. Understanding and improving platinum anticancer drugs - Phenanthriplatin. Anticancer Res. 2014, 34, 471–476. PubMed PMC
Wheate N. J.; Taleb R. I.; Krause-Heuer A. M.; Cook R. L.; Wang S.; Higgins V. J.; Aldrich-Wright J. R. Novel platinum(II)-based anticancer complexes and molecular hosts as their drug delivery vehicles. Dalton Trans. 2007, 5055–5064. 10.1039/b704973k. PubMed DOI
Brodie C. R.; Collins J. G.; Aldrich-Wright J. R. DNA binding and biological activity of some platinum(ii) intercalating compounds containing methyl-substituted 1,10-phenanthrolinesElectronic supplementary information (ESI) available: Binding data determined for platinum complexes bound to calf thymus DNA, linear dicroism spectra, Absorption spectra of the DNA alone and of the platinum complexes with DNA and solubilities of complexes in water. See http://www.rsc.org/suppdata/dt/b3/b316511f/. Dalton Trans. 2004, 1145–1152. 10.1039/b316511f. PubMed DOI
Benjamin Garbutcheon-Singh K.; Myers S.; Harper B. W. J.; Ng N. S.; Dong Q.; Xie C.; Aldrich-Wright J. R. The effects of 56MESS on mitochondrial and cytoskeletal proteins and the cell cycle in MDCK cells. Metallomics 2013, 5, 1061–1067. 10.1039/c3mt00023k. PubMed DOI
Kostrhunova H.; Zajac J.; Novohradsky V.; Kasparkova J.; Malina J.; Aldrich-Wright J. R.; Petruzzella E.; Sirota R.; Gibson D.; Brabec V. A subset of new platinum antitumor agents kills cells by a multimodal mechanism of action also involving changes in the organization of the microtubule cytoskeleton. J. Med. Chem. 2019, 62, 5176–5190. 10.1021/acs.jmedchem.9b00489. PubMed DOI
Wang S.; Higgins V. J.; Aldrich-Wright J. R.; Wu M. J. Identification of the molecular mechanisms underlying the cytotoxic action of a potent platinum metallointercalator. J. Chem. Biol. 2012, 5, 51–61. 10.1007/s12154-011-0070-x. PubMed DOI PMC
Pages B. J.; Sakoff J.; Gilbert J.; Rodger A.; Chmel N. P.; Jones N. C.; Kelly S. M.; Ang D. L.; Aldrich-Wright J. R. Multifaceted Studies of the DNA Interactions and In Vitro Cytotoxicity of Anticancer Polyaromatic Platinum(II) Complexes. Chem.—Eur. J. 2016, 22, 8943–8954. 10.1002/chem.201601221. PubMed DOI
Krause-Heuer A. M.; Grunert R.; Kuhne S.; Buczkowska M.; Wheate N. J.; Le Pevelen D. D.; Boag L. R.; Fisher D. M.; Kasparkova J.; Malina J.; Bednarski P. J.; Brabec V.; Aldrich-Wright J. R. Studies of the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells. J. Med. Chem. 2009, 52, 5474–5484. 10.1021/jm9007104. PubMed DOI
Miao L.; Yu P.; Huang J.; Zhuang Z.; Liu X. Non-classical platinum-based compound 56MESS, with preferential cytotoxic effect on oral cancer cells by downregulating FACL4 expression. Pharmazie 2020, 75, 494–499. 10.1691/ph.2020.0481. PubMed DOI
Moretto J.; Chauffert B.; Ghiringhelli F.; Aldrich-Wright J. R.; Bouyer F. Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator. Invest. New Drugs 2011, 29, 1164–1176. 10.1007/s10637-010-9461-z. PubMed DOI
Harper B. W. J.; Petruzzella E.; Sirota R.; Faccioli F. F.; Aldrich-Wright J. R.; Gandin V.; Gibson D. Synthesis, characterization and in vitro and in vivo anticancer activity of Pt(IV) derivatives of [Pt(1S,2S-DACH)(5,6-dimethyl-1,10-phenanthroline)]. Dalton Trans. 2017, 46, 7005–7019. 10.1039/c7dt01054k. PubMed DOI
Hall M. D.; Hambley T. W. Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 2002, 232, 49–67. 10.1016/s0010-8545(02)00026-7. DOI
Hall M. D.; Mellor H. R.; Callaghan R.; Hambley T. W. Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem. 2007, 50, 3403–3411. 10.1021/jm070280u. PubMed DOI
Johnstone T. C.; Wilson J. J.; Lippard S. J. Monofunctional and Higher-Valent Platinum Anticancer Agents. Inorg. Chem. 2013, 52, 12234–12249. 10.1021/ic400538c. PubMed DOI PMC
Bruijnincx P. C.; Sadler P. J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197–206. 10.1016/j.cbpa.2007.11.013. PubMed DOI PMC
Chen C. K. J.; Zhang J. Z.; Aitken J. B.; Hambley T. W. Influence of Equatorial and Axial Carboxylato Ligands on the Kinetic Inertness of Platinum(IV) Complexes in the Presence of Ascorbate and Cysteine and within DLD-1 Cancer Cells. J. Med. Chem. 2013, 56, 8757–8764. 10.1021/jm401218n. PubMed DOI
Deo K. M.; Sakoff J.; Gilbert J.; Zhang Y.; Aldrich Wright J. R. Synthesis, characterisation and potent cytotoxicity of unconventional platinum(IV) complexes with modified lipophilicity. Dalton Trans. 2019, 48, 17217–17227. 10.1039/c9dt03339d. PubMed DOI
Zajac J.; Novohradsky V.; Markova L.; Brabec V.; Kasparkova J. Platinum (IV) Derivatives with Cinnamate Axial Ligands as Potent Agents Against Both Differentiated and Tumorigenic Cancer Stem Rhabdomyosarcoma Cells. Angew. Chem., Int. Ed. 2020, 59, 3329–3335. 10.1002/anie.201913996. PubMed DOI
Kostrhunova H.; Petruzzella E.; Gibson D.; Kasparkova J.; Brabec V. An Anticancer PtIVProdrug That Acts by Mechanisms Involving DNA Damage and Different Epigenetic Effects. Chem.—Eur. J. 2019, 25, 5235–5245. 10.1002/chem.201805626. PubMed DOI
Xu Z.; Wang Z.; Deng Z.; Zhu G. Recent advances in the synthesis, stability, and activation of platinum(IV) anticancer prodrugs. Coord. Chem. Rev. 2021, 442, 213991.10.1016/j.ccr.2021.213991. DOI
Ravera M.; Gabano E.; McGlinchey M. J.; Osella D. Pt(IV) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Trans. 2022, 51, 2121–2134. 10.1039/d1dt03886a. PubMed DOI
Mantovani A.; Allavena P.; Sica A.; Balkwill F. Cancer-related inflammation. Nature 2008, 454, 436–444. 10.1038/nature07205. PubMed DOI
Rayburn E. R.; Ezell S. J.; Zhang R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol. 2009, 1, 29–43. 10.4255/mcpharmacol.09.05. PubMed DOI PMC
Osafo N.; Agyare C.; Obiri D. D.; Antwi A.. Mechanism of action of nonsteroidal anti-inflammatory drugs. In Nonsteroidal Anti-Inflammatory Drugs; Al-kaf A. G., Ed.; IntechOpen: London, 2017.
Neumann W.; Crews B. C.; Marnett L. J.; Hey-Hawkins E. Conjugates of cisplatin and cyclooxygenase inhibitors as potent antitumor agents overcoming cisplatin resistance. ChemMedChem 2014, 9, 1150–1153. 10.1002/cmdc.201402074. PubMed DOI PMC
Pathak R. K.; Marrache S.; Choi J. H.; Berding T. B.; Dhar S. The prodrug platin-A: Simultaneous release of cisplatin and aspirin. Angew. Chem., Int. Ed. 2014, 53, 1963–1967. 10.1002/anie.201308899. PubMed DOI
Cheng Q.; Shi H.; Wang H.; Min Y.; Wang J.; Liu Y. The ligation of aspirin to cisplatin demonstrates significant synergistic effects on tumor cells. Chem. Commun. 2014, 50, 7427–7430. 10.1039/c4cc00419a. PubMed DOI
Cheng Q.; Shi H.; Wang H.; Wang J.; Liu Y. Asplatin enhances drug efficacy by altering the cellular response. Metallomics 2016, 8, 672–678. 10.1039/c6mt00066e. PubMed DOI
Neumann W.; Crews B. C.; Sarosi M. B.; Daniel C. M.; Ghebreselasie K.; Scholz M. S.; Marnett L. J.; Hey-Hawkins E. Conjugation of cisplatin analogues and cyclooxygenase inhibitors to overcome cisplatin resistance. ChemMedChem 2015, 10, 183–192. 10.1002/cmdc.201402353. PubMed DOI PMC
Khoury A.; Sakoff J. A.; Gilbert J.; Scott K. F.; Karan S.; Gordon C. P.; Aldrich-Wright J. R. Cyclooxygenase-inhibiting platinum(IV) prodrugs with potent anticancer activity. Pharmaceutics 2022, 14, 787.10.3390/pharmaceutics14040787. PubMed DOI PMC
Pantziarka P.; Sukhatme V.; Bouche G.; Melhuis L.; Sukhatme V. P. Repurposing drugs in oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience 2016, 10, 610.10.3332/ecancer.2016.610. PubMed DOI PMC
Gottfried E.; Lang S. A.; Renner K.; Bosserhoff A.; Gronwald W.; Rehli M.; Einhell S.; Gedig I.; Singer K.; Seilbeck A.; Mackensen A.; Grauer O.; Hau P.; Dettmer K.; Andreesen R.; Oefner P. J.; Kreutz M. New aspects of an old drug - Diclofenac targets MYC and glucose metabolism in tumor cells. PLoS One 2013, 8, e6698710.1371/journal.pone.0066987. PubMed DOI PMC
Rowlinson S. W.; Kiefer J. R.; Prusakiewicz J. J.; Pawlitz J. L.; Kozak K. R.; Kalgutkar A. S.; Stallings W. C.; Kurumbail R. G.; Marnett L. J. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J. Biol. Chem. 2003, 278, 45763–45769. 10.1074/jbc.m305481200. PubMed DOI
Choi S.; Kim S.; Park J.; Lee S. E.; Kim C.; Kang D. Diclofenac: A nonsteroidal anti-inflammatory drug inducing cancer cell death by inhibiting microtubule polymerization and autophagy flux. Antioxidants 2022, 11, 1009.10.3390/antiox11051009. PubMed DOI PMC
Gan T. J. D. Diclofenac: an update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 2010, 26, 1715–1731. 10.1185/03007995.2010.486301. PubMed DOI
Intini F. P.; Zajac J.; Novohradsky V.; Saltarella T.; Pacifico C.; Brabec V.; Natile G.; Kasparkova J. Novel antitumor platinum(II) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: Synthesis and dual mechanisms of antiproliferative effects. Inorg. Chem. 2017, 56, 1483–1497. 10.1021/acs.inorgchem.6b02553. PubMed DOI
Spector D. V.; Pavlov K. G.; Akasov R. A.; Vaneev A. N.; Erofeev A. S.; Gorelkin P. V.; Nikitina V. N.; Lopatukhina E. V.; Semkina A. S.; Vlasova K. Y.; Skvortsov D. A.; Roznyatovsky V. A.; Ul’yanovskiy N. V.; Pikovskoi I. I.; Sypalov S. A.; Garanina A. S.; Vodopyanov S. S.; Abakumov M. A.; Volodina Y. L.; Markova A. A.; Petrova A. S.; Mazur D. M.; Sakharov D. A.; Zyk N. V.; Beloglazkina E. K.; Majouga A. G.; Krasnovskaya O. O. Pt(IV) Prodrugs with Non-Steroidal Anti-inflammatory Drugs in the Axial Position. J. Med. Chem. 2022, 65, 8227–8244. 10.1021/acs.jmedchem.1c02136. PubMed DOI
McGhie B. S.; Sakoff J.; Gilbert J.; Aldrich-Wright J. R. Synthesis and characterisation of platinum(IV) polypyridyl complexes with halide axial ligands. Inorg. Chim. Acta 2019, 495, 118964.10.1016/j.ica.2019.118964. DOI
Davies N. M.; Anderson K. E. Clinical pharmacokinetics of diclofenac. Therapeutic insights and pitfalls. Clin. Pharmacokinet. 1997, 33, 184–213. 10.2165/00003088-199733030-00003. PubMed DOI
Benjamin Garbutcheon-Singh K.; Myers S.; Harper B. W. J.; Ng N. S.; Dong Q.; Xie C.; Aldrich-Wright J. R. The effects of 56MESS on mitochondrial and cytoskeletal proteins and the cell cycle in MDCK cells. Metallomics 2013, 5, 1061–1067. 10.1039/c3mt00023k. PubMed DOI
Petrescu I.; Tarba C. Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochim. Biophys. Acta 1997, 1318, 385–394. 10.1016/s0005-2728(96)00109-0. PubMed DOI
Ghosh R.; Goswami S. K.; Feitoza L. F. B. B.; Hammock B.; Gomes A. V. Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts. Int. J. Cardiol. 2016, 223, 923–935. 10.1016/j.ijcard.2016.08.233. PubMed DOI PMC
Todd P. A.; Sorkin E. M. Diclofenac sodium. A reappraisal of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy. Drugs 1988, 35, 244–285. 10.2165/00003495-198835030-00004. PubMed DOI
Moser P.; Sallmann A.; Wiesenberg I. Synthesis and quantitative structure-activity relationships of diclofenac analogs. J. Med. Chem. 1990, 33, 2358–2368. 10.1021/jm00171a008. PubMed DOI
Kaur J.; Sanyal S. N. Diclofenac, a selective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol. Carcinog. 2011, 50, 707–718. 10.1002/mc.20736. PubMed DOI
Blobaum A. L.; Marnett L. J. Structural and functional basis of cyclooxygenase inhibition. J. Med. Chem. 2007, 50, 1425–1441. 10.1021/jm0613166. PubMed DOI
Wang D.; DuBois R. N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29, 781–788. 10.1038/onc.2009.421. PubMed DOI PMC
Hashemi Goradel N.; Najafi M.; Salehi E.; Farhood B.; Mortezaee K. Cyclooxygenase-2 in cancer: A review. J. Cell. Physiol. 2019, 234, 5683–5699. 10.1002/jcp.27411. PubMed DOI
Yamaguchi H.; Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 2007, 1773, 642–652. 10.1016/j.bbamcr.2006.07.001. PubMed DOI PMC
Yamaguchi H.; Wyckoff J.; Condeelis J. Cell migration in tumors. Curr. Opin. Cell Biol. 2005, 17, 559–564. 10.1016/j.ceb.2005.08.002. PubMed DOI
Makrilia N.; Kollias A.; Manolopoulos L.; Syrigos K. Cell adhesion molecules: Role and clinical significance in cancer. Cancer Invest. 2009, 27, 1023–1037. 10.3109/07357900902769749. PubMed DOI
Hanahan D.; Weinberg R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. 10.1016/j.cell.2011.02.013. PubMed DOI
Tesniere A.; Schlemmer F.; Boige V.; Kepp O.; Martins I.; Ghiringhelli F.; Aymeric L.; Michaud M.; Apetoh L.; Barault L.; Mendiboure J.; Pignon J. P.; Jooste V.; van Endert P.; Ducreux M.; Zitvogel L.; Piard F.; Kroemer G. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010, 29, 482–491. 10.1038/onc.2009.356. PubMed DOI
Zitvogel L.; Kepp O.; Senovilla L.; Menger L.; Chaput N.; Kroemer G. Immunogenic tumor cell death for optimal anticancer therapy: The calreticulin exposure pathway. Clin. Cancer Res. 2010, 16, 3100–3104. 10.1158/1078-0432.ccr-09-2891. PubMed DOI
Jungwirth U.; Xanthos D. N.; Gojo J.; Bytzek A. K.; Korner W.; Heffeter P.; Abramkin S. A.; Jakupec M. A.; Hartinger C. G.; Windberger U.; Galanski M.; Keppler B. K.; Berger W. Anticancer Activity of Methyl-Substituted Oxaliplatin Analogs. Mol. Pharmacol. 2012, 81, 719–728. 10.1124/mol.111.077321. PubMed DOI PMC
Kroemer G.; Galluzzi L.; Kepp O.; Zitvogel L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. 10.1146/annurev-immunol-032712-100008. PubMed DOI
Gou H. F.; Huang J.; Shi H. S.; Chen X. C.; Wang Y. S. Chemo-immunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS One 2014, 9, e8578910.1371/journal.pone.0085789. PubMed DOI PMC
Pfirschke C.; Engblom C.; Rickelt S.; Cortez-Retamozo V.; Garris C.; Pucci F.; Yamazaki T.; Poirier-Colame V.; Newton A.; Redouane Y.; Lin Y. J.; Wojtkiewicz G.; Iwamoto Y.; Mino-Kenudson M.; Huynh T. G.; Hynes R. O.; Freeman G. J.; Kroemer G.; Zitvogel L.; Weissleder R.; Pittet M. J. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016, 44, 343–354. 10.1016/j.immuni.2015.11.024. PubMed DOI PMC
Galluzzi L.; Buqué A.; Kepp O.; Zitvogel L.; Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 2015, 28, 690–714. 10.1016/j.ccell.2015.10.012. PubMed DOI
Stojanovska V.; Prakash M.; McQuade R.; Fraser S.; Apostolopoulos V.; Sakkal S.; Nurgali K. Oxaliplatin treatment alters systemic immune responses. BioMed Res. Int. 2019, 2019, 1–15. 10.1155/2019/4650695. PubMed DOI PMC
Fletcher R.; Tong J.; Risnik D.; Leibowitz B. J.; Wang Y.-J.; Concha-Benavente F.; DeLiberty J. M.; Stolz D. B.; Pai R. K.; Ferris R. L.; Schoen R. E.; Yu J.; Zhang L. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene 2021, 40, 2035–2050. 10.1038/s41388-021-01687-8. PubMed DOI PMC
Fucikova J.; Kepp O.; Kasikova L.; Petroni G.; Yamazaki T.; Liu P.; Zhao L.; Spisek R.; Kroemer G.; Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013.10.1038/s41419-020-03221-2. PubMed DOI PMC
Vigueras G.; Markova L.; Novohradsky V.; Marco A.; Cutillas N.; Kostrhunova H.; Kasparkova J.; Ruiz J.; Brabec V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696–4711. 10.1039/d1qi00856k. DOI
Terenzi A.; Pirker C.; Keppler B. K.; Berger W. Anticancer metal drugs and immunogenic cell death. J. Inorg. Biochem. 2016, 165, 71–79. 10.1016/j.jinorgbio.2016.06.021. PubMed DOI
Garg A. D.; Elsen S.; Krysko D. V.; Vandenabeele P.; de Witte P.; Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2015, 6, 26841–26860. 10.18632/oncotarget.4754. PubMed DOI PMC
Wong D. Y. Q.; Ong W. W. F.; Ang W. H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angew. Chem., Int. Ed. 2015, 54, 6483–6487. 10.1002/anie.201500934. PubMed DOI
Novohradsky V.; Pracharova J.; Kasparkova J.; Imberti C.; Bridgewater H. E.; Sadler P. J.; Brabec V. Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg. Chem. Front. 2020, 7, 4150–4159. 10.1039/d0qi00991a. PubMed DOI PMC
Novohradsky V.; Markova L.; Kostrhunova H.; Kasparkova J.; Hoeschele J.; Brabec V. A [Pt(cis-1,3-diaminocycloalkane)Cl2] analog exhibits hallmarks typical of immunogenic cell death inducers in model cancer cells. J. Inorg. Biochem. 2022, 226, 111628.10.1016/j.jinorgbio.2021.111628. PubMed DOI
Garg A. D.; Romano E.; Rufo N.; Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016, 23, 938–951. 10.1038/cdd.2016.5. PubMed DOI PMC
Karthikeyan S.; Geschwind J. F.; Ganapathy-Kanniappan S. Tumor cells and memory T cells converge at glycolysis: therapeutic implications. Cancer Biol. Ther. 2014, 15, 483–485. 10.4161/cbt.28160. PubMed DOI PMC