Trial watch: Immune checkpoint blockers for cancer therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
29147629
PubMed Central
PMC5674958
DOI
10.1080/2162402x.2017.1373237
PII: 1373237
Knihovny.cz E-zdroje
- Klíčová slova
- Atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab, pembrolizumab,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Immune checkpoint blockers (ICBs) are literally revolutionizing the clinical management of an ever more diversified panel of oncological indications. Although considerable attention persists around the inhibition of cytotoxic T lymphocyte-associated protein 4 (CTLA4) and programmed cell death 1 (PDCD1, best known as PD-1) signaling, several other co-inhibitory T-cell receptors are being evaluated as potential targets for the development of novel ICBs. Moreover, substantial efforts are being devoted to the identification of biomarkers that reliably predict the likelihood of each patient to obtain clinical benefits from ICBs in the absence of severe toxicity. Tailoring the delivery of specific ICBs or combinations thereof to selected patient populations in the context of precision medicine programs constitutes indeed a major objective of the future of ICB-based immunotherapy. Here, we discuss recent preclinical and clinical advances on the development of ICBs for oncological indications.
Center of Clinical Investigations in Biotherapies of Cancer 1428 Villejuif France
Department of Radiation Oncology Weill Cornell Medical College New York NY USA
Equipe 11 labellisée Ligue contre le Cancer Centre de Recherche des Cordeliers Paris France
Gustave Roussy Comprehensive Cancer Institute Villejuif France
Pôle de Biologie Hopitâl Européen George Pompidou AP HP Paris France
Sandra and Edward Meyer Cancer Center New York NY USA
Sotio a c Prague Czech Republic
Université Paris Descartes Paris 5 Paris France
Zobrazit více v PubMed
Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9:767-74. https://doi.org/10.1038/nrd3229. PMID:20811384 PubMed DOI
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al.. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363:711-23. https://doi.org/10.1056/NEJMoa1003466. PMID:20525992 PubMed DOI PMC
Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A, et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2015; 4:e1008814. https://doi.org/10.1080/2162402X.2015.1008814. PMID:26137403 PubMed DOI PMC
Galluzzi L, Eggermont A, Kroemer G. Doubling the blockade for melanoma immunotherapy. Oncoimmunology. 2016; 5:e1106127. https://doi.org/10.1080/2162402X.2015.1106127. PMID:26942094 PubMed DOI PMC
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011; 480:480-9. https://doi.org/10.1038/nature10673. PMID:22193102 PubMed DOI PMC
Ascierto PA, Marincola FM, Ribas A. Anti-CTLA4 monoclonal antibodies: The past and the future in clinical application. J Transl Med. 2011; 9:196. https://doi.org/10.1186/1479-5876-9-196. PMID:22077981 PubMed DOI PMC
Weber JS, Dummer R, de Pril V, Lebbe C, Hodi FS, Investigators MDX . Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: Detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer. 2013; 119:1675-82. https://doi.org/10.1002/cncr.27969. PMID:23400564 PubMed DOI
Robert C, Schadendorf D, Messina M, Hodi FS, O'Day S, Investigators MDX . Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res. 2013; 19:2232-9. https://doi.org/10.1158/1078-0432.CCR-12-3080. PMID:23444228 PubMed DOI
McDermott D, Haanen J, Chen TT, Lorigan P, O'Day S, Investigators MDX . Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase III trial (MDX010-20). Ann Oncol. 2013; 24:2694-8. https://doi.org/10.1093/annonc/mdt291. PMID:23942774 PubMed DOI
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell. 2015; 161:205-14. https://doi.org/10.1016/j.cell.2015.03.030. PMID:25860605 PubMed DOI PMC
Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015; 348:56-61. https://doi.org/10.1126/science.aaa8172. PMID:25838373 PubMed DOI
Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat Rev Cancer. 2011; 11:805-12. https://doi.org/10.1038/nrc3153. PMID:22020206 PubMed DOI PMC
Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016; 164:1233-47. https://doi.org/10.1016/j.cell.2016.01.049. PMID:26967289 PubMed DOI PMC
Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 2015; 27:450-61. https://doi.org/10.1016/j.ccell.2015.03.001. PMID:25858804 PubMed DOI PMC
Marabelle A, Routy B, Michels J, Kroemer G, Zitvogel L. Prime time for immune-checkpoint targeted therapy at ASCO 2015. Oncoimmunology. 2016; 5:e1068494. https://doi.org/10.1080/2162402X.2015.1068494. PMID:27141332 PubMed DOI PMC
Acebes-Huerta A, Lorenzo-Herrero S, Folgueras AR, Huergo-Zapico L, Lopez-Larrea C, Lopez-Soto A, Gonzalez S. Drug-induced hyperploidy stimulates an antitumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncoimmunology. 2016; 5:e1074378. https://doi.org/10.1080/2162402X.2015.1074378. PMID:27057443 PubMed DOI PMC
Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: What's here, what's next? Curr Opin Immunol. 2015; 33:23-35. https://doi.org/10.1016/j.coi.2015.01.006. PMID:25621841 PubMed DOI
Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X, Miller H, Olson M, Feng Y, Huang YH, et al.. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep. 2017; 7:1485. https://doi.org/10.1038/s41598-017-01411-1. PMID:28469254 PubMed DOI PMC
Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, et al.. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017; 23:551-5. https://doi.org/10.1038/nm.4308. PMID:28346412 PubMed DOI PMC
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev. 2017; 276:66-79. https://doi.org/10.1111/imr.12525. PMID:28258694 PubMed DOI PMC
Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, et al.. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A. 2015; 112:6682-7. https://doi.org/10.1073/pnas.1420370112. PMID:25964334 PubMed DOI PMC
Gallois A, Silva I, Osman I, Bhardwaj N. Reversal of natural killer cell exhaustion by TIM-3 blockade. Oncoimmunology. 2014; 3:e946365. https://doi.org/10.4161/21624011.2014.946365. PMID:25964857 PubMed DOI PMC
Li J, Shayan G, Avery L, Jie HB, Gildener-Leapman N, Schmitt N, Lu BF, Kane LP, Ferris RL. Tumor-infiltrating Tim-3+ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncoimmunology. 2016; 5:e1200778. https://doi.org/10.1080/2162402X.2016.1200778. PMID:27853635 PubMed DOI PMC
Ngiow SF, Teng MW, Smyth MJ. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res. 2011; 71:6567-71. https://doi.org/10.1158/0008-5472.CAN-11-1487. PMID:22009533 PubMed DOI
Anderson AC. Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol. 2012; 24:213-6. https://doi.org/10.1016/j.coi.2011.12.005. PMID:22226204 PubMed DOI
Deng WW, Mao L, Yu GT, Bu LL, Ma SR, Liu B, Gutkind JS, Kulkarni AB, Zhang WF, Sun ZJ. LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology. 2016; 5:e1239005. https://doi.org/10.1080/2162402X.2016.1239005. PMID:27999760 PubMed DOI PMC
Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C, Torrisi R, Reis-Filho JS, Roncalli M, Sotiriou C, Santoro A, et al.. An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res. 2016; 18:121. https://doi.org/10.1186/s13058-016-0783-4. PMID:27912781 PubMed DOI PMC
Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et al.. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72:917-27. https://doi.org/10.1158/0008-5472.CAN-11-1620. PMID:22186141 PubMed DOI PMC
Hahn AW, Gill DM, Pal SK, Agarwal N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy. 2017; 9:681-92. https://doi.org/10.2217/imt-2017-0024. PMID:28653573 PubMed DOI
Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017;32:135-54. doi:10.1016/j.ccell.2017.06.009. PMID:28810142 PubMed DOI
Hofer E, Koehl U. Natural killer cell-based cancer immunotherapies: From immune evasion to promising targeted cellular therapies. Front Immunol. 2017; 8:745. https://doi.org/10.3389/fimmu.2017.00745. PMID:28747910 PubMed DOI PMC
Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017; 276:112-20. https://doi.org/10.1111/imr.12518. PMID:28258695 PubMed DOI
Muntasell A, Ochoa MC, Cordeiro L, Berraondo P, Lopez-Diaz de Cerio A, Cabo M, Lopez-Botet M, Melero I. Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol. 2017; 45:73-81. https://doi.org/10.1016/j.coi.2017.01.003. PMID:28236750 PubMed DOI
Martinez-Sanchez MV, Periago A, Legaz I, Gimeno L, Mrowiec A, Montes-Barqueros NR, Campillo JA, Bolarin JM, Bernardo MV, Lopez-Alvarez MR, et al.. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing. Oncoimmunology. 2016; 5:e1093721. https://doi.org/10.1080/2162402X.2015.1093721. PMID:27141379 PubMed DOI PMC
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al.. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015; 372:2509-20. https://doi.org/10.1056/NEJMoa1500596. PMID:26028255 PubMed DOI PMC
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al.. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017; 357:409-13. https://doi.org/10.1126/science.aan6733. PMID:28596308 PubMed DOI PMC
First tissue-agnostic drug approval issued. Cancer Discov. 2017; 7:656. PubMed
Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol Cell. 2017; 66:306-19. https://doi.org/10.1016/j.molcel.2017.04.006. PMID:28475867 PubMed DOI
Lin EI, Tseng LH, Gocke CD, Reil S, Le DT, Azad NS, Eshleman JR. Mutational profiling of colorectal cancers with microsatellite instability. Oncotarget. 2015; 6:42334-44. https://doi.org/10.18632/oncotarget.5997. PMID:26517354 PubMed DOI PMC
Garber K. In a major shift, cancer drugs go ‘tissue-agnostic’. Science. 2017; 356:1111-2. https://doi.org/10.1126/science.356.6343.1111. PMID:28619894 PubMed DOI
Flaherty KT, Le DT, Lemery S. Tissue-agnostic drug development. Am Soc Clin Oncol Educ Book. 2017; 37:222-30. https://doi.org/10.14694/EDBK_173855. PMID:28561648 PubMed DOI
Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy SM, et al.. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med. 2017; 9:eaah3560. https://doi.org/10.1126/scitranslmed.aah3560. PMID:28251903 PubMed DOI PMC
Wang X, Schoenhals JE, Li A, Valdecanas DR, Ye H, Zang F, Tang C, Tang M, Liu CG, Liu X, et al.. Suppression of Type I IFN signaling in tumors mediates resistance to Anti-PD-1 treatment that can be overcome by radiotherapy. Cancer Res. 2017; 77:839-50. https://doi.org/10.1158/0008-5472.CAN-15-3142. PMID:27821490 PubMed DOI PMC
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al.. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 therapy. Cell. 2016; 167:397-404 e9. https://doi.org/10.1016/j.cell.2016.08.069. PMID:27667683 PubMed DOI PMC
Deken MA, Gadiot J, Jordanova ES, Lacroix R, van Gool M, Kroon P, Pineda C, Geukes Foppen MH, Scolyer R, Song JY, et al.. Targeting the MAPK and PI3K pathways in combination with PD1 blockade in melanoma. Oncoimmunology. 2016; 5:e1238557. https://doi.org/10.1080/2162402X.2016.1238557. PMID:28123875 PubMed DOI PMC
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017; 168:707-23. https://doi.org/10.1016/j.cell.2017.01.017. PMID:28187290 PubMed DOI PMC
Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al.. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 2016; 165:35-44. https://doi.org/10.1016/j.cell.2016.02.065. PMID:26997480 PubMed DOI PMC
De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH, Budhu S, Ghosh A, Pink M, Tchaicha J, et al.. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature. 2016; 539:443-7. https://doi.org/10.1038/nature20554. PMID:27828943 PubMed DOI PMC
George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, Lipschitz M, Amin-Mansour A, Raut CP, Carter SL, et al.. Loss of PTEN is associated with resistance to Anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017; 46:197-204. https://doi.org/10.1016/j.immuni.2017.02.001. PMID:28228279 PubMed DOI PMC
Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, et al.. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity. 2016; 44:1255-69. https://doi.org/10.1016/j.immuni.2016.06.001. PMID:27332730 PubMed DOI
Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, Miller JP, Bassett RL, Gopalakrishnan V, Wani K, et al.. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016; 6:827-37. https://doi.org/10.1158/2159-8290.CD-15-1545. PMID:27301722 PubMed DOI PMC
Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immunotherapy–immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017; 13:195-207. https://doi.org/10.1038/nrendo.2016.205. PMID:28106152 PubMed DOI PMC
Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al.. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016; 13:473-86. https://doi.org/10.1038/nrclinonc.2016.58. PMID:27141885 PubMed DOI
Kohn CG, Zeichner SB, Chen Q, Montero AJ, Goldstein DA, Flowers CR. Cost-effectiveness of immune checkpoint inhibition in BRAF wild-type advanced melanoma. J Clin Oncol. 2017; 35:1194-202. https://doi.org/10.1200/JCO.2016.69.6336. PMID:28221865 PubMed DOI PMC
Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol. 2015; 33:2092-9. https://doi.org/10.1200/JCO.2014.60.0379. PMID:25918278 PubMed DOI PMC
Spain L, Diem S, Larkin J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 2016; 44:51-60. https://doi.org/10.1016/j.ctrv.2016.02.001. PMID:26874776 PubMed DOI
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016; 16:275-87. https://doi.org/10.1038/nrc.2016.36. PMID:27079802 PubMed DOI PMC
Lopez-Soto A, Gonzalez S, Folgueras AR. IFN signaling and ICB resistance: Time is on tumor's side. Trends Cancer. 2017; 3:161-3. https://doi.org/10.1016/j.trecan.2017.01.004. PMID:28718428 PubMed DOI
Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, et al.. Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer. Front Immunol. 2015; 6:402. https://doi.org/10.3389/fimmu.2015.00402. PMID:26300886 PubMed DOI PMC
Paluch BE, Glenn ST, Conroy JM, Papanicolau-Sengos A, Bshara W, Omilian AR, Brese E, Nesline M, Burgher B, Andreas J, et al.. Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing. Oncotarget. 2017; 8:3197-205. PMID:27911273 PubMed PMC
Vanpouille-Box C, Formenti SC, Demaria S. Towards precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2017. https://doi.org/10.1158/1078-0432.CCR-16-0037. PMID:28751442 PubMed DOI PMC
Maleki Vareki S, Garrigos C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017; 116:116-24. https://doi.org/10.1016/j.critrevonc.2017.06.001. PMID:28693793 PubMed DOI
Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus static biomarkers in cancer immune checkpoint blockade: Unravelling complexity. Nat Rev Drug Discov. 2017; 16:264-72. https://doi.org/10.1038/nrd.2016.233. PMID:28057932 PubMed DOI
Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016; 17:e542-51. https://doi.org/10.1016/S1470-2045(16)30406-5. PMID:27924752 PubMed DOI PMC
Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017; 17:209-22. https://doi.org/10.1038/nrc.2016.154. PMID:28233802 PubMed DOI PMC
Castino GF, Cortese N, Capretti G, Serio S, Di Caro G, Mineri R, Magrini E, Grizzi F, Cappello P, Novelli F, et al.. Spatial distribution of B cells predicts prognosis in human pancreatic adenocarcinoma. Oncoimmunology. 2016; 5:e1085147. https://doi.org/10.1080/2162402X.2015.1085147. PMID:27141376 PubMed DOI PMC
Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, et al.. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016; 387:1540-50. https://doi.org/10.1016/S0140-6736(15)01281-7. PMID:26712084 PubMed DOI
Passiglia F, Bronte G, Bazan V, Natoli C, Rizzo S, Galvano A, Listi A, Cicero G, Rolfo C, Santini D, et al.. PD-L1 expression as predictive biomarker in patients with NSCLC: A pooled analysis. Oncotarget. 2016; 7:19738-47. https://doi.org/10.18632/oncotarget.7582. PMID:26918451 PubMed DOI PMC
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al.. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015; 348:124-8. https://doi.org/10.1126/science.aaa1348. PMID:25765070 PubMed DOI PMC
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, et al.. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014; 515:577-81. https://doi.org/10.1038/nature13988. PMID:25428507 PubMed DOI PMC
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al.. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016; 375:1823-33. https://doi.org/10.1056/NEJMoa1606774. PMID:27718847 PubMed DOI
Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015; 348:69-74. https://doi.org/10.1126/science.aaa4971. PMID:25838375 PubMed DOI
Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM, et al.. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015; 350:207-11. https://doi.org/10.1126/science.aad0095. PMID:26359337 PubMed DOI PMC
Danilova L, Wang H, Sunshine J, Kaunitz GJ, Cottrell TR, Xu H, Esandrio J, Anders RA, Cope L, Pardoll DM, et al.. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors. Proc Natl Acad Sci U S A. 2016; 113:E7769-77. https://doi.org/10.1073/pnas.1607836113. PMID:27837027 PubMed DOI PMC
Long J, Lin J, Wang A, Wu L, Zheng Y, Yang X, Wan X, Xu H, Chen S, Zhao H. PD-1/PD-L blockade in gastrointestinal cancers: Lessons learned and the road toward precision immunotherapy. J Hematol Oncol. 2017; 10:146. https://doi.org/10.1186/s13045-017-0511-2. PMID:28774337 PubMed DOI PMC
Filipp FV. Precision medicine driven by cancer systems biology. Cancer Metastasis Rev. 2017; 36:91-108. https://doi.org/10.1007/s10555-017-9662-4. PMID:28265786 PubMed DOI PMC
Byrne AT, Alferez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinska E, Caldas C, Chang DK, et al.. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer. 2017; 17:254-68. https://doi.org/10.1038/nrc.2016.140. PMID:28104906 PubMed DOI
Goltz D, Gevensleben H, Dietrich J, Ellinger J, Landsberg J, Kristiansen G, Dietrich D. Promoter methylation of the immune checkpoint receptor PD-1 (PDCD1) is an independent prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients following radical prostatectomy. Oncoimmunology. 2016; 5:e1221555. https://doi.org/10.1080/2162402X.2016.1221555. PMID:27853645 PubMed DOI PMC
Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, et al.. De Novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017; 170:142-57 e19. https://doi.org/10.1016/j.cell.2017.06.007. PMID:28648661 PubMed DOI PMC
Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015; 15:405-14. https://doi.org/10.1038/nri3845. PMID:26027717 PubMed DOI
Vasquez M, Fioravanti J, Aranda F, Paredes V, Gomar C, Ardaiz N, Fernandez-Ruiz V, Mendez M, Nistal-Villan E, Larrea E, et al.. Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function. Oncoimmunology. 2016; 5:e1196309. https://doi.org/10.1080/2162402X.2016.1196309. PMID:27622065 PubMed DOI PMC
Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017; 8:15618. https://doi.org/10.1038/ncomms15618. PMID:28598415 PubMed DOI PMC
Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint\s Victor C, Cucolo L, Lee DS, Pauken KE, Huang AC, et al.. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016; 167:1540-54 e12. https://doi.org/10.1016/j.cell.2016.11.022. PMID:27912061 PubMed DOI PMC
Held SA, Heine A, Kesper AR, Schonberg K, Beckers A, Wolf D, Brossart P. Interferon gamma modulates sensitivity of CML cells to tyrosine kinase inhibitors. Oncoimmunology. 2016; 5:e1065368. https://doi.org/10.1080/2162402X.2015.1065368. PMID:26942083 PubMed DOI PMC
Nirschl CJ, Suarez-Farinas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, Liu Y, Zhu Q, Devi KSP, Carroll SL, et al.. IFNgamma-dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell. 2017; 170:127-41 e15. https://doi.org/10.1016/j.cell.2017.06.016. PMID:28666115 PubMed DOI PMC
Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, et al.. Interferon-gamma drives Treg fragility to promote anti-tumor immunity. Cell. 2017; 169:1130-41 e11. https://doi.org/10.1016/j.cell.2017.05.005. PMID:28552348 PubMed DOI PMC
Hodny Z, Reinis M, Hubackova S, Vasicova P, Bartek J. Interferon gamma/NADPH oxidase defense system in immunity and cancer. Oncoimmunology. 2016; 5:e1080416. https://doi.org/10.1080/2162402X.2015.1080416. PMID:27057461 PubMed DOI PMC
Zitvogel L, Pitt JM, Daillere R, Smyth MJ, Kroemer G. Mouse models in oncoimmunology. Nat Rev Cancer. 2016; 16:759-73. https://doi.org/10.1038/nrc.2016.91. PMID:27687979 PubMed DOI
Eissler N, Mao Y, Brodin D, Reutersward P, Andersson Svahn H, Johnsen JI, Kiessling R, Kogner P. Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade. Oncoimmunology. 2016; 5:e1232222. https://doi.org/10.1080/2162402X.2016.1232222. PMID:28123870 PubMed DOI PMC
Lu C, Redd PS, Lee JR, Savage N, Liu K. The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 2016; 5:e1247135. https://doi.org/10.1080/2162402X.2016.1247135. PMID:28123883 PubMed DOI PMC
Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015; 4:e954829. https://doi.org/10.4161/21624011.2014.954829. PMID:25949858 PubMed DOI PMC
Lim TS, Chew V, Sieow JL, Goh S, Yeong JP, Soon AL, Ricciardi-Castagnoli P. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology. 2016; 5:e1085146. https://doi.org/10.1080/2162402X.2015.1085146. PMID:27141339 PubMed DOI PMC
Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al.. PI3Kgamma is a molecular switch that controls immune suppression. Nature. 2016; 539:437-42. https://doi.org/10.1038/nature19834. PMID:27642729 PubMed DOI PMC
Guijarro MV, Dahiya S, Danielson LS, Segura MF, Vales-Lara FM, Menendez S, Popiolek D, Mittal K, Wei JJ, Zavadil J, et al.. Dual Pten/Tp53 suppression promotes sarcoma progression by activating notch signaling. Am J Pathol. 2013; 182:2015-27. https://doi.org/10.1016/j.ajpath.2013.02.035. PMID:23708211 PubMed DOI PMC
Di Blasio S, Wortel IM, van Bladel DA, de Vries LE, Duiveman-de Boer T, Worah K, de Haas N, Buschow SI, de Vries IJ, Figdor CG, et al.. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2016; 5:e1192739. https://doi.org/10.1080/2162402X.2016.1192739. PMID:27622063 PubMed DOI PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017; 17:97-111. https://doi.org/10.1038/nri.2016.107. PMID:27748397 PubMed DOI
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R, et al.. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 2015; 4:e1008866. https://doi.org/10.1080/2162402X.2015.1008866. PMID:26137404 PubMed DOI PMC
Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015; 28:690-714. https://doi.org/10.1016/j.ccell.2015.10.012. PMID:26678337 PubMed DOI
Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology. 2016; 5:e1190061. https://doi.org/10.1080/2162402X.2016.1190061. PMID:27622046 PubMed DOI PMC
McDonnell AM, Joost Lesterhuis W, Khong A, Nowak AK, Lake RA, Currie AJ, Robinson BW. Restoration of defective cross-presentation in tumors by gemcitabine. Oncoimmunology. 2015; 4:e1005501. https://doi.org/10.1080/2162402X.2015.1005501. PMID:26155402 PubMed DOI PMC
Johansson-Percival A, Li ZJ, Lakhiani DD, He B, Wang X, Hamzah J, Ganss R. Intratumoral LIGHT restores pericyte contractile properties and vessel integrity. Cell Rep. 2015; 13:2687-98. https://doi.org/10.1016/j.celrep.2015.12.004. PMID:26711337 PubMed DOI
Maker AV. Precise identification of immunotherapeutic targets for solid malignancies using clues within the tumor microenvironment-evidence to turn on the LIGHT. Oncoimmunology. 2016; 5:e1069937. https://doi.org/10.1080/2162402X.2015.1069937. PMID:26942091 PubMed DOI PMC
Qiao G, Qin J, Kunda N, Calata JF, Mahmud DL, Gann P, Fu YX, Rosenberg SA, Prabhakar BS, Maker AV. LIGHT elevation enhances immune eradication of colon cancer metastases. Cancer Res. 2017; 77:1880-91. https://doi.org/10.1158/0008-5472.CAN-16-1655. PMID:28249900 PubMed DOI PMC
Holmes TD, Wilson EB, Black EV, Benest AV, Vaz C, Tan B, Tanavde VM, Cook GP. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci U S A. 2014; 111:E5688-96. https://doi.org/10.1073/pnas.1411072112. PMID:25512551 PubMed DOI PMC
Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, Wang J, Wang X, Fu YX. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell. 2016; 29:285-96. https://doi.org/10.1016/j.ccell.2016.02.004. PMID:26977880 PubMed DOI PMC
Pfirschke C, Engblom C, Rickelt S, Cortez-Retamozo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al.. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016; 44:343-54. https://doi.org/10.1016/j.immuni.2015.11.024. PMID:26872698 PubMed DOI PMC
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, et al.. Trial Watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology. 2015; 4:e985940. https://doi.org/10.4161/2162402X.2014.985940. PMID:25949870 PubMed DOI PMC
Zhu EF, Gai SA, Opel CF, Kwan BH, Surana R, Mihm MC, Kauke MJ, Moynihan KD, Angelini A, Williams RT, et al.. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell. 2015; 27:489-501. https://doi.org/10.1016/j.ccell.2015.03.004. PMID:25873172 PubMed DOI PMC
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015; 15:283-94. https://doi.org/10.1038/nri3823. PMID:25882245 PubMed DOI
Vacchelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, et al.. Trial Watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016; 5:e1115942. https://doi.org/10.1080/2162402X.2015.1115942. PMID:27057468 PubMed DOI PMC
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol. 2012; 12:180-90. PMID:22343569 PubMed
Tomala J, Kovar M. IL-2/anti-IL-2 mAb immunocomplexes: A renascence of IL-2 in cancer immunotherapy? Oncoimmunology. 2016; 5:e1102829. https://doi.org/10.1080/2162402X.2015.1102829. PMID:27141363 PubMed DOI PMC
Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, Van Egeren DS, Park C, Irvine DJ. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014; 507:519-22. https://doi.org/10.1038/nature12978. PMID:24531764 PubMed DOI PMC
Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al.. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology. 2015; 4:e974411. https://doi.org/10.4161/2162402X.2014.974411. PMID:26137405 PubMed DOI PMC
Combe P, de Guillebon E, Thibault C, Granier C, Tartour E, Oudard S. Trial Watch: Therapeutic vaccines in metastatic renal cell carcinoma. Oncoimmunology. 2015; 4:e1001236. https://doi.org/10.1080/2162402X.2014.1001236. PMID:26155388 PubMed DOI PMC
Clifton GT, Kohrt HE, Peoples GE. Critical issues in cancer vaccine trial design. Vaccine. 2015; 33:7386-92. https://doi.org/10.1016/j.vaccine.2015.09.019. PMID:26392010 PubMed DOI
Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, et al.. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016; 22:1402-10. https://doi.org/10.1038/nm.4200. PMID:27775706 PubMed DOI PMC
Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS, Miller MA, Carlson JC, Freeman GJ, Anthony RM, et al.. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med. 2017; 9:eaal0436. https://doi.org/10.1126/scitranslmed.aal3604. PMID:28490665 PubMed DOI PMC
Shupp A, Casimiro MC, Pestell RG. Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget. 2017; 8:17373-82. PMID:28077789 PubMed PMC
Pozo K, Bibb JA. The emerging role of Cdk5 in cancer. Trends Cancer. 2016; 2:606-18. https://doi.org/10.1016/j.trecan.2016.09.001. PMID:27917404 PubMed DOI PMC
Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, Pareek TK, Abbott DW, Stearns DS, Letterio JJ, et al.. Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science. 2016; 353:399-403. https://doi.org/10.1126/science.aae0477. PMID:27463676 PubMed DOI PMC
CDK5 promotes tumor immune evasion via PD-L1 upregulation. Cancer Discov. 2016; 6:943. https://doi.org/10.1158/2159-8290.CD-RW2016-141 DOI
Creaney J, Ma S, Sneddon SA, Tourigny MR, Dick IM, Leon JS, Khong A, Fisher SA, Lake RA, Lesterhuis WJ, et al.. Strong spontaneous tumor neoantigen responses induced by a natural human carcinogen. Oncoimmunology. 2015; 4:e1011492. https://doi.org/10.1080/2162402X.2015.1011492. PMID:26140232 PubMed DOI PMC
Maby P, Galon J, Latouche JB. Frameshift mutations, neoantigens and tumor-specific CD8(+) T cells in microsatellite unstable colorectal cancers. Oncoimmunology. 2016; 5:e1115943. https://doi.org/10.1080/2162402X.2015.1115943. PMID:27467916 PubMed DOI PMC
Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012; 13:616-30. https://doi.org/10.1038/nrm3434. PMID:22992590 PubMed DOI PMC
David JM, Hamilton DH, Palena C. MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology. 2016; 5:e1117738. https://doi.org/10.1080/2162402X.2015.1117738. PMID:27141403 PubMed DOI PMC
Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016; 529:298-306. https://doi.org/10.1038/nature17038. PMID:26791720 PubMed DOI PMC
Du Y, Cao M, Liu Y, He Y, Yang C, Wu M, Zhang G, Gao F. Low-molecular-weight hyaluronan (LMW-HA) accelerates lymph node metastasis of melanoma cells by inducing disruption of lymphatic intercellular adhesion. Oncoimmunology. 2016; 5:e1232235. https://doi.org/10.1080/2162402X.2016.1232235. PMID:27999746 PubMed DOI PMC
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology. 2015; 4:e1008791. https://doi.org/10.1080/2162402X.2015.1008791. PMID:26155419 PubMed DOI PMC
Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016; 16:582-98. https://doi.org/10.1038/nrc.2016.73. PMID:27550820 PubMed DOI
Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015; 15:669-82. https://doi.org/10.1038/nri3902. PMID:26471778 PubMed DOI
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15:786-801. https://doi.org/10.1038/nrm3904. PMID:25415508 PubMed DOI PMC
Tan KW, Evrard M, Tham M, Hong M, Huang C, Kato M, Prevost-Blondel A, Donnadieu E, Ng LG, Abastado JP. Tumor stroma and chemokines control T-cell migration into melanoma following Temozolomide treatment. Oncoimmunology. 2015; 4:e978709. https://doi.org/10.4161/2162402X.2014.978709. PMID:25949877 PubMed DOI PMC
De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017; 17:457-74. https://doi.org/10.1038/nrc.2017.51. PMID:28706266 PubMed DOI
Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016; 15:385-403. https://doi.org/10.1038/nrd.2015.17. PMID:26775688 PubMed DOI
Bron S, Henry L, Faes-Van't Hull E, Turrini R, Vanhecke D, Guex N, Ifticene-Treboux A, Marina Iancu E, Semilietof A, Rufer N, et al.. TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 2016; 5:e1073882. https://doi.org/10.1080/2162402X.2015.1073882. PMID:27057438 PubMed DOI PMC
Galluzzi L, Vitale I. Driving to cancer on a four-lane expressway. Trends Genet. 2017; 33:491-2. https://doi.org/10.1016/j.tig.2017.06.003. PMID:28668385 PubMed DOI
Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, Wong YNS, Rowan A, Kanu N, Al Bakir M, et al.. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: A pan-cancer analysis. Lancet Oncol. 2017; 18:1009-21. https://doi.org/10.1016/S1470-2045(17)30516-8. PMID:28694034 PubMed DOI
Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA, Veeriah S, Rosenthal R, et al.. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature. 2017; 545:446-51. https://doi.org/10.1038/nature22364. PMID:28445469 PubMed DOI PMC
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT, et al.. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016; 351:1463-9. https://doi.org/10.1126/science.aaf1490. PMID:26940869 PubMed DOI PMC
Kristensen VN, Lingjaerde OC, Russnes HG, Vollan HK, Frigessi A, Borresen-Dale AL. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer. 2014; 14:299-313. https://doi.org/10.1038/nrc3721. PMID:24759209 PubMed DOI
Glover TW, Wilson TE, Arlt MF. Fragile sites in cancer: More than meets the eye. Nat Rev Cancer. 2017; 17:489-501. https://doi.org/10.1038/nrc.2017.52. PMID:28740117 PubMed DOI PMC
Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF. Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology. 2016; 5:e1185583. https://doi.org/10.1080/2162402X.2016.1185583. PMID:27622059 PubMed DOI PMC
Wylie B, Seppanen E, Xiao K, Zemek R, Zanker D, Prato S, Foley B, Hart PH, Kroczek RA, Chen W, et al.. Cross-presentation of cutaneous melanoma antigen by migratory XCR1+CD103- and XCR1+CD103+ dendritic cells. Oncoimmunology. 2015; 4:e1019198. https://doi.org/10.1080/2162402X.2015.1019198. PMID:26405572 PubMed DOI PMC
Ganesan AP, Clarke J, Wood O, Garrido-Martin EM, Chee SJ, Mellows T, Samaniego-Castruita D, Singh D, Seumois G, Alzetani A, et al.. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat Immunol. 2017; 18:940-50. https://doi.org/10.1038/ni.3775. PMID:28628092 PubMed DOI PMC
Baras AS, Drake C, Liu JJ, Gandhi N, Kates M, Hoque MO, Meeker A, Hahn N, Taube JM, Schoenberg MP, et al.. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology. 2016; 5:e1134412. https://doi.org/10.1080/2162402X.2015.1134412. PMID:27467953 PubMed DOI PMC
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis. 2014; 5:e1257. https://doi.org/10.1038/cddis.2013.428. PMID:24874729 PubMed DOI PMC
Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015; 21:1128-38. https://doi.org/10.1038/nm.3944. PMID:26444637 PubMed DOI
Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, Dushyanthen S, Mansour M, Pang JB, Fox SB, et al.. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017; 9. https://doi.org/10.1126/scitranslmed.aal4922 PubMed DOI PMC
Zitvogel L, Galluzzi L, Viaud S, Vetizou M, Daillere R, Merad M, Kroemer G. Cancer and the gut microbiota: An unexpected link. Sci Transl Med. 2015; 7:271ps1. https://doi.org/10.1126/scitranslmed.3010473. PMID:25609166 PubMed DOI PMC
Zitvogel L, Daillere R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017; 15:465-78. https://doi.org/10.1038/nrmicro.2017.44. PMID:28529325 PubMed DOI
Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016; 165:276-87. https://doi.org/10.1016/j.cell.2016.03.001. PMID:27058662 PubMed DOI
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al.. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015; 350:1084-9. https://doi.org/10.1126/science.aac4255. PMID:26541606 PubMed DOI PMC
Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, Elco CP, Lee N, Juneja VR, Zhan Q, et al.. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015; 162:1242-56. https://doi.org/10.1016/j.cell.2015.08.052. PMID:26359984 PubMed DOI PMC
Dunn J, Rao S. Epigenetics and immunotherapy: The current state of play. Mol Immunol. 2017; 87:227-39. https://doi.org/10.1016/j.molimm.2017.04.012. PMID:28511092 PubMed DOI
Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, Scott AC, Viale A, Lauer P, Merghoub T, et al.. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017; 545:452-6. https://doi.org/10.1038/nature22367. PMID:28514453 PubMed DOI PMC
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al.. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545:495-9. https://doi.org/10.1038/nature22396. PMID:28514441 PubMed DOI PMC
Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 2017; 17:502-8. https://doi.org/10.1038/nrc.2017.36. PMID:28643779 PubMed DOI PMC
Textor S, Bossler F, Henrich KO, Gartlgruber M, Pollmann J, Fiegler N, Arnold A, Westermann F, Waldburger N, Breuhahn K, et al.. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. Oncoimmunology. 2016; 5:e1116674. https://doi.org/10.1080/2162402X.2015.1116674. PMID:27622013 PubMed DOI PMC
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gutgemann I, Eilers M, et al.. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016; 352:227-31. https://doi.org/10.1126/science.aac9935. PMID:26966191 PubMed DOI PMC
Tinoco R, Carrette F, Barraza ML, Otero DC, Magana J, Bosenberg MW, Swain SL, Bradley LM. PSGL-1 is an immune checkpoint regulator that promotes T cell exhaustion. Immunity. 2016; 44:1190-203. https://doi.org/10.1016/j.immuni.2016.04.015. PMID:27192578 PubMed DOI PMC
Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 2016; 4:895-902. https://doi.org/10.1158/2326-6066.CIR-16-0197. PMID:27803050 PubMed DOI
Seyedin SN, Tang C, Welsh JW. Radiation and immunotherapy as systemic therapy for solid tumors. Oncoimmunology. 2015; 4:e986402. https://doi.org/10.4161/2162402X.2014.986402. PMID:25949899 PubMed DOI PMC
Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017; 14:247-58. https://doi.org/10.1038/nrclinonc.2016.183. PMID:27845767 PubMed DOI
Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al.. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016; 5:e1214790. https://doi.org/10.1080/2162402X.2016.1214790. PMID:27757313 PubMed DOI PMC
Pol J, Buque A, Aranda F, Bloy N, Cremer I, Eggermont A, Erbs P, Fucikova J, Galon J, Limacher JM, et al.. Trial Watch-oncolytic viruses and cancer therapy. Oncoimmunology. 2016; 5:e1117740. https://doi.org/10.1080/2162402X.2015.1117740. PMID:27057469 PubMed DOI PMC
Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al.. Trial Watch-small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016; 5:e1149674. https://doi.org/10.1080/2162402X.2016.1149674. PMID:27471617 PubMed DOI PMC
Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015; 14:603-22. https://doi.org/10.1038/nrd4596. PMID:26228631 PubMed DOI
Bloy N, Buque A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R, et al.. Trial Watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology. 2015; 4:e1026531. https://doi.org/10.1080/2162402X.2015.1026531. PMID:26155408 PubMed DOI PMC
Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al.. Classification of current anticancer immunotherapies. Oncotarget. 2014; 5:12472-508. https://doi.org/10.18632/oncotarget.2998. PMID:25537519 PubMed DOI PMC
Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, Garbe C, Chiarion-Sileni V, Testori A, Chen TT, et al.. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J Clin Oncol. 2015; 33:1191-6. https://doi.org/10.1200/JCO.2014.56.6018. PMID:25713437 PubMed DOI PMC
Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, Thielemans K, Neyns B. Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016; 34:1330-8. https://doi.org/10.1200/JCO.2015.63.4121. PMID:26926680 PubMed DOI
Coens C, Suciu S, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, et al.. Health-related quality of life with adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): Secondary outcomes of a multinational, randomised, double-blind, phase 3 trial. Lancet Oncol. 2017; 18:393-403. https://doi.org/10.1016/S1470-2045(17)30015-3. PMID:28162999 PubMed DOI PMC
Brohl AS, Khushalani NI, Eroglu Z, Markowitz J, Thapa R, Chen YA, Kudchadkar R, Weber JS. A phase IB study of ipilimumab with peginterferon alfa-2b in patients with unresectable melanoma. J Immunother Cancer. 2016; 4:85. https://doi.org/10.1186/s40425-016-0194-1. PMID:28031816 PubMed DOI PMC
Ascierto PA, Del Vecchio M, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, Lebbe C, Bastholt L, Hamid O, Rutkowski P, et al.. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017; 18:611-22. https://doi.org/10.1016/S1470-2045(17)30231-0. PMID:28359784 PubMed DOI
Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L, Chastain M, Gorski KS, Anderson A, Chou J, et al.. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016; 34:2619-26. https://doi.org/10.1200/JCO.2016.67.1529. PMID:27298410 PubMed DOI PMC
Yamazaki N, Kiyohara Y, Uhara H, Fukushima S, Uchi H, Shibagaki N, Tsutsumida A, Yoshikawa S, Okuyama R, Ito Y, et al.. Phase II study of ipilimumab monotherapy in Japanese patients with advanced melanoma. Cancer Chemother Pharmacol. 2015; 76:997-1004. https://doi.org/10.1007/s00280-015-2873-x. PMID:26410424 PubMed DOI PMC
Di Giacomo AM, Ascierto PA, Queirolo P, Pilla L, Ridolfi R, Santinami M, Testori A, Simeone E, Guidoboni M, Maurichi A, et al.. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol. 2015; 26:798-803. https://doi.org/10.1093/annonc/mdu577. PMID:25538176 PubMed DOI
Amin A, Lawson DH, Salama AK, Koon HB, Guthrie T Jr, Thomas SS, O'Day SJ, Shaheen MF, Zhang B, Francis S, et al.. Phase II study of vemurafenib followed by ipilimumab in patients with previously untreated BRAF-mutated metastatic melanoma. J Immunother Cancer. 2016; 4:44. https://doi.org/10.1186/s40425-016-0148-7. PMID:27532019 PubMed DOI PMC
Bowyer S, Prithviraj P, Lorigan P, Larkin J, McArthur G, Atkinson V, Millward M, Khou M, Diem S, Ramanujam S, et al.. Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy. Br J Cancer. 2016; 114:1084-9. https://doi.org/10.1038/bjc.2016.107. PMID:27124339 PubMed DOI PMC
Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, et al.. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N Engl J Med. 2016; 375:1845-55. https://doi.org/10.1056/NEJMoa1611299. PMID:27717298 PubMed DOI PMC
Yamazaki N, Uhara H, Fukushima S, Uchi H, Shibagaki N, Kiyohara Y, Tsutsumida A, Namikawa K, Okuyama R, Otsuka Y, et al.. Phase II study of the immune-checkpoint inhibitor ipilimumab plus dacarbazine in Japanese patients with previously untreated, unresectable or metastatic melanoma. Cancer Chemother Pharmacol. 2015; 76:969-75. https://doi.org/10.1007/s00280-015-2870-0. PMID:26407818 PubMed DOI PMC
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al.. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015; 372:2006-17. https://doi.org/10.1056/NEJMoa1414428. PMID:25891304 PubMed DOI PMC
Weber JS, Gibney G, Sullivan RJ, Sosman JA, Slingluff CL Jr, Lawrence DP, Logan TF, Schuchter LM, Nair S, Fecher L, et al.. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): An open-label, randomised, phase 2 trial. Lancet Oncol. 2016; 17:943-55. https://doi.org/10.1016/S1470-2045(16)30126-7. PMID:27269740 PubMed DOI PMC
Hodi FS, Chesney J, Pavlick AC, Robert C, Grossmann KF, McDermott DF, Linette GP, Meyer N, Giguere JK, Agarwala SS, et al.. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016; 17:1558-68. https://doi.org/10.1016/S1470-2045(16)30366-7. PMID:27622997 PubMed DOI PMC
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al.. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015; 372:2521-32. https://doi.org/10.1056/NEJMoa1503093. PMID:25891173 PubMed DOI
D'Angelo SP, Shoushtari AN, Keohan ML, Dickson MA, Gounder MM, Chi P, Loo JK, Gaffney L, Schneider L, Patel Z, et al.. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: A phase Ib study of dasatinib plus ipilimumab. Clin Cancer Res. 2017; 23:2972-80. https://doi.org/10.1158/1078-0432.CCR-16-2349. PMID:28007774 PubMed DOI PMC
Boyer MJ, Gu L, Wang X, Kelsey CR, Yoo DS, Onaitis MW, Dunphy FR, Crawford J, Ready NE, Salama JK. Toxicity of definitive and post-operative radiation following ipilimumab in non-small cell lung cancer. Lung Cancer. 2016; 98:76-8. https://doi.org/10.1016/j.lungcan.2016.05.014. PMID:27393510 PubMed DOI
Arriola E, Wheater M, Galea I, Cross N, Maishman T, Hamid D, Stanton L, Cave J, Geldart T, Mulatero C, et al.. Outcome and biomarker analysis from a multicenter phase 2 study of ipilimumab in combination with carboplatin and etoposide as first-line therapy for extensive-stage SCLC. J Thorac Oncol. 2016; 11:1511-21. https://doi.org/10.1016/j.jtho.2016.05.028. PMID:27296105 PubMed DOI PMC
Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, Ready NE, Gerber DE, Chow LQ, Juergens RA, et al.. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017; 18:31-41. https://doi.org/10.1016/S1470-2045(16)30624-6. PMID:27932067 PubMed DOI PMC
Reilley MJ, Bailey A, Subbiah V, Janku F, Naing A, Falchook G, Karp D, Piha-Paul S, Tsimberidou A, Fu S, et al.. Phase I clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J Immunother Cancer. 2017; 5:35. https://doi.org/10.1186/s40425-017-0238-1. PMID:28428884 PubMed DOI PMC
Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, Delbrook C, Lodish M, Bishop R, Wolchok JD, et al.. Phase I clinical trial of ipilimumab in pediatric patients with advanced solid tumors. Clin Cancer Res. 2016; 22:1364-70. https://doi.org/10.1158/1078-0432.CCR-15-0491. PMID:26534966 PubMed DOI PMC
Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, Powderly JD, Heist RS, Carvajal RD, Jackman DM, et al.. Overall survival and long-term safety of nivolumab (Anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015; 33:2004-12. https://doi.org/10.1200/JCO.2014.58.3708. PMID:25897158 PubMed DOI PMC
Rizvi NA, Hellmann MD, Brahmer JR, Juergens RA, Borghaei H, Gettinger S, Chow LQ, Gerber DE, Laurie SA, Goldman JW, et al.. Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016; 34:2969-79. https://doi.org/10.1200/JCO.2016.66.9861. PMID:27354481 PubMed DOI PMC
Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, Gerber DE, Shepherd FA, Antonia S, Goldman JW, et al.. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016; 34:2980-7. https://doi.org/10.1200/JCO.2016.66.9929. PMID:27354485 PubMed DOI PMC
Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, Felip E, van den Heuvel MM, Ciuleanu TE, Badin F, et al.. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017; 376:2415-26. https://doi.org/10.1056/NEJMoa1613493. PMID:28636851 PubMed DOI PMC
Kanda S, Goto K, Shiraishi H, Kubo E, Tanaka A, Utsumi H, Sunami K, Kitazono S, Mizugaki H, Horinouchi H, et al.. Safety and efficacy of nivolumab and standard chemotherapy drug combination in patients with advanced non-small-cell lung cancer: A four arms phase Ib study. Ann Oncol. 2016; 27:2242-50. https://doi.org/10.1093/annonc/mdw416. PMID:27765756 PubMed DOI PMC
Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, et al.. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015; 373:123-35. https://doi.org/10.1056/NEJMoa1504627. PMID:26028407 PubMed DOI PMC
Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, et al.. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015; 16:257-65. https://doi.org/10.1016/S1470-2045(15)70054-9. PMID:25704439 PubMed DOI PMC
Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al.. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373:1627-39. https://doi.org/10.1056/NEJMoa1507643. PMID:26412456 PubMed DOI PMC
George S, Motzer RJ, Hammers HJ, Redman BG, Kuzel TM, Tykodi SS, Plimack ER, Jiang J, Waxman IM, Rini BI. Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: A subgroup analysis of a randomized clinical trial. JAMA Oncol. 2016; 2:1179-86. https://doi.org/10.1001/jamaoncol.2016.0775. PMID:27243803 PubMed DOI PMC
Cella D, Grunwald V, Nathan P, Doan J, Dastani H, Taylor F, Bennett B, DeRosa M, Berry S, Broglio K, et al.. Quality of life in patients with advanced renal cell carcinoma given nivolumab versus everolimus in CheckMate 025: A randomised, open-label, phase 3 trial. Lancet Oncol. 2016; 17:994-1003. https://doi.org/10.1016/S1470-2045(16)30125-5. PMID:27283863 PubMed DOI PMC
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al.. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015; 373:1803-13. https://doi.org/10.1056/NEJMoa1510665. PMID:26406148 PubMed DOI PMC
McDermott DF, Drake CG, Sznol M, Choueiri TK, Powderly JD, Smith DC, Brahmer JR, Carvajal RD, Hammers HJ, Puzanov I, et al.. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol. 2015; 33:2013-20. https://doi.org/10.1200/JCO.2014.58.1041. PMID:25800770 PubMed DOI PMC
Choueiri TK, Fishman MN, Escudier B, McDermott DF, Drake CG, Kluger H, Stadler WM, Perez-Gracia JL, McNeel DG, Curti B, et al.. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma. Clin Cancer Res. 2016; 22:5461-71. https://doi.org/10.1158/1078-0432.CCR-15-2839. PMID:27169994 PubMed DOI PMC
Escudier B, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al.. CheckMate 025 randomized phase 3 study: Outcomes by key baseline factors and prior therapy for nivolumab versus everolimus in advanced renal cell carcinoma. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.02.010. PMID:28262413 PubMed DOI
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al.. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015; 373:23-34. https://doi.org/10.1056/NEJMoa1504030. PMID:26027431 PubMed DOI PMC
Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, Kroeger J, Richards A, McCormick L, Moberg V, et al.. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res. 2016; 4:345-53. https://doi.org/10.1158/2326-6066.CIR-15-0193. PMID:26873574 PubMed DOI PMC
Long GV, Weber JS, Larkin J, Atkinson V, Grob JJ, Schadendorf D, Dummer R, Robert C, Marquez-Rodas I, McNeil C, et al.. Nivolumab for patients with advanced melanoma treated beyond progression: Analysis of 2 phase 3 clinical trials. JAMA Oncol. 2017. https://doi.org/10.1001/jamaoncol.2017.1588. PMID:28662232 PubMed DOI PMC
Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, Hoeller C, Khushalani NI, Miller WH Jr, Lao CD, et al.. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015; 16:375-84. https://doi.org/10.1016/S1470-2045(15)70076-8. PMID:25795410 PubMed DOI
Yamamoto N, Nokihara H, Yamada Y, Shibata T, Tamura Y, Seki Y, Honda K, Tanabe Y, Wakui H, Tamura T. Phase I study of nivolumab, an anti-PD-1 antibody, in patients with malignant solid tumors. Invest New Drugs. 2017; 35:207-16. https://doi.org/10.1007/s10637-016-0411-2. PMID:27928714 PubMed DOI PMC
Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K, Polite B, Deming D, Chan E, Wade JL, et al.. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017; 18:446-53. https://doi.org/10.1016/S1470-2045(17)30104-3. PMID:28223062 PubMed DOI PMC
El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, et al.. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017; 389:2492-502. https://doi.org/10.1016/S0140-6736(17)31046-2. PMID:28434648 PubMed DOI PMC
Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, et al.. Nivolumab in patients with relapsed or refractory hematologic malignancy: Preliminary results of a phase Ib study. J Clin Oncol. 2016; 34:2698-704. https://doi.org/10.1200/JCO.2015.65.9789. PMID:27269947 PubMed DOI PMC
Kudo T, Hamamoto Y, Kato K, Ura T, Kojima T, Tsushima T, Hironaka S, Hara H, Satoh T, Iwasa S, et al.. Nivolumab treatment for oesophageal squamous-cell carcinoma: An open-label, multicentre, phase 2 trial. Lancet Oncol. 2017; 18:631-9. https://doi.org/10.1016/S1470-2045(17)30181-X. PMID:28314688 PubMed DOI
Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al.. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016; 375:1856-67. https://doi.org/10.1056/NEJMoa1602252. PMID:27718784 PubMed DOI PMC
Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, Armand P, Fanale M, Ratanatharathorn V, Kuruvilla J, et al.. Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016; 17:1283-94. https://doi.org/10.1016/S1470-2045(16)30167-X. PMID:27451390 PubMed DOI PMC
Ben-Ami E, Barysauskas CM, Solomon S, Tahlil K, Malley R, Hohos M, Polson K, Loucks M, Severgnini M, Patel T, et al.. Immunotherapy with single agent nivolumab for advanced leiomyosarcoma of the uterus: Results of a phase 2 study. Cancer. 2017; 123:3285–3290. https://doi.org/10.1002/cncr.30738. PMID:28440953 PubMed DOI PMC
Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Murayama T, Kanai M, Mori Y, Matsumoto S, Chikuma S, et al.. Safety and antitumor activity of Anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer. J Clin Oncol. 2015; 33:4015-22. https://doi.org/10.1200/JCO.2015.62.3397. PMID:26351349 PubMed DOI
Antonia SJ, Lopez-Martin JA, Bendell J, Ott PA, Taylor M, Eder JP, Jager D, Pietanza MC, Le DT, de Braud F, et al.. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016; 17:883-95. https://doi.org/10.1016/S1470-2045(16)30098-5. PMID:27269741 PubMed DOI
Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E, Pillai RN, Ott PA, de Braud F, Morse M, et al.. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): A multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016; 17:1590-8. https://doi.org/10.1016/S1470-2045(16)30496-X. PMID:27733243 PubMed DOI PMC
Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, et al.. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017; 18:312-22. https://doi.org/10.1016/S1470-2045(17)30065-7. PMID:28131785 PubMed DOI
Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, Gentzler RD, Martins RG, Stevenson JP, Jalal SI, et al.. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: A randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016; 17:1497-508. https://doi.org/10.1016/S1470-2045(16)30498-3. PMID:27745820 PubMed DOI PMC
Hui R, Garon EB, Goldman JW, Leighl NB, Hellmann MD, Patnaik A, Gandhi L, Eder JP, Ahn MJ, Horn L, et al.. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: A phase 1 trial. Ann Oncol. 2017; 28:874-81. https://doi.org/10.1093/annonc/mdx008. PMID:28168303 PubMed DOI PMC
Gentzler RD, Mohindra NA, Hanna N, Chae YK, Jalal SI, Hall R, Villaflor VM, Reckamp KL, Koczywas M, Sullivan D, et al.. Carboplatin/nab-paclitaxel and pembrolizumab for patients with advanced non-small cell lung cancer (NSCLC): Phase 1 results. Int J Radiat Oncol Biol Phys. 2017; 98:236. https://doi.org/10.1016/j.ijrobp.2017.01.161. PMID:28587008 PubMed DOI
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, et al.. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015; 372:2018-28. https://doi.org/10.1056/NEJMoa1501824. PMID:25891174 PubMed DOI
Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, Tsiouris AJ, Cohen J, Vortmeyer A, Jilaveanu L, et al.. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016; 17:976-83. https://doi.org/10.1016/S1470-2045(16)30053-5. PMID:27267608 PubMed DOI PMC
Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al.. Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 2016; 34:4102-9. https://doi.org/10.1200/JCO.2016.67.2477. PMID:27863197 PubMed DOI PMC
Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, Patnaik A, Ribas A, Robert C, Gangadhar TC, et al.. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016; 34:1510-7. https://doi.org/10.1200/JCO.2015.64.0391. PMID:26951310 PubMed DOI PMC
Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, et al.. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016; 315:1600-9. https://doi.org/10.1001/jama.2016.4059. PMID:27092830 PubMed DOI
Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C, Hodi FS, Schachter J, Pavlick AC, Lewis KD, et al.. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015; 16:908-18. https://doi.org/10.1016/S1470-2045(15)00083-2. PMID:26115796 PubMed DOI PMC
Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQ, Juco J, Lunceford J, Saraf S, Perini RF, O'Donnell PH. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): A non-randomised, open-label, phase 1b study. Lancet Oncol. 2017; 18:212-20. https://doi.org/10.1016/S1470-2045(17)30007-4. PMID:28081914 PubMed DOI
Sundahl N, De Wolf K, Rottey S, Decaestecker K, De Maeseneer D, Meireson A, Goetghebeur E, Fonteyne V, Verbeke S, De Visschere P, et al.. A phase I/II trial of fixed-dose stereotactic body radiotherapy with sequential or concurrent pembrolizumab in metastatic urothelial carcinoma: Evaluation of safety and clinical and immunologic response. J Transl Med. 2017; 15:150. https://doi.org/10.1186/s12967-017-1251-3. PMID:28662677 PubMed DOI PMC
Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, Vogelzang NJ, Climent MA, Petrylak DP, Choueiri TK, et al.. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017; 376:1015-26. https://doi.org/10.1056/NEJMoa1613683. PMID:28212060 PubMed DOI PMC
Weiss GJ, Waypa J, Blaydorn L, Coats J, McGahey K, Sangal A, Niu J, Lynch CA, Farley JH, Khemka V. A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer. 2017; 117:33-40. https://doi.org/10.1038/bjc.2017.145. PMID:28588322 PubMed DOI PMC
Shaverdian N, Lisberg AE, Bornazyan K, Veruttipong D, Goldman JW, Formenti SC, Garon EB, Lee P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017; 18:895-903. https://doi.org/10.1016/S1470-2045(17)30380-7. PMID:28551359 PubMed DOI PMC
Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, Drengler R, Chen C, Smith L, Espino G, et al.. Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015; 21:4286-93. https://doi.org/10.1158/1078-0432.CCR-14-2607. PMID:25977344 PubMed DOI
Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco D, Di Gravio D, Huang B, Gambhire D, Chen Y, et al.. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017. https://doi.org/10.1158/1078-0432.CCR-17-1243. PMID:28634283 PubMed DOI
Ott PA, Piha-Paul SA, Munster P, Pishvaian MJ, van Brummelen EMJ, Cohen RB, Gomez-Roca C, Ejadi S, Stein M, Chan E, et al.. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol. 2017; 28:1036-41. https://doi.org/10.1093/annonc/mdx029. PMID:28453692 PubMed DOI PMC
Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, et al.. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 2016; 34:2460-7. https://doi.org/10.1200/JCO.2015.64.8931. PMID:27138582 PubMed DOI PMC
Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, Radford J, Ribrag V, Molin D, Vassilakopoulos TP, et al.. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017; 35:2125-32. https://doi.org/10.1200/JCO.2016.72.1316. PMID:28441111 PubMed DOI PMC
Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, Berry S, Chartash EK, Daud A, Fling SP, et al.. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med. 2016; 374:2542-52. https://doi.org/10.1056/NEJMoa1603702. PMID:27093365 PubMed DOI PMC
Alley EW, Lopez J, Santoro A, Morosky A, Saraf S, Piperdi B, van Brummelen E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017; 18:623-30. https://doi.org/10.1016/S1470-2045(17)30169-9. PMID:28291584 PubMed DOI
Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, Saba NF, Weiss J, Wirth L, Sukari A, et al.. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. J Clin Oncol. 2017; 35:1542-9. https://doi.org/10.1200/JCO.2016.70.1524. PMID:28328302 PubMed DOI PMC
Peters S, Gettinger S, Johnson ML, Janne PA, Garassino MC, Christoph D, Toh CK, Rizvi NA, Chaft JE, Carcereny Costa E, et al.. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 2017; 35:2781-89. https://doi.org/10.101610.1200/JCO.2016.71.9476. doi: PubMed DOI PMC
Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, et al.. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016; 387:1837-46. https://doi.org/10.1016/S0140-6736(16)00587-0. PMID:26970723 PubMed DOI
Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, Gadgeel SM, Hida T, Kowalski DM, Dols MC, et al.. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389:255-65. https://doi.org/10.1016/S0140-6736(16)32517-X. PMID:27979383 PubMed DOI PMC
McDermott DF, Sosman JA, Sznol M, Massard C, Gordon MS, Hamid O, Powderly JD, Infante JR, Fasso M, Wang YV, et al.. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: Long-term safety, clinical activity, and immune correlates from a phase Ia study. J Clin Oncol. 2016; 34:833-42. https://doi.org/10.1200/JCO.2015.63.7421. PMID:26755520 PubMed DOI
Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell PH, Balmanoukian A, Loriot Y, et al.. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016; 387:1909-20. https://doi.org/10.1016/S0140-6736(16)00561-4. PMID:26952546 PubMed DOI PMC
Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, et al.. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet. 2017; 389:67-76. https://doi.org/10.1016/S0140-6736(16)32455-2. PMID:27939400 PubMed DOI PMC
Apolo AB, Infante JR, Balmanoukian A, Patel MR, Wang D, Kelly K, Mega AE, Britten CD, Ravaud A, Mita AC, et al.. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: Results from a multicenter, phase Ib study. J Clin Oncol. 2017; 35:2117-24. https://doi.org/10.1200/JCO.2016.71.6795. PMID:28375787 PubMed DOI PMC
Heery CR, O'Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, Lamping E, Oyelakin I, Marte JL, Lepone LM, et al.. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN solid tumor): A phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017; 18:587-98. https://doi.org/10.1016/S1470-2045(17)30239-5. PMID:28373007 PubMed DOI PMC
Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D'Angelo SP, Shih KC, Lebbe C, Linette GP, Milella M, et al.. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: A multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016; 17:1374-85. PMID:27592805 PubMed PMC
Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, Leach J, Edenfield WJ, Wang D, Grote HJ, et al.. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN solid tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017; 18:599-610. PMID:28373005 PubMed PMC
Antonia S, Goldberg SB, Balmanoukian A, Chaft JE, Sanborn RE, Gupta A, Narwal R, Steele K, Gu Y, Karakunnel JJ, et al.. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet Oncol. 2016; 17:299-308. PMID:26858122 PubMed PMC
Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM, Cao L, Harrell MI, Swisher EM, Houston N, et al.. Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1–3 inhibitor cediranib in women's cancers: A dose-escalation, phase I study. J Clin Oncol. 2017; 35:2193-202. PMID:28471727 PubMed PMC
Massard C, Gordon MS, Sharma S, Rafii S, Wainberg ZA, Luke J, Curiel TJ, Colon-Otero G, Hamid O, Sanborn RE, et al.. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016; 34:3119-25. PMID:27269937 PubMed PMC
Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH, Canniff PC, Sharma A, Gomez-Navarro J. Tremelimumab (CP-675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007; 12:873-83. PMID:17673618 PubMed
Camacho LH, Antonia S, Sosman J, Kirkwood JM, Gajewski TF, Redman B, Pavlov D, Bulanhagui C, Bozon VA, Gomez-Navarro J, et al.. Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol. 2009; 27:1075-81. PMID:19139427 PubMed
Maio M, Scherpereel A, Calabro L, Aerts J, Cedres Perez S, Bearz A, Nackaerts K, Fennell DA, Kowalski D, Tsao AS, et al.. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): A multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017. https://doi.org/10.1016/S1470-2045(17)30446-1. PMID:28729154 PubMed DOI
Yu GT, Bu LL, Zhao YY, Mao L, Deng WW, Wu TF, Zhang WF, Sun ZJ. CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology. 2016; 5:e1151594. PMID:27471622 PubMed PMC
Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev. 2017; 276:80-96. https://doi.org/10.1111/imr.12519. PMID:28258692 PubMed DOI PMC
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget. 2015; 6:27359-77. https://doi.org/10.18632/oncotarget.4751. PMID:26318293 PubMed DOI PMC
Legat A, Maby-El Hajjami H, Baumgaertner P, Cagnon L, Abed Maillard S, Geldhof C, Iancu EM, Lebon L, Guillaume P, Dojcinovic D, et al.. Vaccination with LAG-3Ig (IMP321) and peptides induces specific CD4 and CD8T-cell responses in metastatic melanoma patients–report of a phase I/IIa clinical trial. Clin Cancer Res. 2016; 22:1330-40. https://doi.org/10.1158/1078-0432.CCR-15-1212. PMID:26500235 PubMed DOI
He Y, Rivard CJ, Rozeboom L, Yu H, Ellison K, Kowalewski A, Zhou C, Hirsch FR. Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci. 2016; 107:1193-7. https://doi.org/10.1111/cas.12986. PMID:27297395 PubMed DOI PMC
Brignone C, Grygar C, Marcu M, Schakel K, Triebel F. A soluble form of lymphocyte activation gene-3 (IMP321) induces activation of a large range of human effector cytotoxic cells. J Immunol. 2007; 179:4202-11. https://doi.org/10.4049/jimmunol.179.6.4202. PMID:17785860 PubMed DOI
Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, Abonour R, Bakan C, Andre P, Efebera Y, Tiollier J, et al.. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012; 120:4324-33. https://doi.org/10.1182/blood-2012-06-438028. PMID:23033266 PubMed DOI PMC
Benson DM Jr, Cohen AD, Jagannath S, Munshi NC, Spitzer G, Hofmeister CC, Efebera YA, Andre P, Zerbib R, Caligiuri MA. A phase I trial of the Anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin Cancer Res. 2015; 21:4055-61. https://doi.org/10.1158/1078-0432.CCR-15-0304. PMID:25999435 PubMed DOI PMC
Felices M, Miller JS. Targeting KIR blockade in multiple myeloma: Trouble in checkpoint paradise? Clin Cancer Res. 2016; 22:5161-3. https://doi.org/10.1158/1078-0432.CCR-16-1582. PMID:27430580 PubMed DOI PMC
Korde N, Carlsten M, Lee MJ, Minter A, Tan E, Kwok M, Manasanch E, Bhutani M, Tageja N, Roschewski M, et al.. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica. 2014; 99:e81-3. https://doi.org/10.3324/haematol.2013.103085. PMID:24658821 PubMed DOI PMC
Carlsten M, Korde N, Kotecha R, Reger R, Bor S, Kazandjian D, Landgren O, Childs RW. Checkpoint Inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin Cancer Res. 2016; 22:5211-22. https://doi.org/10.1158/1078-0432.CCR-16-1108. PMID:27307594 PubMed DOI PMC
Kearney CJ, Ramsbottom KM, Voskoboinik I, Darcy PK, Oliaro J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncoimmunology. 2016; 5:e1196308. https://doi.org/10.1080/2162402X.2016.1196308. PMID:27622064 PubMed DOI PMC
Calabro L, Morra A, Fonsatti E, Cutaia O, Fazio C, Annesi D, Lenoci M, Amato G, Danielli R, Altomonte M, et al.. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: An open-label, single-arm, phase 2 study. Lancet Respir Med. 2015; 3:301-9. https://doi.org/10.1016/S2213-2600(15)00092-2. PMID:25819643 PubMed DOI
Joshua AM, Monzon JG, Mihalcioiu C, Hogg D, Smylie M, Cheng T. A phase 2 study of tremelimumab in patients with advanced uveal melanoma. Melanoma Res. 2015; 25:342-7. https://doi.org/10.1097/CMR.0000000000000175. PMID:26050146 PubMed DOI
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015; 33:1974-82. https://doi.org/10.1200/JCO.2014.59.4358. PMID:25605845 PubMed DOI PMC
Eggermont AM, Chiarion-Sileni V, Grob JJ, Dummer R, Wolchok JD, Schmidt H, Hamid O, Robert C, Ascierto PA, Richards JM, et al.. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015; 16:522-30. https://doi.org/10.1016/S1470-2045(15)70122-1. PMID:25840693 PubMed DOI
Herbaux C, Gauthier J, Brice P, Drumez E, Ysebaert L, Doyen H, Fornecker L, Bouabdallah K, Manson G, Ghesquieres H, et al.. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma. Blood. 2017; 129:2471-8. https://doi.org/10.1182/blood-2016-11-749556. PMID:28270452 PubMed DOI
Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, et al.. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: Results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016. https://doi.org/10.1200/JCO.2016.68.1478. PMID:27646946 PubMed DOI PMC
Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al.. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016; 17:956-65. https://doi.org/10.1016/S1470-2045(16)30066-3. PMID:27247226 PubMed DOI
Kroemer G, Galluzzi L, Zitvogel L, Fridman WH. Colorectal cancer: The first neoplasia found to be under immunosurveillance and the last one to respond to immunotherapy? Oncoimmunology. 2015; 4:e1058597. https://doi.org/10.1080/2162402X.2015.1058597. PMID:26140250 PubMed DOI PMC
Balar A, Bellmunt J, O'Donnell PH, Castellano D, Grivas P, Vuky J, Powles T, Plimack ER, Hahn NM, de Wit R, et al.. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: Preliminary results from the phase 2 KEYNOTE-052 study. Annals of Oncology. 2016; 27:LBA32_PR-LBA_PR. https://doi.org/10.1093/annonc/mdw435.25 DOI
Powles T, O'Donnell PH, Massard C, Arkenau H, Friedlander TW, Hoimes C, Lee JL, Ong M, Sridhar SS, Vogelzang NJ, et al.. Updated efficacy and tolerability of durvalumab in locally advanced or metastatic urothelial carcinoma. J Clin Oncol. 2017; suppl 6S; abstract 286.https://doi.org/10.1200/JCO.2017.35.6_suppl.286 PubMed DOI PMC
Levy A, Massard C, Soria JC, Deutsch E. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: Single centre subset analysis from a phase 1/2 trial. Eur J Cancer. 2016; 68:156-62. https://doi.org/10.1016/j.ejca.2016.09.013. PMID:27764686 PubMed DOI
Lazorchak AS, Patterson T, Ding Y, Sasikumar PG, Sudarshan NS, Gowda NM, Ramachandra RK, Samiulla DS, Giri S, Eswarappa R, et al.. Abstract A36: CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer. Cancer Immunology Research. 2017; 5:A36-A. https://doi.org/10.1158/2326-6074.TUMIMM16-A36 DOI
Yang S, Yang J, Han Y, Qin Y, Han X, Dong L, Feng H, Song H, Sun Y, Shi Y. A phase 1 trial of JS001, a monoclonal antibody targeting programmed death-1 (PD-1) in patients with advanced or recurrent malignancies. J Clin Oncol. 2017; 35:e14581
Bersanelli M, Buti S. From targeting the tumor to targeting the immune system: Transversal challenges in oncology with the inhibition of the PD-1/PD-L1 axis. World J Clin Oncol. 2017; 8:37-53. https://doi.org/10.5306/wjco.v8.i1.37. PMID:28246584 PubMed DOI PMC
Naing A, Gelderblom H, Gainor JF, Forde PM, Butler M, Lin C-C, Sharma S, Olza MOd, Schellens JHM, Soria J-C, et al.. A first-in-human phase I study of the anti-PD-1 antibody PDR001 in patients with advanced solid tumors. Journal of Clinical Oncology. 2016; 34:3060-
Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, Kaminski MS, Holland HK, Winter JN, Mason JR, et al.. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: Results of an international phase II trial. J Clin Oncol. 2013; 31:4199-206. https://doi.org/10.1200/JCO.2012.48.3685. PMID:24127452 PubMed DOI PMC
Bryan LJ, Gordon LI. Pidilizumab in the treatment of diffuse large B-cell lymphoma. Expert Opin Biol Ther. 2014; 14:1361-8. https://doi.org/10.1517/14712598.2014.942637. PMID:25056108 PubMed DOI
Lu J, Lee-Gabel L, Nadeau MC, Ferencz TM, Soefje SA. Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy. J Oncol Pharm Pract. 2015; 21:451-67. https://doi.org/10.1177/1078155214538087. PMID:24917416 PubMed DOI
Westin JR, Chu F, Zhang M, Fayad LE, Kwak LW, Fowler N, Romaguera J, Hagemeister F, Fanale M, Samaniego F, et al.. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: A single group, open-label, phase 2 trial. Lancet Oncol. 2014; 15:69-77. https://doi.org/10.1016/S1470-2045(13)70551-5. PMID:24332512 PubMed DOI PMC
Comin-Anduix B, Lee Y, Jalil J, Algazi A, de la Rocha P, Camacho LH, Bozon VA, Bulanhagui CA, Seja E, Villanueva A, et al.. Detailed analysis of immunologic effects of the cytotoxic T lymphocyte-associated antigen 4-blocking monoclonal antibody tremelimumab in peripheral blood of patients with melanoma. J Transl Med. 2008; 6:22. https://doi.org/10.1186/1479-5876-6-22. PMID:18452610 PubMed DOI PMC
Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D, Marshall MA, Gomez-Navarro J, Liang JQ, Bulanhagui CA. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res. 2010; 16:1042-8. https://doi.org/10.1158/1078-0432.CCR-09-2033. PMID:20086001 PubMed DOI
Ralph C, Elkord E, Burt DJ, O'Dwyer JF, Austin EB, Stern PL, Hawkins RE, Thistlethwaite FC. Modulation of lymphocyte regulation for cancer therapy: A phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res. 2010; 16:1662-72. https://doi.org/10.1158/1078-0432.CCR-09-2870. PMID:20179239 PubMed DOI
Tarhini AA, Kirkwood JM. Tremelimumab (CP-675,206): A fully human anticytotoxic T lymphocyte-associated antigen 4 monoclonal antibody for treatment of patients with advanced cancers. Expert Opin Biol Ther. 2008; 8:1583-93. https://doi.org/10.1517/14712598.8.10.1583. PMID:18774925 PubMed DOI
Buisseret L, Garaud S, de Wind A, Van den Eynden G, Boisson A, Solinas C, Gu-Trantien C, Naveaux C, Lodewyckx JN, Duvillier H, et al.. Tumor-infiltrating lymphocyte composition, organization and PD-1/ PD-L1 expression are linked in breast cancer. Oncoimmunology. 2017; 6:e1257452. https://doi.org/10.1080/2162402X.2016.1257452. PMID:28197375 PubMed DOI PMC
Littman DR. Releasing the Brakes on Cancer Immunotherapy. Cell. 2015; 162:1186-90. https://doi.org/10.1016/j.cell.2015.08.038. PMID:26359975 PubMed DOI
Allison JP. Checkpoints. Cell. 2015; 162:1202-5. https://doi.org/10.1016/j.cell.2015.08.047. PMID:26359978 PubMed DOI
Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014; 65:185-202. https://doi.org/10.1146/annurev-med-092012-112807. PMID:24188664 PubMed DOI
Jorgensen JT. Companion and complementary diagnostics: Clinical and regulatory perspectives. Trends Cancer. 2016; 2:706-12. https://doi.org/10.1016/j.trecan.2016.10.013. PMID:28741518 PubMed DOI
Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: Response evaluation and biomarker development. Nat Rev Clin Oncol. 2017. https://doi.org/10.1038/nrclinonc.2017.88. PMID:28653677 PubMed DOI PMC
Schumacher TN, Kesmir C, van Buuren MM. Biomarkers in cancer immunotherapy. Cancer Cell. 2015; 27:12-4. https://doi.org/10.1016/j.ccell.2014.12.004. PMID:25584891 PubMed DOI
Fridman WH, Zitvogel L, Sautes-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017. https://doi.org/10.1038/nrclinonc.2017.101. PMID:28741618 PubMed DOI
Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, et al.. Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol Res. 2014; 2:831-8. https://doi.org/10.1158/2326-6066.CIR-14-0069. PMID:25187273 PubMed DOI PMC
Minn AJ, Wherry EJ. Combination cancer therapies with immune checkpoint blockade: Convergence on interferon signaling. Cell. 2016; 165:272-5. https://doi.org/10.1016/j.cell.2016.03.031. PMID:27058661 PubMed DOI
Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015; 6:187. PMID:25964783 PubMed PMC
Kroemer G, Galluzzi L. Immunotherapy of hematological cancers: PD-1 blockade for the treatment of Hodgkin's lymphoma. Oncoimmunology. 2015; 4:e1008853. https://doi.org/10.1080/2162402X.2015.1008853. PMID:26155425 PubMed DOI PMC
Demaria S, Coleman CN, Formenti SC. Radiotherapy: Changing the game in immunotherapy. Trends Cancer. 2016; 2:286-94. https://doi.org/10.1016/j.trecan.2016.05.002. PMID:27774519 PubMed DOI PMC
Marabelle A, Kohrt H, Levy R. Intratumoral anti-CTLA-4 therapy: Enhancing efficacy while avoiding toxicity. Clin Cancer Res. 2013; 19:5261-3. https://doi.org/10.1158/1078-0432.CCR-13-1923. PMID:23965900 PubMed DOI PMC
Fransen MF, van der Sluis TC, Ossendorp F, Arens R, Melief CJ. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin Cancer Res. 2013; 19:5381-9. https://doi.org/10.1158/1078-0432.CCR-12-0781. PMID:23788581 PubMed DOI
Hamilton G, Rath B. Avelumab: Combining immune checkpoint inhibition and antibody-dependent cytotoxicity. Expert Opin Biol Ther. 2017; 17:515-23. https://doi.org/10.1080/14712598.2017.1294156. PMID:28274143 PubMed DOI
Galluzzi L, Kroemer G. Novel immune checkpoint blocker to treat Merkel cell carcinoma. Oncoimmunology. 2017; 6:e1315496. https://doi.org/10.1080/2162402X.2017.1315496. PMID:28680746 PubMed DOI PMC
Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al.. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014; 384:1109-17. https://doi.org/10.1016/S0140-6736(14)60958-2. PMID:25034862 PubMed DOI
Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, Voss MH, Sharma P, Pal SK, Razak ARA, et al.. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: The CheckMate 016 study. J Clin Oncol. 2017:JCO2016721985. PMID:28678668 PubMed PMC