Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články, práce podpořená grantem
PubMed
26137404
PubMed Central
PMC4485780
DOI
10.1080/2162402x.2015.1008866
PII: 1008866
Knihovny.cz E-zdroje
- Klíčová slova
- ALL, acute lymphoblastic leukemia, AML, acute myeloid leukemia, CML, chronic myeloid leukemia, DAMP, damage-associated molecular pattern, EGFR, epidermal growth factor receptor, EOX, epirubicin plus oxaliplatin plus capecitabine, ER, endoplasmic reticulum, FDA, Food and Drug Administration, FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin, FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin, GEMOX, gemcitabine plus oxaliplatin, GM-CSF, granulocyte-macrophage colony-stimulating factor, HCC, hepatocellular carcinoma, ICD, immunogenic cell death, MM, multiple myeloma, NHL, non-Hodgkin's lymphoma, NSCLC, non-small cell lung carcinoma, TACE, transcatheter arterial chemoembolization, XELOX, capecitabine plus oxaliplatin, antigen-presenting cell, autophagy, damage-associated molecular pattern, dendritic cell, endoplasmic reticulum stress, mAb, monoclonal antibody, type I interferon,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Gustave Roussy Cancer Campus ; Villejuif France
Gustave Roussy Cancer Campus ; Villejuif France ; INSERM U1015; CICBT507 ; Villejuif France
Zobrazit více v PubMed
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI
Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, et al.. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 2005; 202:1691-701; PMID:; http://dx.doi.org/10.1084/jem.20050915 PubMed DOI PMC
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; http://dx.doi.org/10.4161/21624011.2014.955691. PubMed DOI PMC
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:; http://dx.doi.org/10.1038/nrc3380 PubMed DOI
Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 2011; 30:61-9; PMID:; http://dx.doi.org/10.1007/s10555-011-9273-4 PubMed DOI
Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, Gonnella R, Frati L, Faggioni A. Activation of dendritic cells by tumor cell death. Oncoimmunology 2012; 1:1218-9; PMID:; http://dx.doi.org/10.4161/onci.20428 PubMed DOI PMC
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94; PMID:; http://dx.doi.org/10.1016/j.jhep.2013.03.033 PubMed DOI
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:; http://dx.doi.org/10.1038/nrm3479 PubMed DOI
Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death Differ 2014; 21:26-38; PMID:; http://dx.doi.org/10.1038/cdd.2013.48 PubMed DOI PMC
Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? Biofactors 2013; 39:355-67; PMID:; http://dx.doi.org/10.1002/biof.1125 PubMed DOI
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci 2011; 10:670-80; PMID:; http://dx.doi.org/10.1039/c0pp00294a PubMed DOI
Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 2010; 1805:53-71; PMID: PubMed
Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 2007; 14:1848-50; PMID:; http://dx.doi.org/10.1038/sj.cdd.4402201 PubMed DOI
Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, et al.. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 2009; 15:1170-8; PMID:; http://dx.doi.org/10.1038/nm.2028 PubMed DOI
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, et al.. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13:1050-9; PMID:; http://dx.doi.org/10.1038/nm1622 PubMed DOI
Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al.. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:; http://dx.doi.org/10.1126/science.1208347 PubMed DOI
Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007; 109:4839-45; PMID:; http://dx.doi.org/10.1182/blood-2006-10-054221 PubMed DOI PMC
Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy 2013; 9:1292-307; PMID:; http://dx.doi.org/10.4161/auto.25399 PubMed DOI
Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spísek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821-33; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-11-0950 PubMed DOI
Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, Fialova A, Sojka L, Cartron PF, Houska M, et al.. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer 2014; 135:1165-77; PMID:; http://dx.doi.org/10.1002/ijc.28766 PubMed DOI
Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C, et al.. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014; 20:1301-9; PMID:; http://dx.doi.org/10.1038/nm.3708 PubMed DOI
Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell 2010; 140:798-804; PMID:; http://dx.doi.org/10.1016/j.cell.2010.02.015 PubMed DOI
Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 2011; 8:151-60; PMID:; http://dx.doi.org/10.1038/nrclinonc.2010.223 PubMed DOI
Ladoire S, Hannani D, Vetizou M, Locher C, Aymeric L, Apetoh L, Kepp O, Kroemer G, Ghiringhelli F, Zitvogel L. Cell-death-associated molecular patterns as determinants of cancer immunogenicity. Antioxid Redox Signal 2014; 20:1098-116; PMID:; http://dx.doi.org/10.1089/ars.2012.5133 PubMed DOI
Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology 2014; 3:e27663; PMID:; http://dx.doi.org/10.4161/onci.27663 PubMed DOI PMC
Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H, Steegh K, et al.. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.03.003 PubMed DOI
Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, Michaud M, Kepp O, Sukkurwala AQ, Vacchelli E, et al.. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncoimmunology 2013; 2:e24568; PMID:; http://dx.doi.org/10.4161/onci.24568 PubMed DOI PMC
Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al.. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med 2011; 208:491-503; PMID:; http://dx.doi.org/10.1084/jem.20100269 PubMed DOI PMC
Ma Y, Mattarollo SR, Adjemian S, Yang H, Aymeric L, Hannani D, Portela Catani JP, Duret H, Teng MW, Kepp O, et al.. CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy. Cancer Res 2013; 74(2):436-45 PubMed
Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, et al.. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461:282-6; PMID:; http://dx.doi.org/10.1038/nature08296 PubMed DOI PMC
Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, et al.. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 2010; 467:863-7; PMID:; http://dx.doi.org/10.1038/nature09413 PubMed DOI PMC
Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, et al.. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 2009; 28:578-90; PMID:; http://dx.doi.org/10.1038/emboj.2009.1 PubMed DOI PMC
Michaud M, Sukkurwala AQ, Martins I, Shen S, Zitvogel L, Kroemer G. Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncoimmunology 2012; 1:393-5; PMID:; http://dx.doi.org/10.4161/onci.19070 PubMed DOI PMC
Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, et al.. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220:47-59; PMID:; http://dx.doi.org/10.1111/j.1600-065X.2007.00573.x PubMed DOI
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al.. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2014; 22(1):58-73 PubMed PMC
Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev 2013; 24:319-33; PMID:; http://dx.doi.org/10.1016/j.cytogfr.2013.01.005 PubMed DOI
Cirone M, Garufi A, Di Renzo L, Granato M, Faggioni A, D'Orazi G. Zinc supplementation is required for the cytotoxic and immunogenic effects of chemotherapy in chemoresistant p53-functionally deficient cells. Oncoimmunology 2013; 2:e26198; PMID:; http://dx.doi.org/10.4161/onci.26198 PubMed DOI PMC
Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21:15-25; PMID:; http://dx.doi.org/10.1038/cdd.2013.67 PubMed DOI PMC
Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupé P, Robert T, et al.. miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res 2010; 70:1793-803; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-09-3112 PubMed DOI
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869-83; PMID:; http://dx.doi.org/10.1038/onc.2011.384 PubMed DOI
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 2014; 5:e1257; PMID:; http://dx.doi.org/10.1038/cddis.2013.428 PubMed DOI PMC
Galluzzi L, Vitale I, Senovilla L, Olaussen KA, Pinna G, Eisenberg T, Goubar A, Martins I, Michels J, Kratassiouk G, et al.. Prognostic impact of vitamin B6 metabolism in lung cancer. Cell Rep 2012; 2:257-69; PMID:; http://dx.doi.org/10.1016/j.celrep.2012.06.017 PubMed DOI
Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, et al.. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev 2013; 24:311-8; PMID:; http://dx.doi.org/10.1016/j.cytogfr.2013.05.001 PubMed DOI
Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, et al.. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 2011; 30:1147-58; PMID:; http://dx.doi.org/10.1038/onc.2010.500 PubMed DOI
Sukkurwala AQ, Adjemian S, Senovilla L, Michaud M, Spaggiari S, Vacchelli E, Baracco EE, Galluzzi L, Zitvogel L, Kepp O, et al.. Screening of novel immunogenic cell death inducers within the NCI Mechanistic Diversity Set. Oncoimmunology 2014; 3:e28473; PMID:; http://dx.doi.org/10.4161/onci.28473 PubMed DOI PMC
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI
Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:; http://dx.doi.org/10.1038/nrd3626 PubMed DOI
Galluzzi L, Vacchelli E, Bravo-San Pedro J, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al.. Classification of current anticancer immunotherapies. Oncotarget 2014; 5(24):12472-508; PMID: PubMed PMC
Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al.. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13:54-61; PMID:; http://dx.doi.org/10.1038/nm1523 PubMed DOI
Bugaut H, Bruchard M, Berger H, Derangere V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C, et al.. Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 2013; 8:e65181; PMID:; http://dx.doi.org/10.1371/journal.pone.0065181 PubMed DOI PMC
Demaria S, Santori FR, Ng B, Liebes L, Formenti SC, Vukmanovic S. Select forms of tumor cell apoptosis induce dendritic cell maturation. J Leukoc Biol 2005; 77:361-8; PMID:; http://dx.doi.org/10.1189/jlb.0804478 PubMed DOI
Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, Gonnella R, Frati L, Faggioni A. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS One 2012; 7:e31732; PMID:; http://dx.doi.org/10.1371/journal.pone.0031732 PubMed DOI PMC
Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT, Belardelli F, et al.. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011; 71:768-78; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-10-2788 PubMed DOI
Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L, Michaud M, Apetoh L, Barault L, et al.. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 2010; 29:482-91; PMID:; http://dx.doi.org/10.1038/onc.2009.356 PubMed DOI
Hoffmann J, Vitale I, Buchmann B, Galluzzi L, Schwede W, Senovilla L, Skuballa W, Vivet S, Lichtner RB, Vicencio JM, et al.. Improved cellular pharmacokinetics and pharmacodynamics underlie the wide anticancer activity of sagopilone. Cancer Res 2008; 68:5301-8; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-08-0237 PubMed DOI
Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, et al.. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678-84; PMID:; http://dx.doi.org/10.1126/science.1224922 PubMed DOI
Pellicciotta I, Yang CP, Goldberg GL, Shahabi S. Epothilone B enhances Class I HLA and HLA-A2 surface molecule expression in ovarian cancer cells. Gynecol Oncol 2011; 122:625-31; PMID:; http://dx.doi.org/10.1016/j.ygyno.2011.05.007 PubMed DOI
Garrido G, Rabasa A, Sanchez B, Lopez MV, Blanco R, Lopez A, Hernández DR, Pérez R, Fernández LE. Induction of immunogenic apoptosis by blockade of epidermal growth factor receptor activation with a specific antibody. J Immunol 2011; 187:4954-66; PMID:; http://dx.doi.org/10.4049/jimmunol.1003477 PubMed DOI
de La Motte Rouge T, Galluzzi L, Olaussen KA, Zermati Y, Tasdemir E, Robert T, Ripoche H, Lazar V, Dessen P, Harper F, et al.. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res 2007; 67:6253-62; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-07-0538 PubMed DOI
Thomas ES, Gomez HL, Li RK, Chung HC, Fein LE, Chan VF, Jassem J, Pivot XB, Klimovsky JV, de Mendoza FH, et al.. Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 2007; 25:5210-7; PMID:; http://dx.doi.org/10.1200/JCO.2007.12.6557 PubMed DOI
Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:; http://dx.doi.org/10.4161/onci.27297 PubMed DOI PMC
Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:; http://dx.doi.org/10.4161/onci.22789 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:; http://dx.doi.org/10.4161/onci.27048 PubMed DOI PMC
Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2:e23082; PMID:; http://dx.doi.org/10.4161/onci.23082 PubMed DOI PMC
Ibrahim A, Scher N, Williams G, Sridhara R, Li N, Chen G, Leighton J, Booth B, Gobburu JV, Rahman A, et al.. Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases. Clin Cancer Res 2003; 9:2394-9; PMID: PubMed
Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G, et al.. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012; 4:143ra99; PMID:; http://dx.doi.org/10.1126/scitranslmed.3003807 PubMed DOI
Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Sukkurwala AQ, Michaud M, Galluzzi L, Zitvogel L, et al.. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012; 1:1640-2; PMID:; http://dx.doi.org/10.4161/onci.21684 PubMed DOI PMC
Riganti C, Castella B, Kopecka J, Campia I, Coscia M, Pescarmona G, Bosia A, Ghigo D, Massaia M. Zoledronic acid restores doxorubicin chemosensitivity and immunogenic cell death in multidrug-resistant human cancer cells. PLoS One 2013; 8:e60975; PMID:; http://dx.doi.org/10.1371/journal.pone.0060975 PubMed DOI PMC
Riganti C, Massaia M. Inhibition of the mevalonate pathway to override chemoresistance and promote the immunogenic demise of cancer cells: Killing two birds with one stone. Oncoimmunology 2013; 2:e25770; PMID:; http://dx.doi.org/10.4161/onci.25770 PubMed DOI PMC
Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699-716; PMID:; http://dx.doi.org/10.4161/onci.20696 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, et al.. Trial Watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994; http://dx.doi.org/10.4161/21624011.2014.957994 PubMed DOI PMC
Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, et al.. Trial Watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:; http://dx.doi.org/10.4161/onci.28694 PubMed DOI PMC
Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res 2005; 65:1018-26; PMID: PubMed
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? Biomed Res Int 2013; 2013:482160; PMID:; http://dx.doi.org/10.1155/2013/482160 PubMed DOI PMC
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:; http://dx.doi.org/10.4161/onci.25595 PubMed DOI PMC
Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, et al.. Trial Watch: Radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929; http://dx.doi.org/10.4161/21624011.2014.954929 PubMed DOI PMC
Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; PMID:; http://dx.doi.org/10.4161/onci.26260 PubMed DOI PMC
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology 2012; 1:786-8; PMID:; http://dx.doi.org/10.4161/onci.19750 PubMed DOI PMC
Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al.. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 2012; 31:1062-79; PMID:; http://dx.doi.org/10.1038/emboj.2011.497 PubMed DOI PMC
Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Oncoimmunology 2013; 2:e26536; PMID:; http://dx.doi.org/10.4161/onci.26536 PubMed DOI PMC
Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini JL, et al.. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 2014; 21:92-9; PMID:; http://dx.doi.org/10.1038/cdd.2013.124 PubMed DOI PMC
Formenti SC, Demaria S. Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 2012; 84:879-80; PMID:; http://dx.doi.org/10.1016/j.ijrobp.2012.06.020 PubMed DOI PMC
Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:; http://dx.doi.org/10.4161/onci.27878 PubMed DOI PMC
Butts C, Socinski MA, Mitchell PL, Thatcher N, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquée L, Trigo JM, et al.. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15:59-68; PMID:; http://dx.doi.org/10.1016/S1470-2045(13)70510-2 PubMed DOI
Roulstone V, Khan K, Pandha HS, Rudman S, Coffey M, Gill GM, Melcher AA, Vile RG, Harrington KJ, de Bono JS, et al.. Phase I trial of cyclophosphamide as an immune modulator for optimizing oncolytic reovirus delivery to solid tumors. Clin Cancer Res 2015; PMID:. PubMed PMC
Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A, et al.. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 2012; 72:5348-62; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-12-0658 PubMed DOI
Kharaziha P, Rodriguez P, Li Q, Rundqvist H, Bjorklund AC, Augsten M, Ullén A, Egevad L, Wiklund P, Nilsson S, et al.. Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells. Cell Death Dis 2012; 3:e262; PMID:; http://dx.doi.org/10.1038/cddis.2012.1 PubMed DOI PMC
Bazzola L, Foroni C, Andreis D, Zanoni V, M RC, Allevi G, Aguggini S, Strina C, Milani M, Venturini S, et al.. Combination of letrozole, metronomic cyclophosphamide and sorafenib is well-tolerated and shows activity in patients with primary breast cancer. Br J Cancer 2014; 112(1):52-60; PMID: PubMed PMC
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, Solt S, Dorman A, Wamwea A, Yager A, et al.. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2014; 2:616-31; PMID:; http://dx.doi.org/10.1158/2326-6066.CIR-14-0027 PubMed DOI PMC
Springett GM. Novel pancreatic cancer vaccines could unleash the army within. Cancer Control 2014; 21:242-6; PMID: PubMed
Marks E, Saif MW, Jia Y. Updates on first-line therapy for metastatic pancreatic adenocarcinoma. JOP 2014; 15:99-102; PMID: PubMed
Antonarakis ES, Carducci MA. Combining low-dose cyclophosphamide with GM-CSF-secreting prostate cancer immunotherapy enhances antitumor immune effects. Expert Opin Investig Drugs 2010; 19:311-4; PMID:; http://dx.doi.org/10.1517/13543780903530678 PubMed DOI PMC
Zheng L, Edil BH, Soares KC, El-Shami K, Uram JN, Judkins C, Zhang Z, Onners B, Laheru D, Pardoll D, et al.. A safety and feasibility study of an allogeneic colon cancer cell vaccine administered with a granulocyte-macrophage colony stimulating factor-producing bystander cell line in patients with metastatic colorectal cancer. Ann Surg Oncol 2014; 21:3931-7; PMID:; http://dx.doi.org/10.1245/s10434-014-3844-x PubMed DOI PMC
Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, Park JO, Kim SY, Kim TY, Kim JH, et al.. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol 2014; 15:1245-53; PMID:; http://dx.doi.org/10.1016/S1470-2045(14)70377-8 PubMed DOI
Noh SH, Park SR, Yang HK, Chung HC, Chung IJ, Kim SW, Kim HH, Choi JH, Kim HK, Yu W, et al.. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol 2014; 15:1389-96; PMID:; http://dx.doi.org/10.1016/S1470-2045(14)70473-5 PubMed DOI
Yamada Y, Higuchi K, Nishikawa K, Gotoh M, Fuse N, Sugimoto N, Nishina T, Amagai K, Chin K, Niwa Y, et al.. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naive patients with advanced gastric cancer. Ann Oncol 2015; 26:141-8; PMID:; http://dx.doi.org/10.1093/annonc/mdu472 PubMed DOI
Oettle H, Riess H, Stieler JM, Heil G, Schwaner I, Seraphin J, Görner M, Mölle M, Greten TF, Lakner V, et al.. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 trial. J Clin Oncol 2014; 32:2423-9; PMID:; http://dx.doi.org/10.1200/JCO.2013.53.6995 PubMed DOI
O'Reilly EM, Perelshteyn A, Jarnagin WR, Schattner M, Gerdes H, Capanu M, Tang LH, LaValle J, Winston C, DeMatteo RP, et al.. A single-arm, nonrandomized phase II trial of neoadjuvant gemcitabine and oxaliplatin in patients with resectable pancreas adenocarcinoma. Ann Surg 2014; 260:142-8; PMID:; http://dx.doi.org/10.1097/SLA.0000000000000251 PubMed DOI PMC
Schadt CR. Topical and oral bexarotene. Dermatol Ther 2013; 26:400-3; PMID: PubMed
Delfino C, Grandi V, Pileri A, Rupoli S, Quaglino P, Alterini R, Goteri G, Canafoglia L, Pimpinelli N. Combination treatment in CTCL: the current role of bexarotene. G Ital Dermatol Venereol 2012; 147:573-80; PMID: PubMed
Knol AC, Quereux G, Brocard A, Ballanger F, Khammari A, Nguyen JM, Dréno B. Absence of modulation of CD4+CD25 regulatory T cells in CTCL patients treated with bexarotene. Exp Dermatol 2010; 19:e95-102; PMID:; http://dx.doi.org/10.1111/j.1600-0625.2009.00993.x PubMed DOI
Knol AC, Quereux G, Brocard A, Ballanger F, Khammari A, Nguyen JM, Dréno B. About the cutaneous targets of bexarotene in CTCL patients. Exp Dermatol 2010; 19:e299-301; PMID:; http://dx.doi.org/10.1111/j.1600-0625.2009.00995.x PubMed DOI
Straus DJ, Duvic M, Horwitz SM, Hymes K, Goy A, Hernandez-Ilizaliturri FJ, Feldman T, Wegner B, Myskowski PL. Final results of phase II trial of doxorubicin HCl liposome injection followed by bexarotene in advanced cutaneous T-cell lymphoma. Ann Oncol 2014; 25:206-10; PMID:; http://dx.doi.org/10.1093/annonc/mdt480 PubMed DOI
Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM, Bent EH, Schwamb J, Iliopoulou B, Kutsch N, et al.. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 2014; 156:590-602; PMID:; http://dx.doi.org/10.1016/j.cell.2013.12.041 PubMed DOI PMC
Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327:656-61; PMID:; http://dx.doi.org/10.1126/science.1178331 PubMed DOI PMC
Hashimoto D, Miller J, Merad M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 2011; 35:323-35; PMID:; http://dx.doi.org/10.1016/j.immuni.2011.09.007 PubMed DOI PMC
Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14:598-610; PMID:; http://dx.doi.org/10.1038/nrc3792 PubMed DOI PMC
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706; PMID:; http://dx.doi.org/10.2741/4236 PubMed DOI PMC
Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett 2014; 343:147-55; PMID:; http://dx.doi.org/10.1016/j.canlet.2013.09.039 PubMed DOI
Tavora B, Reynolds LE, Batista S, Demircioglu F, Fernandez I, Lechertier T, Lees DM, Wong PP, Alexopoulou A, Elia G, et al.. Endothelial-cell FAK targeting sensitizes tumours to DNA-damaging therapy. Nature 2014; 514:112-6; PMID:; http://dx.doi.org/10.1038/nature13541 PubMed DOI PMC
STK4 inhibition promotes YAP1-mediated apoptosis in hematologic cancers. Cancer Discov 2014; 4:OF8; http://dx.doi.org/10.1158/2159-8290.CD-RW2014-112 DOI
Luk JM, Guan KL. An alternative DNA damage pathway to apoptosis in hematological cancers. Nat Med 2014; 20:587-8; PMID:; http://dx.doi.org/10.1038/nm.3593 PubMed DOI
Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis 2010; 1:e29; PMID:; http://dx.doi.org/10.1038/cddis.2010.7 PubMed DOI PMC
Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, et al.. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 2008; 32:803-14; PMID:; http://dx.doi.org/10.1016/j.molcel.2008.11.019 PubMed DOI
Cottini F, Hideshima T, Xu C, Sattler M, Dori M, Agnelli L, ten Hacken E, Bertilaccio MT, Antonini E, Neri A, et al.. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat Med 2014; 20:599-606; PMID:; http://dx.doi.org/10.1038/nm.3562 PubMed DOI PMC
Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99-163; PMID:; http://dx.doi.org/10.1152/physrev.00013.2006 PubMed DOI
Galluzzi L, Larochette N, Zamzami N, Kroemer G. Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 2006; 25:4812-30; PMID:; http://dx.doi.org/10.1038/sj.onc.1209598 PubMed DOI
Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res 2012; 111:1198-207; PMID:; http://dx.doi.org/10.1161/CIRCRESAHA.112.268946 PubMed DOI
Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV, Mutharasan RK, Naik TJ, Ardehali H. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124:617-30; PMID:; http://dx.doi.org/10.1172/JCI72931 PubMed DOI PMC
Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, et al.. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 2014; 6:266ra170; PMID:; http://dx.doi.org/10.1126/scitranslmed.3010189 PubMed DOI PMC
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al.. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338:120-3; PMID:; http://dx.doi.org/10.1126/science.1224820 PubMed DOI PMC
Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat Chem Biol 2012; 8:36-45; http://dx.doi.org/10.1038/nchembio.741 PubMed DOI
Brown EM, Sadarangani M, Finlay BB. The role of the immune system in governing host-microbe interactions in the intestine. Nat Immunol 2013; 14:660-7; PMID:; http://dx.doi.org/10.1038/ni.2611 PubMed DOI
Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35:249-55; PMID:; http://dx.doi.org/10.1093/carcin/bgt392 PubMed DOI PMC
Viaud S, Daillere R, Yamazaki T, Lepage P, Boneca I, Goldszmid R, Trinchieri G, Zitvogel L. Why should we need the gut microbiota to respond to cancer therapies? Oncoimmunology 2014; 3:e27574; PMID:; http://dx.doi.org/10.4161/onci.27574 PubMed DOI PMC
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al.. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342:971-6; PMID:; http://dx.doi.org/10.1126/science.1240537 PubMed DOI PMC
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al.. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342:967-70; PMID:; http://dx.doi.org/10.1126/science.1240527 PubMed DOI PMC
Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R, Jacks T, Anderson DG. Treating metastatic cancer with nanotechnology. Nat Rev Cancer 2012; 12:39-50; http://dx.doi.org/10.1038/nrc3180 PubMed DOI
Morton SW, Lee MJ, Deng ZJ, Dreaden EC, Siouve E, Shopsowitz KE, Shah NJ, Yaffe MB, Hammond PT. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci Signal 2014; 7:ra44; PMID:; http://dx.doi.org/10.1126/scisignal.2005261 PubMed DOI PMC
Croucher DR, Saunders DN, Lobov S, Ranson M. Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer 2008; 8:535-45; PMID:; http://dx.doi.org/10.1038/nrc2400 PubMed DOI
Affara NI, Coussens LM. IKKalpha at the crossroads of inflammation and metastasis. Cell 2007; 129:25-6; PMID:; http://dx.doi.org/10.1016/j.cell.2007.03.029 PubMed DOI
Hopkins PC, Whisstock J. Function of maspin. Science 1994; 265:1893-4; PMID:; http://dx.doi.org/10.1126/science.8091216 PubMed DOI
Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 1994; 263:526-9; PMID:; http://dx.doi.org/10.1126/science.8290962 PubMed DOI
Triulzi T, Ratti M, Tortoreto M, Ghirelli C, Aiello P, Regondi V, Di Modica M, Cominetti D, Carcangiu ML, Moliterni A, et al.. Maspin influences response to doxorubicin by changing the tumor microenvironment organization. Int J Cancer 2014; 134:2789-97; PMID:; http://dx.doi.org/10.1002/ijc.28608 PubMed DOI
Pfisterer J, Plante M, Vergote I, du Bois A, Hirte H, Lacave AJ, Wagner U, Stähle A, Stuart G, Kimmig R, et al.. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG. J Clin Oncol 2006; 24:4699-707; PMID:; http://dx.doi.org/10.1200/JCO.2006.06.0913 PubMed DOI
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7:573-84; PMID:; http://dx.doi.org/10.1038/nrc2167 PubMed DOI
Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007; 357:2666-76; PMID:; http://dx.doi.org/10.1056/NEJMoa072113 PubMed DOI
Creelan BC, Antonia S, Bepler G, Garrett TJ, Simon GR, Soliman HH. Indoleamine 2,3-dioxygenase activity and clinical outcome following induction chemotherapy and concurrent chemoradiation in Stage III non-small cell lung cancer. Oncoimmunology 2013; 2:e23428; PMID:; http://dx.doi.org/10.4161/onci.23428 PubMed DOI PMC
Boulin M, Guiu S, Chauffert B, Aho S, Cercueil JP, Ghiringhelli F, Krause D, Fagnoni P, Hillon P, Bedenne L, et al.. Screening of anticancer drugs for chemoembolization of hepatocellular carcinoma. Anticancer Drugs 2011; 22:741-8; PMID:; http://dx.doi.org/10.1097/CAD.0b013e328346a0c5 PubMed DOI
Semeraro M, Galluzzi L. Novel insights into the mechanism of action of lenalidomide. Oncoimmunology 2014; 3:e28386; PMID:; http://dx.doi.org/10.4161/onci.28386 PubMed DOI PMC
Semeraro M, Vacchelli E, Eggermont A, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Lenalidomide-based immunochemotherapy. Oncoimmunology 2013; 2:e26494; PMID:; http://dx.doi.org/10.4161/onci.26494 PubMed DOI PMC
Okines AF, Ashley SE, Cunningham D, Oates J, Turner A, Webb J, Saffery C, Chua YJ, Chau I. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, phase II/III REAL-3 trial. J Clin Oncol 2010; 28:3945-50; PMID:; http://dx.doi.org/10.1200/JCO.2010.29.2847 PubMed DOI
Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014; 30C:24-31; http://dx.doi.org/10.1016/j.coi.2014.05.009 PubMed DOI
Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al.. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:; http://dx.doi.org/10.4161/onci.22009 PubMed DOI PMC
Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov 2013; 12:829-46; PMID:; http://dx.doi.org/10.1038/nrd4145 PubMed DOI
Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G, et al.. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:; http://dx.doi.org/10.4161/onci.28344 PubMed DOI PMC
Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; PMID:; http://dx.doi.org/10.4161/onci.24238 PubMed DOI PMC
Rounbehler RJ, Li W, Hall MA, Yang C, Fallahi M, Cleveland JL. Targeting ornithine decarboxylase impairs development of MYCN-amplified neuroblastoma. Cancer Res 2009; 69:547-53; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-08-2968 PubMed DOI PMC
Koomoa DL, Yco LP, Borsics T, Wallick CJ, Bachmann AS. Ornithine decarboxylase inhibition by α-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1 in neuroblastoma. Cancer Res 2008; 68:9825-31; PMID:; http://dx.doi.org/10.1158/0008-5472.CAN-08-1865 PubMed DOI PMC
Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJ, Schrama JG, Erdkamp FL, Vos AH, van Groeningen CJ, Sinnige HA, et al.. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 2009; 360:563-72; PMID:; http://dx.doi.org/10.1056/NEJMoa0808268 PubMed DOI
Hoehler T, von Wichert G, Schimanski C, Kanzler S, Moehler MH, Hinke A, Seufferlein T, Siebler J, Hochhaus A, Arnold D, et al.. Phase I/II trial of capecitabine and oxaliplatin in combination with bevacizumab and imatinib in patients with metastatic colorectal cancer: AIO KRK 0205. Br J Cancer 2013; 109:1408-13; PMID:; http://dx.doi.org/10.1038/bjc.2013.409 PubMed DOI PMC
Lerret NM, Marzo AL. Adoptive T-cell transfer combined with a single low dose of total body irradiation eradicates breast tumors. Oncoimmunology 2013; 2:e22731; PMID:; http://dx.doi.org/10.4161/onci.22731 PubMed DOI PMC
Lee AF, Sieling PA, Lee DJ. Immune correlates of melanoma survival in adoptive cell therapy. Oncoimmunology 2013; 2:e22889; PMID:; http://dx.doi.org/10.4161/onci.22889 PubMed DOI PMC
Besser MJ. Is there a future for adoptive cell transfer in melanoma patients? Oncoimmunology 2013; 2:e26098; PMID:; http://dx.doi.org/10.4161/onci.26098 PubMed DOI PMC
Lu JY, Xiao Y, Qiu HZ, Wu B, Lin GL, Xu L, Zhang GN, Hu K. Clinical outcome of neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine or 5-fluorouracil for locally advanced rectal cancer. J Surg Oncol 2013; 108:213-9; PMID:; http://dx.doi.org/10.1002/jso.23394 PubMed DOI
Njiaju UO, Tevaarwerk AJ, Kim K, Chang JE, Hansen RM, Champeny TL, Traynor AM, Meadows S, Van Ummersen L, Powers K, et al.. Capecitabine and oxaliplatin in combination as first- or second-line therapy for metastatic breast cancer: a Wisconsin Oncology Network trial. Cancer Chemother Pharmacol 2013; 71:613-8; PMID:; http://dx.doi.org/10.1007/s00280-012-2044-2 PubMed DOI PMC
Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB 3rd; Eastern Cooperative Oncology Group Study E3200 . Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 2007; 25:1539-44; PMID:; http://dx.doi.org/10.1200/JCO.2006.09.6305 PubMed DOI
Conroy T, Galais MP, Raoul JL, Bouche O, Gourgou-Bourgade S, Douillard JY, Etienne PL, Boige V, Martel-Lafay I, Michel P, et al.. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE5/ACCORD17): final results of a randomised, phase 2/3 trial. Lancet Oncol 2014; 15:305-14; PMID:; http://dx.doi.org/10.1016/S1470-2045(14)70028-2 PubMed DOI
Gujar SA, Clements D, Lee PW. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:; http://dx.doi.org/10.4161/onci.27622 PubMed DOI PMC
Vici P, Sergi D, Pizzuti L, Mariani L, Arena MG, Barba M, Maugeri-Saccà M, Vincenzoni C, Vizza E, Corrado G, et al.. Gemcitabine-oxaliplatin (GEMOX) as salvage treatment in pretreated epithelial ovarian cancer patients. J Exp Clin Cancer Res 2013; 32:49; PMID:; http://dx.doi.org/10.1186/1756-9966-32-49 PubMed DOI PMC
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al.. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364:1817-25; PMID:; http://dx.doi.org/10.1056/NEJMoa1011923 PubMed DOI
Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, Ychou M, Bouche O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Boige V, et al.. Impact of FOLFIRINOX Compared With Gemcitabine on Quality of Life in Patients With Metastatic Pancreatic Cancer: Results From the PRODIGE 4/ACCORD 11 Randomized Trial. J Clin Oncol 2013; 31:23-9; PMID:; http://dx.doi.org/10.1200/JCO.2012.44.4869 PubMed DOI
Urner-Bloch U, Urner M, Stieger P, Galliker N, Winterton N, Zubel A, Moutouh-de Parseval L, Dummer R, Goldinger SM. Transient MEK inhibitor-associated retinopathy in metastatic melanoma. Ann Oncol 2014; 25:1437-41; PMID:; http://dx.doi.org/10.1093/annonc/mdu169 PubMed DOI
Yang J, Shi Y, Li C, Gui L, Zhao X, Liu P, Han X, Song Y, Li N, Du P, et al.. Phase I clinical trial of pegylated liposomal mitoxantrone plm60-s: pharmacokinetics, toxicity and preliminary efficacy. Cancer Chemother Pharmacol 2014; 74:637-46; PMID:; http://dx.doi.org/10.1007/s00280-014-2523-8 PubMed DOI
Necchi A, Mariani L, Di Nicola M, Lo Vullo S, Nicolai N, Giannatempo P, Raggi D, Farè E, Magni M, Piva L, et al.. High-dose sequential chemotherapy (HDS) versus PEB chemotherapy as first-line treatment of patients with poor prognosis germ-cell tumors: mature results of an Italian randomized phase II studydagger. Ann Oncol 2015; 26:167-72; PMID:; http://dx.doi.org/10.1093/annonc/mdu485 PubMed DOI
Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. Oncoimmunology 2013; 2:e25396; PMID:; http://dx.doi.org/10.4161/onci.25396 PubMed DOI PMC
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014; 3:e28518; PMID:; http://dx.doi.org/10.4161/onci.28518 PubMed DOI PMC
Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; http://dx.doi.org/10.4161/21624011.2014.967147 PubMed DOI PMC
Robert L, Harview C, Emerson R, Wang X, Mok S, Homet B, Comin-Anduix B, Koya RC, Robins H, Tumeh PC, et al.. Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes. Oncoimmunology 2014; 3:e29244; PMID:; http://dx.doi.org/10.4161/onci.29244 PubMed DOI PMC
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al.. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2014; 372(4):320-30 PubMed
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al.. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384:1109-17; PMID:; http://dx.doi.org/10.1016/S0140-6736(14)60958-2 PubMed DOI
Detection of immunogenic cell death and its relevance for cancer therapy
Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug
Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology
Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy
Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors
The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †
Trial watch: Immune checkpoint blockers for cancer therapy
Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy