Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy

. 2018 ; 7 (6) : e1433982. [epub] 20180215

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29872569

Grantová podpora
P30 CA008748 NCI NIH HHS - United States

Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.

Zobrazit více v PubMed

Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines. Oncoimmunology. 2013;2:e24850. doi:10.4161/onci.24850. PMID:24073369. PubMed DOI PMC

Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial watch: immunostimulatory cytokines. Oncoimmunology. 2012;1:493–506. doi:10.4161/onci.20459. PMID:22754768. PubMed DOI PMC

Tato CM, Cua DJ. SnapShot: cytokines I. Cell. 2008;132:324, e1. doi:10.1016/j.cell.2008.01.001. PubMed DOI

Tato CM, Cua DJ. SnapShot: cytokines II. Cell. 2008;132:500. PMID:18267079. PubMed

Tato CM, Cua DJ. SnapShot: cytokines III. Cell. 2008;132:900. PMID:18329374. PubMed

Tato CM, Cua DJ. SnapShot: cytokines IV. Cell. 2008;132:1062.e1–2. doi:10.1016/j.cell.2008.02.024. PubMed DOI

Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15:731–44. doi:10.1038/nri3920.PMID:26603899. PubMed DOI PMC

Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2016;12:154–68. doi:10.1038/nrrheum.2015.160. PMID:26607387. PubMed DOI PMC

Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14:302–14. doi:10.1038/nri3660. PMID:24751955. PubMed DOI

Clements WK, Traver D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol. 2013;13:336–48. doi:10.1038/nri3443. PMID:23618830. PubMed DOI PMC

Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol. 2009;9:293–300. doi:10.1038/nri2525. PMID:19282853. PubMed DOI

Weiss CN, Ito K. A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol. 2017;334:99–175. doi:10.1016/bs.ircmb.2017.03.007. PMID:28838543. PubMed DOI PMC

Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14. doi:10.1038/nri3845. PMID:26027717. PubMed DOI

Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15:231–42. doi:10.1038/nri3806. PMID:25790790. PubMed DOI

McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103. doi:10.1038/nri3787. PMID:25614319. PubMed DOI PMC

Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72. doi:10.1038/nri.2017.49. PMID:28555670. PubMed DOI PMC

Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16:723–40. doi:10.1038/nri.2016.112. PMID:27885276. PubMed DOI

De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74. doi:10.1038/nrc.2017.51. PMID:28706266. PubMed DOI

Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16:131–44. doi:10.1038/nrc.2016.14. PMID:26911188. PubMed DOI

West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15:615–29. doi:10.1038/nri3896. PMID:26358393. PubMed DOI

Lacalle RA, Blanco R, Carmona-Rodriguez L, Martin-Leal A, Mira E, Manes S. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol. 2017;331:181–244. doi:10.1016/bs.ircmb.2016.09.011. PMID:28325212. PubMed DOI

Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111:S460–75. doi:10.1067/mai.2003.108. PMID:12592293. PubMed DOI

Steinke JW, Borish L. 3. Cytokines and chemokines. J Allergy Clin Immunol. 2006;117:S441–5. doi:10.1016/j.jaci.2005.07.001. PMID:16455343. PubMed DOI

Vacchelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, et al.. Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016;5:e1115942. doi:10.1080/2162402X.2015.1115942. PMID:27057468. PubMed DOI PMC

Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–58. doi:10.1038/nrclinonc.2015.209. PMID:26598942. PubMed DOI

Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–38. doi:10.1038/nm.3944. PMID:26444637. PubMed DOI

Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16:1347–57. doi:10.1080/14740338.2017.1382472. PMID:28929820. PubMed DOI

Wolkenstein P, Chosidow O, Wechsler J, Guillaume JC, Lescs MC, Brandely M, Avril MF, Revuz J. Cutaneous side effects associated with interleukin 2 administration for metastatic melanoma. J Am Acad Dermatol. 1993;28:66–70. doi:10.1016/0190-9622(93)70011-H. PMID:8425972. PubMed DOI

Fraker DL, Alexander HR. The use of tumour necrosis factor (TNF) in isolated perfusion: results and side effects. the NCI results. Melanoma Res. 1994;4 Suppl 1:27–9. PubMed

Kirkwood JM, Resnick GD, Cole BF. Efficacy, safety, and risk-benefit analysis of adjuvant interferon alfa-2b in melanoma. Semin Oncol. 1997;24:S16–23. PMID:9122729. PubMed

Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol. 1998;25:39–47. PMID:9482539. PubMed

Guirguis LM, Yang JC, White DE, Steinberg SM, Liewehr DJ, Rosenberg SA, Schwartzentruber DJ. Safety and efficacy of high-dose interleukin-2 therapy in patients with brain metastases. J Immunother. 2002;25:82–7. doi:10.1097/00002371-200201000-00009. PMID:11924913. PubMed DOI PMC

Anderson P, Hoglund M, Rodjer S. Pulmonary side effects of interferon-alpha therapy in patients with hematological malignancies. Am J Hematol. 2003;73:54–8. doi:10.1002/ajh.10319. PMID:12701122. PubMed DOI

Geertsen PF, Gore ME, Negrier S, Tourani JM, Maase H von der. Safety and efficacy of subcutaneous and continuous intravenous infusion rIL-2 in patients with metastatic renal cell carcinoma. Br J Cancer. 2004;90:1156–62. doi:10.1038/sj.bjc.6601709. PMID:15026795. PubMed DOI PMC

Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, Gooding WE, Sander C, Kirkwood JM. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol. 2012;30:322–8. doi:10.1200/JCO.2011.37.5394. PMID:22184371. PubMed DOI PMC

Clark JM, Kelley B, Titze J, Fung H, Maciejewski J, Nathan S, Rich E, Basu S, Kaufman HL. Clinical and safety profile of high-dose interleukin-2 treatment in elderly patients with metastatic melanoma and renal cell carcinoma. Oncology. 2013;84:123–6. doi:10.1159/000342764. PMID:23235386. PubMed DOI

Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol. 1995;25:3053–9. doi:10.1002/eji.1830251111. PMID:7489743. PubMed DOI

Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol. 1998;10:371–8. doi:10.1093/intimm/10.4.371. PMID:9620592. PubMed DOI

Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–17. doi:10.1038/nri.2017.75. PMID:28757603. PubMed DOI PMC

Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599–611. doi:10.1038/nri.2016.80. PMID:27526640. PubMed DOI

Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16:90–101. doi:10.1038/nri.2015.1. PMID:26688349. PubMed DOI PMC

Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G, Tartour E. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 2013;6:147–57. doi:10.1007/s12307-012-0122-y. PMID:23104434. PubMed DOI PMC

Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2017. doi:10.1038/nri.2017.131. PMID:29226910. PubMed DOI PMC

Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24. doi:10.1038/nrc.2017.86. PMID:29059149. PubMed DOI

Weiden J, Tel J, Figdor CG. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol. 2017. doi:10.1038/nri.2017.89. PMID:28853444. PubMed DOI

Daniyan AF, Brentjens RJ. Immunotherapy: Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies. Nat Rev Clin Oncol. 2017;14:333–4. doi:10.1038/nrclinonc.2017.49. PMID:28397826. PubMed DOI PMC

Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al.. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301. doi:10.1038/nrc.2017.17. PMID:28338065. PubMed DOI

Jiang W, Yuan H, Chan CK, Roemeling CA von, Yan Z, Weissman IL, Kim BYS. Lessons from immuno-oncology: a new era for cancer nanomedicine? Nat Rev Drug Discov. 2017;16:369–70. doi:10.1038/nrd.2017.34. PMID:28303024. PubMed DOI

Lu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi:10.2174/1568009617666170427102729. PMID:28460617. PubMed DOI

Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. 2017;190:159–68. doi:10.1016/j.imlet.2017.08.010. PMID:28823521. PubMed DOI PMC

Rautela J, Huntington ND. IL-15 signaling in NK cell cancer immunotherapy. Curr Opin Immunol. 2017;44:1–6. doi:10.1016/j.coi.2016.10.004. PMID:27835762. PubMed DOI

Davis MR, Zhu Z, Hansen DM, Bai Q, Fang Y. The role of IL-21 in immunity and cancer. Cancer Lett. 2015;358:107–14. doi:10.1016/j.canlet.2014.12.047. PMID:25575696. PubMed DOI

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al.. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472–508. doi:10.18632/oncotarget.2998. PMID:25537519. PubMed DOI PMC

Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al.. Trial watch: Immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373237. doi:10.1080/2162402X.2017.1373237. PMID:29147629. PubMed DOI PMC

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14. doi:10.1016/j.cell.2015.03.030. PMID:25860605. PubMed DOI PMC

Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172. PMID:25838373. PubMed DOI

Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896. doi:10.1080/2162402X.2017.1371896. PMID:29209572. PubMed DOI PMC

Di Nicola M, Apetoh L, Bellone M, Colombo MP, Dotti G, Ferrone S, Muscolini M, Hiscott J, Anichini A, Pupa SM, et al.. Innovative therapy, monoclonal antibodies and beyond. Cytokine Growth Factor Rev. 2017;38:1–9. doi:10.1016/j.cytogfr.2017.10.002. PMID:29029813. PubMed DOI

Hendriks D, Choi G, Bruyn M de, Wiersma VR, Bremer E. Antibody-based cancer therapy: successful agents and novel approaches. Int Rev Cell Mol Biol. 2017;331:289–383. doi:10.1016/bs.ircmb.2016.10.002. PMID:28325214. PubMed DOI

Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi:10.4161/onci.27297. PMID:24701370. PubMed DOI PMC

Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6:e1328341. doi:10.1080/2162402X.2017.1328341. PMID:28811970. PubMed DOI PMC

Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6:e1398878. doi:10.1080/2162402X.2017.1398878. PMID:29209575. PubMed DOI PMC

Palucka K, Banchereau J. SnapShot: cancer vaccines. Cell. 2014;157:516–e1. doi:10.1016/j.cell.2014.03.044. PMID:24725415. PubMed DOI

Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77. doi:10.1038/nrc3258. PMID:22437871. PubMed DOI PMC

Melief CJ, Burg SH van der. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–60. doi:10.1038/nrc2373. PMID:18418403. PubMed DOI

Truxova I, Hensler M, Skapa P, Halaska MJ, Laco J, Ryska A, Spisek R, Fucikova J. Rationale for the combination of dendritic cell-based vaccination approaches with chemotherapy agents. Int Rev Cell Mol Biol. 2017;330:115–56. doi:10.1016/bs.ircmb.2016.09.003. PMID. PubMed DOI

Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al.. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2:e25771. doi:10.4161/onci.25771. PMID:24286020. PubMed DOI PMC

Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi:10.1080/2162402X.2017.1386829. PMID:29209573. PubMed DOI PMC

Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714. doi:10.1016/j.ccell.2015.10.012. PMID:26678337. PubMed DOI

Wilson AL, Plebanski M, Stephens AN. New trends in anti-cancer therapy: combining conventional chemotherapeutics with novel immunomodulators. Curr Med Chem. 2017. doi:10.2174/0929867324666170830094922. PMID:28875845. PubMed DOI

Weiss T, Weller M, Roth P. Immunological effects of chemotherapy and radiotherapy against brain tumors. Expert Rev Anticancer Ther. 2016;16:1087–94. doi:10.1080/14737140.2016.1229600. PMID:27598516. PubMed DOI

Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al.. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588. PMID:26635802. PubMed DOI PMC

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al.. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2018, 2018. PubMed PMC

Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev. 2017;280:220–30. doi:10.1111/imr.12568. PMID:29027232. PubMed DOI PMC

Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al.. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016;5:e1214790. doi:10.1080/2162402X.2016.1214790. PMID:27757313. PubMed DOI PMC

Vanpouille-Box C, Formenti SC, Demaria S. Toward precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2018;24:259–265. doi:10.1158/1078-0432. PMID. PubMed DOI PMC

Hennessy EJ, Parker AE, O'Neill LA. Targeting toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293–307. doi:10.1038/nrd3203. PMID:20380038. PubMed DOI

Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–52. doi:10.1038/nrc2639. PMID:19461669. PubMed DOI

Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3:e957994. doi:10.4161/21624011.2014.957994. PMID:25941578. PubMed DOI PMC

Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al.. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016;5:e1149674. doi:10.1080/2162402X.2016.1149674. PMID:27471617. PubMed DOI PMC

Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–22. doi:10.1038/nrd4596. PMID:26228631. PubMed DOI

Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81. doi:10.1038/nrc.2016.97. PMID:27550819. PubMed DOI PMC

Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–90. doi:10.1038/nrclinonc.2016.25. PMID:26977780. PubMed DOI PMC

Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139. doi:10.1080/2162402X.2017.1363139. PMID:29147628. PubMed DOI PMC

Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81. doi:10.1038/nri3191. PMID:22437939. PubMed DOI PMC

Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–67. doi:10.1038/nrc3770. PMID:24990523. PubMed DOI

Veinalde R, Grossardt C, Hartmann L, Bourgeois-Daigneault MC, Bell JC, Jager D, von Kalle C, Ungerechts G, Engeland CE. Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology. 2017;6:e1285992. doi:10.1080/2162402X.2017.1285992. PMID:28507792. PubMed DOI PMC

Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016;5:e1115641. doi:10.1080/2162402X.2015.1115641. PMID:26942095. PubMed DOI PMC

Deroose JP, Eggermont AM, Geel AN van, Burger JW, Bakker MA den, Wilt JH de, Verhoef C. Long-term results of tumor necrosis factor alpha- and melphalan-based isolated limb perfusion in locally advanced extremity soft tissue sarcomas. J Clin Oncol. 2011;29:4036–44. doi:10.1200/JCO.2011.35.6618. PMID:21931039. PubMed DOI

Deroose JP, Eggermont AM, Geel AN van, Wilt JH de, Burger JW, Verhoef C. 20 years experience of TNF-based isolated limb perfusion for in-transit melanoma metastases: TNF dose matters. Ann Surg Oncol. 2012;19:627–35. doi:10.1245/s10434-011-2030-7. PMID:21879272. PubMed DOI PMC

Deroose JP, Grunhagen DJ, Geel AN van, Wilt JH de, Eggermont AM, Verhoef C. Long-term outcome of isolated limb perfusion with tumour necrosis factor-alpha for patients with melanoma in-transit metastases. Br J Surg. 2011;98:1573–80. doi:10.1002/bjs.7621. PMID:21739427. PubMed DOI

Eggermont AM. The success of TNF alpha in isolated limb perfusion for irresectable extremity soft tissue sarcomas, melanoma and carcinomas: observations in patients and preclinical perfusion models. Gan To Kagaku Ryoho. 1996;23:1357–70. PMID:8854755. PubMed

Eggermont AM, Schraffordt Koops H, Klausner JM, Kroon BB, Schlag PM, Lienard D, Geel AN van, Hoekstra HJ, Meller I, Nieweg OE, et al.. Isolated limb perfusion with tumor necrosis factor and melphalan for limb salvage in 186 patients with locally advanced soft tissue extremity sarcomas. the cumulative multicenter European experience. Ann Surg. 1996;224:756–64; discussion 64–5. doi:10.1097/00000658-199612000-00011. PMID:8968230. PubMed DOI PMC

Eggermont AM, Schraffordt Koops H, Klausner JM, Schlag PM, Kroon BB, Ben-Ari G, Lejeune FJ. Isolated limb perfusion with high-dose tumor necrosis factor-alpha for locally advanced extremity soft tissue sarcomas. Cancer Treat Res. 1997;91:189–203. doi:10.1007/978-1-4615-6121-7_13. PMID:9286497. PubMed DOI

Eggermont AM, Schraffordt Koops H, Lienard D, Kroon BB, Geel AN van, Hoekstra HJ, Lejeune FJ. Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. J Clin Oncol. 1996;14:2653–65. doi:10.1200/JCO.1996.14.10.2653. PMID:8874324. PubMed DOI

Eggermont AM, Suciu S, Testori A, Santinami M, Kruit WH, Marsden J, Punt CJ, Sales F, Dummer R, Robert C, et al.. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30:3810–8. doi:10.1200/JCO.2011.41.3799. PMID:23008300. PubMed DOI

Grunhagen DJ, Brunstein F, ten Hagen TL, Geel AN van, Wilt JH de, Eggermont AM. TNF-based isolated limb perfusion: a decade of experience with antivascular therapy in the management of locally advanced extremity soft tissue sarcomas. Cancer Treat Res. 2004;120:65–79. doi:10.1007/1-4020-7856-0_4. PMID:15217218. PubMed DOI

Trabulsi NH, Patakfalvi L, Nassif MO, Turcotte RE, Nichols A, Meguerditchian AN. Hyperthermic isolated limb perfusion for extremity soft tissue sarcomas: systematic review of clinical efficacy and quality assessment of reported trials. J Surg Oncol. 2012;106:921–8. doi:10.1002/jso.23200. PMID:22806575. PubMed DOI

Grunhagen DJ, Wilt JH de, ten Hagen TL, Eggermont AM. Technology insight: utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat Clin Pract Oncol. 2006;3:94–103. doi:10.1038/ncponc0426. PMID:16462850. PubMed DOI

Seinen JM, Hoekstra HJ. Isolated limb perfusion of soft tissue sarcomas: a comprehensive review of literature. Cancer Treat Rev. 2013;39:569–77. doi:10.1016/j.ctrv.2012.10.005. PMID:23232098. PubMed DOI

Arellano M, Lonial S. Clinical uses of GM-CSF, a critical appraisal and update. Biologics. 2008;2:13–27. PMID:19707424. PubMed PMC

Khoury HJ, Loberiza FR, Ringden O, Barrett AJ, Bolwell BJ, Cahn JY, Champlin RE, Gale RP, Hale GA, Urbano-Ispizua A, et al.. Impact of posttransplantation G-CSF on outcomes of allogeneic hematopoietic stem cell transplantation. Blood. 2006;107:1712–6. doi:10.1182/blood-2005-07-2661. PMID:16239431. PubMed DOI PMC

Sebban C, Lefranc A, Perrier L, Moreau P, Espinouse D, Schmidt A, Kammoun L, Ghesquieres H, Ferlay C, Bay JO, et al.. A randomised phase II study of the efficacy, safety and cost-effectiveness of pegfilgrastim and filgrastim after autologous stem cell transplant for lymphoma and myeloma (PALM study). Eur J Cancer. 2012;48:713–20. doi:10.1016/j.ejca.2011.12.016. PMID:22248711. PubMed DOI

Hosing C. Hematopoietic stem cell mobilization with G-CSF. Methods Mol Biol. 2012;904:37–47. PMID:22890920. PubMed

Demirer T, Ayli M, Ozcan M, Gunel N, Haznedar R, Dagli M, Fen T, Genc Y, Dincer S, Arslan O, et al.. Mobilization of peripheral blood stem cells with chemotherapy and recombinant human granulocyte colony-stimulating factor (rhG-CSF): a randomized evaluation of different doses of rhG-CSF. Br J Haematol. 2002;116:468–74. doi:10.1046/j.1365-2141.2002.03264.x. PMID:11841454. PubMed DOI

Naeim A, Henk HJ, Becker L, Chia V, Badre S, Li X, Deeter R. Pegfilgrastim prophylaxis is associated with a lower risk of hospitalization of cancer patients than filgrastim prophylaxis: a retrospective United States claims analysis of granulocyte colony-stimulating factors (G-CSF). BMC Cancer. 2013;13:11. doi:10.1186/1471-2407-13-11. PMID:23298389. PubMed DOI PMC

Chan KK, Siu E, Krahn MD, Imrie K, Alibhai SM. Cost-utility analysis of primary prophylaxis versus secondary prophylaxis with granulocyte colony-stimulating factor in elderly patients with diffuse aggressive lymphoma receiving curative-intent chemotherapy. J Clin Oncol. 2012;30:1064–71. doi:10.1200/JCO.2011.36.8647. PMID:22393098. PubMed DOI

Pabst T, Vellenga E, Putten W van, Schouten HC, Graux C, Vekemans MC, Biemond B, Sonneveld P, Passweg J, Verdonck L, et al.. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine. Blood. 2012;119:5367–73. doi:10.1182/blood-2011-11-389841. PMID:22422824. PubMed DOI

Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint\sVictor C, Cucolo L, Lee DSM, Pauken KE, Huang AC, et al.. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–54.e12. doi:10.1016/j.cell.2016.11.022. PMID:27912061. PubMed DOI PMC

Haji Abdolvahab M, Mofrad MR, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol. 2016;326:343–72. doi:10.1016/bs.ircmb.2016.06.001. PMID:27572132. PubMed DOI

Bose D. cGAS/STING pathway in cancer: jekyll and hyde story of cancer immune response. Int J Mol Sci. 2017;18:E2456. doi:10.3390/ijms18112456. PMID:29156566. PubMed DOI PMC

Motwani M, Fitzgerald KA. cGAS micro-manages genotoxic stress. Immunity. 2017;47:616–7. doi:10.1016/j.immuni.2017.09.020. PMID:29045895. PubMed DOI

Oliveira Mann CC de, Kranzusch PJ. cGAS conducts micronuclei DNA surveillance. Trends Cell Biol. 2017;27:697–8. doi:10.1016/j.tcb.2017.08.007. PMID:28882413. PubMed DOI

Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4. doi:10.1126/science.1244040. PMID:23989956. PubMed DOI PMC

Civril F, Deimling T, Oliveira Mann CC de, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7. doi:10.1038/nature12305. PMID:23722159. PubMed DOI PMC

Pepin G, Gantier MP. cGAS-STING activation in the tumor microenvironment and its role in cancer immunity. Adv Exp Med Biol. 2017;1024:175–94. doi:10.1007/978-981-10-5987-2_8. PMID:28921470. PubMed DOI

Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9. doi:10.1038/ni.3558. PMID:27648547. PubMed DOI

Corrales L, McWhirter SM, Dubensky TW, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016;126:2404–11. doi:10.1172/JCI86892. PMID:27367184. PubMed DOI PMC

Thorne SH. Adding STING to the tale of oncolytic virotherapy. Trends Cancer. 2016;2:67–8. doi:10.1016/j.trecan.2016.01.002. PMID:27004260. PubMed DOI PMC

Neault M, Couteau F, Bonneau E, Guire V De, Mallette FA. Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases. Int Rev Cell Mol Biol. 2017;334:27–98. doi:10.1016/bs.ircmb.2017.04.001. PMID:28838541. PubMed DOI

Medkour Y, Svistkova V, Titorenko VI. Cell-nonautonomous mechanisms underlying cellular and organismal aging. Int Rev Cell Mol Biol. 2016;321:259–97. doi:10.1016/bs.ircmb.2015.09.003. PMID:26811290. PubMed DOI

Lopez-Otin C, Galluzzi L, Freije JM, Madeo F, Kroemer G. Metabolic control of longevity. Cell. 2016;166:802–21. doi:10.1016/j.cell.2016.07.031. PMID:27518560. PubMed DOI

Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-associated microRNAs. Int Rev Cell Mol Biol. 2017;334:177–205. doi:10.1016/bs.ircmb.2017.03.008. PMID:28838538. PubMed DOI PMC

Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70. doi:10.1038/nature23470. PMID:28759889. PubMed DOI PMC

Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618. doi:10.1038/ncomms15618. PMID:28598415. PubMed DOI PMC

Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, et al.. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5. doi:10.1038/nature23449. PMID:28738408. PubMed DOI PMC

Yamazaki T, Galluzzi L. TREX1 cuts down on cancer immunogenicity. Trends Cell Biol. 2017;27:543–5. doi:10.1016/j.tcb.2017.06.001. PMID:28625463. PubMed DOI

Vitale I, Manic G, Maria R De, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol Cell. 2017;66:306–19. doi:10.1016/j.molcel.2017.04.006. PMID:28475867. PubMed DOI

Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, et al.. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6. doi:10.1038/nature24050. PMID:28976970. PubMed DOI PMC

Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G. Caspases connect cell-death signaling to organismal homeostasis. Immunity. 2016;44:221–31. doi:10.1016/j.immuni.2016.01.020. PMID:26885855. PubMed DOI

Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al.. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9. doi:10.1016/j.cell.2016.08.069. PMID:27667683. PubMed DOI PMC

Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al.. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40. doi:10.1172/JCI91190. PMID:28650338. PubMed DOI PMC

Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, et al.. Interferon-gamma drives treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41.e11. doi:10.1016/j.cell.2017.05.005. PMID:28552348. PubMed DOI PMC

Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285:730–2. doi:10.1126/science.285.5428.730. PMID:10426994. PubMed DOI

Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–9. doi:10.1126/science.285.5428.727. PMID:10426993. PubMed DOI

Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1:119–26. doi:10.1038/77793. PMID:11248803. PubMed DOI

Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature. 2001;413:165–71. doi:10.1038/35093109. PMID:11557981. PubMed DOI PMC

Ghasemi R, Lazear E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, Higashikubo R, Gelman AE, Kreisel D, Fremont DH, et al.. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat Commun. 2016;7:12878. doi:10.1038/ncomms12878. PMID:27650575. PubMed DOI PMC

Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017;32:135–54. doi:10.1016/j.ccell.2017.06.009. PMID:28810142. PubMed DOI

Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365–98. doi:10.1146/annurev.pathol.4.110807.092239. PMID:18928408. PubMed DOI

Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri.2016.107. PMID:27748397. PubMed DOI

Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012;13:343–51. doi:10.1038/ni.2224. PMID:22430787. PubMed DOI

He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. doi:10.1016/j.tibs.2016.09.002. PMID:27669650. PubMed DOI PMC

Zhang X, Liu P, Zhang C, Chiewchengchol D, Zhao F, Yu H, Li J, Kambara H, Luo KY, Venkataraman A, et al.. Positive regulation of interleukin-1beta bioactivity by physiological ROS-mediated cysteine S-glutathionylation. Cell Rep. 2017;20:224–35. doi:10.1016/j.celrep.2017.05.070. PMID:28683316. PubMed DOI PMC

Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29. doi:10.1038/nrclinonc.2017.44. PMID:28397828. PubMed DOI PMC

Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35–52. doi:10.1038/nrd.2016.193. PMID:27811929. PubMed DOI

Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82. doi:10.1038/nri3902. PMID:26471778. PubMed DOI

Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, Yang H, Schradle KA, Urs S, Pasca Di Magliano M, Welling TH, et al.. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov. 2016;6:886–99. doi:10.1158/2159-8290.CD-15-0947. PMID:27184426. PubMed DOI PMC

Allegrezza MJ, Rutkowski MR, Stephen TL, Svoronos N, Tesone AJ, Perales-Puchalt A, Nguyen JM, Sarmin F, Sheen MR, Jeng EK, et al.. IL15 agonists overcome the immunosuppressive effects of MEK inhibitors. Cancer Res. 2016;76:2561–72. doi:10.1158/0008-5472.CAN-15-2808. PMID:26980764. PubMed DOI PMC

Bailey CP, Budak-Alpdogan T, Sauter CT, Panis MM, Buyukgoz C, Jeng EK, Wong HC, Flomenberg N, Alpdogan O. New interleukin-15 superagonist (IL-15 SA) significantly enhances graft-versus-tumor activity. Oncotarget. 2017;8:44366–78. doi:10.18632/oncotarget.17875. PMID:28574833. PubMed DOI PMC

Liu B, Kong L, Han K, Hong H, Marcus WD, Chen X, Jeng EK, Alter S, Zhu X, Rubinstein MP, et al.. A novel fusion of ALT-803 (interleukin (IL)-15 superagonist) with an antibody demonstrates antigen-specific antitumor responses. J Biol Chem. 2016;291:23869–81. doi:10.1074/jbc.M116.733600. PMID:27650494. PubMed DOI PMC

Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW. IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15 SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget. 2016;7:16130–45. PMID:26910920. PubMed PMC

Basher F, Jeng EK, Wong H, Wu J. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget. 2016;7:814–30. doi:10.18632/oncotarget.6416. PMID:26625316. PubMed DOI PMC

Xu W, Jones M, Liu B, Zhu X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, et al.. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alphaSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013;73:3075–86. doi:10.1158/0008-5472.CAN-12-2357. PMID:23644531. PubMed DOI PMC

Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al.. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017;127:4042–58. doi:10.1172/JCI90387. PMID:28972539. PubMed DOI PMC

Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, Curphey DP, Wen J, McConnell K, Qi J, et al.. Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discov. 2016;6:986–1005. doi:10.1158/2159-8290.CD-15-1297. PMID:27422033. PubMed DOI PMC

Maniglia CA, Sartorelli AC. Retinoic acid-induced alterations of glycosaminoglycan synthesis and deposition in B16F10 melanoma cells. Ann N Y Acad Sci. 1981;359:322–30. doi:10.1111/j.1749-6632.1981.tb12757.x. PMID:6942678. PubMed DOI

Maniglia CA, Tudor G, Gomez J, Sartorelli AC. The effect of 2,6-bis(diethanolamino)-4-piperidinopyrimido [5,4-d]-pyrimidine (RA233) on growth, metastases and lung colony formation of B16 melanoma. Cancer Lett. 1982;16:253–60. doi:10.1016/0304-3835(82)90004-0. PMID:7151045. PubMed DOI

Sloane BF, Honn KV, Sadler JG, Turner WA, Kimpson JJ, Taylor JD. Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res. 1982;42:980–6. PMID:7059993. PubMed

Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, Zhao Y, June CH. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20:3025–33. doi:10.1016/j.celrep.2017.09.002. PMID:28954221. PubMed DOI PMC

Barjon C, Michaud HA, Fages A, Dejou C, Zampieri A, They L, Gennetier A, Sanchez F, Gros L, Eliaou JF, et al.. IL-21 promotes the development of a CD73-positive Vgamma9Vdelta2 T cell regulatory population. Oncoimmunology. 2017;7:e1379642. doi:10.1080/2162402X.2017.1379642. PMID:29296543. PubMed DOI PMC

Seo H, Jeon I, Kim BS, Park M, Bae EA, Song B, Koh CH, Shin KS, Kim IK, Choi K, et al.. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat Commun. 2017;8:15776. doi:10.1038/ncomms15776. PMID:28585539. PubMed DOI PMC

Chapuis AG, Lee SM, Thompson JA, Roberts IM, Margolin KA, Bhatia S, Sloan HL, Lai I, Wagener F, Shibuya K, et al.. Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med. 2016;213:1133–9. doi:10.1084/jem.20152021. PMID:27242164. PubMed DOI PMC

Lewis KE, Selby MJ, Masters G, Valle J, Dito G, Curtis WR, Garcia R, Mink KA, Waggie KS, Holdren MS, et al.. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology. 2017;7:e1377873. doi:10.1080/2162402X.2017.1377873. PMID:29296539. PubMed DOI PMC

Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr., Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al.. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464:1362–6. doi:10.1038/nature08901. PMID:20200520. PubMed DOI PMC

Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al.. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007;204:1837–47. doi:10.1084/jem.20070406. PMID:17635955. PubMed DOI PMC

Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev. 2010;21:413–23. doi:10.1016/j.cytogfr.2010.10.002. PMID:21074482. PubMed DOI PMC

Yamauchi M, Barker TH, Gibbons DL, Kurie JM. The fibrotic tumor stroma. J Clin Invest. 2018;128:16–25. doi:10.1172/JCI93554. PMID:29293090. PubMed DOI PMC

Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodelling. Proteomics. 2017. doi:10.1002/pmic.201700167. PMID:29280568. PubMed DOI PMC

Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, Hashimoto A, Vonteddu P, Behera R, Goins MA, et al.. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell. 2017;32:654–68 e5. doi:10.1016/j.ccell.2017.10.005. PubMed DOI PMC

Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, Zwierzina H, Amann A. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3(+)CD8(+) tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 2017;6:e1323617. doi:10.1080/2162402X.2017.1323617. PMID:28680763. PubMed DOI PMC

Iovanna JL, Closa D. Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and progression. Oncoimmunology. 2017;6:e1358840. doi:10.1080/2162402X.2017.1358840. PMID:29147622. PubMed DOI PMC

Yin SY, Jian FY, Chen YH, Chien SC, Hsieh MC, Hsiao PW, Lee WH, Kuo YH, Yang NS. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311. doi:10.1038/ncomms11311. PMID:27089063. PubMed DOI PMC

Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev. 2018;281:233–47. doi:10.1111/imr.12609. PMID:29247989. PubMed DOI PMC

Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281:57–61. doi:10.1111/imr.12614. PMID:29247996. PubMed DOI PMC

Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunol Rev. 2018;281:197–232. doi:10.1111/imr.12606. PMID:29248002. PubMed DOI

Vilia MG, Tocchetti M, Fonte E, Sana I, Muzio M. Characterization of a long isoform of IL-1R8 (TIR8/SIGIRR). Eur Cytokine Netw. 2017;28:63–9. PMID:28840837. PubMed

Campesato LF, Silva APM, Cordeiro L, Correa BR, Navarro FCP, Zanin RF, Marcola M, Inoue LT, Duarte ML, Molgora M, et al.. High IL-1R8 expression in breast tumors promotes tumor growth and contributes to impaired antitumor immunity. Oncotarget. 2017;8:49470–83. doi:10.18632/oncotarget.17713. PMID:28533483. PubMed DOI PMC

Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, Jaillon S, Popovic B, Bernardini G, Magrini E, Gianni F, et al.. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature. 2017;551:110–4. doi:10.1038/nature24293. PMID:29072292. PubMed DOI PMC

Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al.. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin Cancer Res. 2017;23:5034–43. doi:10.1158/1078-0432.CCR-16-3016. PMID:28536308. PubMed DOI PMC

Slingluff CL Jr., Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD, Kirkwood JM. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 2013;19:4228–38. doi:10.1158/1078-0432.CCR-13-0002. PMID:23653149. PubMed DOI PMC

Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Nosaka K, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, et al.. Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Oncoimmunology. 2017;7:e1377872. doi:10.1080/2162402X.2017.1377872. PMID:29296538. PubMed DOI PMC

Tsuchiya N, Yoshikawa T, Fujinami N, Saito K, Mizuno S, Sawada Y, Endo I, Nakatsura T. Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. Oncoimmunology. 2017;6:e1346764. doi:10.1080/2162402X.2017.1346764. PMID:29123959. PubMed DOI PMC

Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, et al.. Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage iv melanoma: a trial of the eastern cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–76. doi:10.1200/JCO.2015.62.0500. PMID:26351350. PubMed DOI PMC

Spitler LE, Grossbard ML, Ernstoff MS, Silver G, Jacobs M, Hayes FA, Soong SJ. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 2000;18:1614–21. doi:10.1200/JCO.2000.18.8.1614. PMID:10764421. PubMed DOI

Spitler LE, Weber RW, Allen RE, Meyer J, Cruickshank S, Garbe E, Lin HY, Soong SJ. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim) administered for 3 years as adjuvant therapy of stages II(T4), III, and IV melanoma. J Immunother. 2009;32:632–7. doi:10.1097/CJI.0b013e3181a7d60d. PMID:19483646. PubMed DOI

Slingluff CL, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, et al.. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol. 2003;21:4016–26. doi:10.1200/JCO.2003.10.005. PMID:14581425. PubMed DOI

Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother. 2016;65:1015–34. doi:10.1007/s00262-016-1860-3. PMID:27372293. PubMed DOI PMC

Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, et al.. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer. 2003;97:186–200. doi:10.1002/cncr.11045. PMID:12491520. PubMed DOI

Hodi FS, Lee S, McDermott DF, Rao UN, Butterfield LH, Tarhini AA, Leming P, Puzanov I, Shin D, Kirkwood JM. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. Jama. 2014;312:1744–53. doi:10.1001/jama.2014.13943. PMID:25369488. PubMed DOI PMC

Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer. 2014;2:11. doi:10.1186/2051-1426-2-11. PMID:24971166. PubMed DOI PMC

Nicola NA, Wycherley K, Boyd AW, Layton JE, Cary D, Metcalf D. Neutralizing and nonneutralizing monoclonal antibodies to the human granulocyte-macrophage colony-stimulating factor receptor alpha-chain. Blood. 1993;82:1724–31. PMID:8400229. PubMed

Wadhwa M, Bird C, Fagerberg J, Gaines-Das R, Ragnhammar P, Mellstedt H, Thorpe R. Production of neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in carcinoma patients following GM-CSF combination therapy. Clin Exp Immunol. 1996;104:351–8. doi:10.1046/j.1365-2249.1996.11704.x. PMID:8625532. PubMed DOI PMC

Meager A, Cludts I, Thorpe R, Wadhwa M. Are neutralizing anti-GM-CSF autoantibodies present in all healthy persons? Blood. 2010;115:433–4. doi:10.1182/blood-2009-08-241018. PMID:20075174. PubMed DOI

Spitler LE, Cao H, Piironen T, Whiteside TL, Weber RW, Cruickshank S. Biological effects of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody formation in patients treated with GM-CSF (sargramostim) as adjuvant therapy of melanoma. Am J Clin Oncol. 2017;40:207–13. doi:10.1097/COC.0000000000000124. PMID:25286079. PubMed DOI PMC

Bota DA, Alexandru-Abrams D, Pretto C, Hofman FM, Chen TC, Fu B, Carrillo JA, Schijns VE, Stathopoulos A. Use of ERC-1671 vaccine in a patient with recurrent glioblastoma multiforme after progression during bevacizumab therapy: first published report. Perm J. 2015;19:41–6. PMID:25785641. PubMed PMC

Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, et al.. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6. doi:10.1016/j.vaccine.2015.03.095. PMID:25865468. PubMed DOI PMC

Mercatelli N, Galardi S, Ciafre SA. MicroRNAs as multifaceted players in glioblastoma multiforme. Int Rev Cell Mol Biol. 2017;333:269–323. doi:10.1016/bs.ircmb.2017.03.002. PMID:28729027. PubMed DOI

Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, et al.. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376:1027–37. doi:10.1056/NEJMoa1611977. PMID:28296618. PubMed DOI

Bocca P, Carlo ED, Caruana I, Emionite L, Cilli M, Angelis B De, Quintarelli C, Pezzolo A, Raffaghello L, Morandi F, et al.. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology. 2017;7:e1378843. doi:10.1080/2162402X.2017.1378843. PMID:29296542. PubMed DOI PMC

Lapeyre-Prost A, Terme M, Pernot S, Pointet AL, Voron T, Tartour E, Taieb J. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol. 2017;330:295–342. doi:10.1016/bs.ircmb.2016.09.007. PMID:28215534. PubMed DOI

Sarhan D, Leijonhufvud C, Murray S, Witt K, Seitz C, Wallerius M, Xie H, Ullen A, Harmenberg U, Lidbrink E, et al.. Zoledronic acid inhibits NFAT and IL-2 signaling pathways in regulatory T cells and diminishes their suppressive function in patients with metastatic cancer. Oncoimmunology. 2017;6:e1338238. doi:10.1080/2162402X.2017.1338238. PMID:28920001. PubMed DOI PMC

Hanoteau A, Henin C, Svec D, Bisilliat Donnet C, Denanglaire S, Colau D, Romero P, Leo O, Eynde B Van den, Moser M. Cyclophosphamide treatment regulates the balance of functional/exhausted tumor-specific CD8(+) T cells. Oncoimmunology. 2017;6:e1318234. doi:10.1080/2162402X.2017.1318234. PMID:28919989. PubMed DOI PMC

Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–44. doi:10.1002/eji.200324181. PMID:14768038. PubMed DOI

Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–8. doi:10.1182/blood-2004-06-2410. PMID:15591121. PubMed DOI

Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus JA, Momjian S, Costello J, Walker PR, Okada H, et al.. Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology. 2018;7:e1391972. doi:10.1080/2162402X.2017.1391972. PMID:29308320. PubMed DOI PMC

Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, et al.. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain. 2012;135:1042–54. doi:10.1093/brain/aws042. PMID:22418738. PubMed DOI

Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, McBain C, Jefferies S, Jackson A, Stewart W, et al.. A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22:4776–85. doi:10.1158/1078-0432.CCR-16-0506. PMID:27225692. PubMed DOI PMC

Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor vaccines for malignant gliomas. Neurotherapeutics. 2017;14:345–57. doi:10.1007/s13311-017-0522-2. PMID:28389997. PubMed DOI PMC

Chandran M, Candolfi M, Shah D, Mineharu Y, Yadav VN, Koschmann C, Asad AS, Lowenstein PR, Castro MG. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther. 2017;17:543–54. doi:10.1080/14712598.2017.1305353. PMID:28286975. PubMed DOI PMC

Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of malignant tumors in the brain: how different from other sites? Front Oncol. 2016;6:256. doi:10.3389/fonc.2016.00256. PMID:28003994. PubMed DOI PMC

Nava S, Dossena M, Pogliani S, Pellegatta S, Antozzi C, Baggi F, Gellera C, Pollo B, Parati EA, Finocchiaro G, et al.. An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PLoS One. 2012;7:e52301. doi:10.1371/journal.pone.0052301. PMID:23284979. PubMed DOI PMC

Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011;30:150–82. doi:10.3109/08830185.2011.572210. PMID:21557641. PubMed DOI

Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4:56. doi:10.1186/s40425-016-0160-y. PMID:27660710. PubMed DOI PMC

Yuan Y, Kos FJ, He TF, Yin HH, Li M, Hardwick N, Zurcher K, Schmolze D, Lee P, Pillai RK, et al.. Complete regression of cutaneous metastases with systemic immune response in a patient with triple negative breast cancer receiving p53MVA vaccine with pembrolizumab. Oncoimmunology. 2017;6:e1363138. doi:10.1080/2162402X.2017.1363138. PMID:29209571. PubMed DOI PMC

Simeone E, Grimaldi AM, Festino L, Giannarelli D, Vanella V, Palla M, Curvietto M, Esposito A, Palmieri G, Mozzillo N, et al.. Correlation between previous treatment with BRAF inhibitors and clinical response to pembrolizumab in patients with advanced melanoma. Oncoimmunology. 2017;6:e1283462. doi:10.1080/2162402X.2017.1283462. PMID:28405510. PubMed DOI PMC

Sullivan RJ, Flaherty KT. Immunotherapy: Anti-PD-1 therapies-a new first-line option in advanced melanoma. Nat Rev Clin Oncol. 2015;12:625–6. doi:10.1038/nrclinonc.2015.170. PMID:26416151. PubMed DOI

Eggermont AM, Robert C. Melanoma: smart therapeutic strategies in immuno-oncology. Nat Rev Clin Oncol. 2014;11:181–2. doi:10.1038/nrclinonc.2014.36. PMID:24590131. PubMed DOI

Long GV, Atkinson V, Cebon JS, Jameson MB, Fitzharris BM, McNeil CM, Hill AG, Ribas A, Atkins MB, Thompson JA, et al.. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol. 2017;18:1202–10. doi:10.1016/S1470-2045(17)30428-X. PMID:28729151. PubMed DOI

Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu W-J, Lawrence DP, Dawson NA, Wong DJL, Bhatia S, James M, et al.. Pembrolizumab (pembro) plus ipilimumab (ipi) or pegylated interferon alfa-2b (PEG-IFN) for advanced melanoma or renal cell carcinoma (RCC). J. Clin. Oncol. 2016;34:3013.

Summers J, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist. 2010;15:104–11. doi:10.1634/theoncologist.2009-0250. PMID:20061402. PubMed DOI PMC

Melichar B, Bracarda S, Matveev V, Alekseev B, Ivanov S, Zyryanov A, Janciauskiene R, Fernebro E, Mulders P, Osborne S, et al.. A multinational phase II trial of bevacizumab with low-dose interferon-alpha2 a as first-line treatment of metastatic renal cell carcinoma: BEVLiN. Ann Oncol. 2013;24:2396–402. doi:10.1093/annonc/mdt228. PMID:23803225. PubMed DOI

Bracarda S, Bellmunt J, Melichar B, Negrier S, Bajetta E, Ravaud A, Sneller V, Escudier B. Overall survival in patients with metastatic renal cell carcinoma initially treated with bevacizumab plus interferon-alpha2 a and subsequent therapy with tyrosine kinase inhibitors: a retrospective analysis of the phase III AVOREN trial. BJU Int. 2011;107:214–9. doi:10.1111/j.1464-410X.2010.09707.x. PMID:20942831. PubMed DOI

Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, et al.. Bevacizumab plus interferon alfa-2 a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11. doi:10.1016/S0140-6736(07)61904-7. PMID:18156031. PubMed DOI

Escudier B, Bellmunt J, Negrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S, Sneller V. Phase III trial of bevacizumab plus interferon alfa-2 a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28:2144–50. doi:10.1200/JCO.2009.26.7849. PMID:20368553. PubMed DOI

Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S, Escudier B. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32:752–9. doi:10.1200/JCO.2013.50.5305. PMID:24297945. PubMed DOI

Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Ou SS, Archer L, Atkins JN, Picus J, Czaykowski P, et al.. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26:5422–8. doi:10.1200/JCO.2008.16.9847. PMID:18936475. PubMed DOI PMC

Donskov F, Jensen NV, Smidt-Hansen T, Brondum L, Geertsen PF. A randomized phase II trial of interleukin-2/interferon-α plus bevacizumab versus interleukin-2/interferon-α in metastatic renal cell carcinoma (mRCC): Results from the Danish Renal Cancer Group (DARENCA) study 1. J. Clin. Oncol. 2016;34:4563. PubMed

Zhang F, Yang J, Li H, Liu M, Zhang J, Zhao L, Wang L, LingHu R, Feng F, Gao X, et al.. Combating rituximab resistance by inducing ceramide/lysosome-involved cell death through initiation of CD20-TNFR1 co-localization. Oncoimmunology. 2016;5:e1143995. doi:10.1080/2162402X.2016.1143995. PMID:27467962. PubMed DOI PMC

Souza-Fonseca-Guimaraes F, Blake SJ, Makkouk A, Chester C, Kohrt HE, Smyth MJ. Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncoimmunology. 2016;5:e1192740. doi:10.1080/2162402X.2016.1192740. PMID:27622048. PubMed DOI PMC

Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37. doi:10.4161/onci.1.1.17938. PMID:22720209. PubMed DOI PMC

Kimby E, Ostenstad B, Brown P, Hagberg H, Erlanson M, Holte H, Linden O, Johansson AS, Ahlgren T, Wader K, et al.. Two courses of four weekly infusions of rituximab with or without interferon-alpha2 a: final results from a randomized phase III study in symptomatic indolent B-cell lymphomas. Leuk Lymphoma. 2015;56:2598–607. doi:10.3109/10428194.2015.1014363. PMID:25686644. PubMed DOI

Cai Q, Chen Y, Zou D, Zhang L, Badillo M, Zhou S, Lopez E, Jiang W, Huang H, Lin T, et al.. Clinical outcomes of a novel combination of lenalidomide and rituximab followed by stem cell transplantation for relapsed/refractory aggressive B-cell non-hodgkin lymphoma. Oncotarget. 2014;5:7368–80. doi:10.18632/oncotarget.2255. PMID:25228589. PubMed DOI PMC

Davis TA, Maloney DG, Grillo-Lopez AJ, White CA, Williams ME, Weiner GJ, Dowden S, Levy R. Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma with rituximab and interferon-alpha-2 a. Clin Cancer Res. 2000;6:2644–52. PMID:10914705. PubMed

Kimby E, Jurlander J, Geisler C, Hagberg H, Holte H, Lehtinen T, Ostenstad B, Hansen M, Osterborg A, Linden O, et al.. Long-term molecular remissions in patients with indolent lymphoma treated with rituximab as a single agent or in combination with interferon alpha-2 a: a randomized phase II study from the Nordic Lymphoma Group. Leuk Lymphoma. 2008;49:102–12. doi:10.1080/10428190701704647. PMID:18203019. PubMed DOI

Kim HS, Chen YC, Nor F, Warner KA, Andrews A, Wagner VP, Zhang Z, Zhang Z, Martins MD, Pearson AT, et al.. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget. 2017;8:100339–52. doi:10.18632/oncotarget.22225. PMID:29245982. PubMed DOI PMC

Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr Med Chem. 2017. doi:10.2174/0929867324666170712160621. PMID:28707587. PubMed DOI

Tsukamoto H, Fujieda K, Hirayama M, Ikeda T, Yuno A, Matsumura K, Fukuma D, Araki K, Mizuta H, Nakayama H, et al.. Soluble IL6R expressed by myeloid cells reduces tumor-specific th1 differentiation and drives tumor progression. Cancer Res. 2017;77:2279–91. doi:10.1158/0008-5472.CAN-16-2446. PMID:28235765. PubMed DOI

Isobe A, Sawada K, Kinose Y, Ohyagi-Hara C, Nakatsuka E, Makino H, Ogura T, Mizuno T, Suzuki N, Morii E, et al.. Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 2015;10:e0118080. doi:10.1371/journal.pone.0118080. PMID:25658637. PubMed DOI PMC

Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Wouters MC, Kenter GG, Erkel AR van, Poelgeest MI van, Nijman HW, Hoeven JJ van der, et al.. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol. 2015;26:2141–9. doi:10.1093/annonc/mdv309. PMID:26216383. PubMed DOI

Grunwald V, Lin X, Kalanovic D, Simantov R. Early tumour shrinkage: a tool for the detection of early clinical activity in metastatic renal cell carcinoma. Eur Urol. 2016;70:1006–15. doi:10.1016/j.eururo.2016.05.010. PMID:27238653. PubMed DOI

Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al.. Molecular definitions of autophagy and related processes. Embo j. 2017;36:1811–36. doi:10.15252/embj.201796697. PMID:28596378. PubMed DOI PMC

Chen L, Zhou Y, Sun Q, Zhou J, Pan H, Sui X. Regulation of autophagy by MiRNAs and their emerging roles in tumorigenesis and cancer treatment. Int Rev Cell Mol Biol. 2017;334:1–26. doi:10.1016/bs.ircmb.2017.03.003. PMID:28838537. PubMed DOI

Ghidini M, Petrelli F, Ghidini A, Tomasello G, Hahne JC, Passalacqua R, Barni S. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs. 2017;26:1229–37. doi:10.1080/13543784.2017.1384813. PMID:28952411. PubMed DOI

Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ. Temsirolimus. Recent Results Cancer Res. 2014;201:393–403. doi:10.1007/978-3-642-54490-3_24. PMID:24756806. PubMed DOI

Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511. doi:10.1038/nrd.2017.22. PMID:28529316. PubMed DOI PMC

Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14:247–58. doi:10.1038/nrclinonc.2016.183. PMID:27845767. PubMed DOI

Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, Sheng D, Liu X, Sims PW, VanderVeen LA, et al.. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22:680–90. doi:10.1158/1078-0432.CCR-15-1631. PMID:26832745. PubMed DOI

Charych D, Khalili S, Dixit V, Kirk P, Chang T, Langowski J, Rubas W, Doberstein SK, Eldon M, Hoch U, et al.. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One. 2017;12:e0179431. doi:10.1371/journal.pone.0179431. PMID:28678791. PubMed DOI PMC

Villarreal DO, Allegrezza MJ, Smith MA, Chin D, Luistro LL, Snyder LA. Targeting of CD122 enhances antitumor immunity by altering the tumor immune environment. Oncotarget. 2017;8:109151–60. doi:10.18632/oncotarget.22642. PMID:29312597. PubMed DOI PMC

Kaderbhai CG, Richard C, Fumet JD, Aarnink A, Ortiz-Cuaran S, Perol M, Foucher P, Coudert B, Favier L, Lagrange A, et al.. Response to first line chemotherapy regimen is associated with efficacy of nivolumab in non-small-cell lung cancer. Oncoimmunology. 2017;6:e1339856. doi:10.1080/2162402X.2017.1339856. PMID:28932641. PubMed DOI PMC

Eissler N, Mao Y, Brodin D, Reutersward P, Andersson Svahn H, Johnsen JI, Kiessling R, Kogner P. Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade. Oncoimmunology. 2016;5:e1232222. doi:10.1080/2162402X.2016.1232222. PMID:28123870. PubMed DOI PMC

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al.. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. doi:10.1056/NEJMoa1507643. PMID:26412456. PubMed DOI PMC

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al.. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13. doi:10.1056/NEJMoa1510665. PMID:26406148. PubMed DOI PMC

Diab A, Tannir NM, Bernatchez C, Haymaker CL, Bentebibel SE, Curti BD, Wong MKK, Gergel I, Tagliaferri MA, Zalevsky J, et al.. A phase 1/2 study of a novel IL-2 cytokine, NKTR-214, and nivolumab in patients with select locally advanced or metastatic solid tumors. J. Clin. Oncol. 2017;35:e14040–e.

Tarhini AA, Lin Y, Lin HM, Vallabhaneni P, Sander C, LaFramboise W, Hamieh L. Expression profiles of immune-related genes are associated with neoadjuvant ipilimumab clinical benefit. Oncoimmunology. 2017;6:e1231291. doi:10.1080/2162402X.2016.1231291. PMID:28344862. PubMed DOI PMC

Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al.. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. doi:10.1056/NEJMoa1003466. PMID:20525992. PubMed DOI PMC

Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al.. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26. doi:10.1056/NEJMoa1104621. PMID:21639810. PubMed DOI

Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al.. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31. doi:10.1056/NEJMoa1112824. PMID:22397654. PubMed DOI PMC

Tarhini AA, Lee SJ, Rao UNM, Nagarajan A, Albertini MR, Mitchell JW, Wong SJ, Taylor MA, Laudi N, Truong PV, et al.. A randomized phase II study of ipilimumab at 3 (ipi3) or 10 mg/kg (ipi10) alone or in combination with high dose interferon-alfa (HDI) in advanced melanoma (E3611). J. Clin. Oncol. 2017;35:9542. PubMed PMC

Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98:8809–14. doi:10.1073/pnas.141226398. PMID:11427731. PubMed DOI PMC

Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59:6028–32. PMID: 1062678429327110 PubMed

Nguyen R, Houston J, Chan WK, Finkelstein D, Dyer MA. The role of interleukin-2, all-trans retinoic acid, and natural killer cells: surveillance mechanisms in anti-GD2 antibody therapy in neuroblastoma. Cancer Immunol Immunother. 2018. doi:10.1007/s00262-017-2108-6. PMID:29327110. PubMed DOI PMC

Hoseini SS, Dobrenkov K, Pankov D, Xu XL, Cheung NK. Bispecific antibody does not induce T-cell death mediated by chimeric antigen receptor against disialoganglioside GD2. Oncoimmunology. 2017;6:e1320625. doi:10.1080/2162402X.2017.1320625. PMID:28680755. PubMed DOI PMC

Fleurence J, Fougeray S, Bahri M, Cochonneau D, Clemenceau B, Paris F, Heczey A, Birkle S. Targeting O-acetyl-GD2 ganglioside for cancer immunotherapy. J Immunol Res. 2017;2017:5604891. doi:10.1155/2017/5604891. PMID:28154831. PubMed DOI PMC

Sait S, Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17:889–904. doi:10.1080/14737140.2017.1364995. PMID:28780888. PubMed DOI PMC

Kroesen M, Bull C, Gielen PR, Brok IC, Armandari I, Wassink M, Looman MW, Boon L, Brok MH den, Hoogerbrugge PM, et al.. Anti-GD2 mAb and vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology. 2016;5:e1164919. doi:10.1080/2162402X.2016.1164919. PMID:27471639. PubMed DOI PMC

Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met O, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology. 2016;5:e1207842. doi:10.1080/2162402X.2016.1207842. PMID:27757300. PubMed DOI PMC

Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S, et al.. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res. 2009;15:1046–51. doi:10.1158/1078-0432.CCR-08-1507. PMID:19188178. PubMed DOI

Le DT, Jaffee EM. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 2012;72:3439–44. doi:10.1158/0008-5472.CAN-11-3912. PMID:22761338. PubMed DOI PMC

Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother. 2013;62:383–91. doi:10.1007/s00262-012-1343-0. PMID:22926062. PubMed DOI PMC

Dai Y, Chen S, Kramer LB, Funk VL, Dent P, Grant S. Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res. 2008;14:549–58. doi:10.1158/1078-0432.CCR-07-1934. PMID:18223231. PubMed DOI

Piekarz RL, Bates SE. Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res. 2009;15:3918–26. doi:10.1158/1078-0432.CCR-08-2788. PMID:19509169. PubMed DOI PMC

Hermine O, Bouscary D, Gessain A, Turlure P, Leblond V, Franck N, Buzyn-Veil A, Rio B, Macintyre E, Dreyfus F, et al.. Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N Engl J Med. 1995;332:1749–51. doi:10.1056/NEJM199506293322604. PMID:7760891. PubMed DOI

Trevisani F, Brandi G, Garuti F, Barbera MA, Tortora R, Gardini AC, Granito A, Tovoli F, De Lorenzo S, Inghilesi AL, et al.. Metronomic capecitabine as second-line treatment for hepatocellular carcinoma after sorafenib discontinuation. J Cancer Res Clin Oncol. 2018;144:403–414. doi:10.1007/s00432-017-2556-6. PMID:29249005. PubMed DOI

Patt Y, Rojas-Hernandez C, Fekrazad HM, Bansal P, Lee FC. Phase II trial of sorafenib in combination with capecitabine in patients with hepatocellular carcinoma: INST 08–20. Oncologist. 2017;22:1158–e116. doi:10.1634/theoncologist.2017-0168. PMID:28687627. PubMed DOI PMC

Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M, Seya T. Toll-like receptor 2 ligand and interferon-gamma suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 2017;7:e1373231. doi:10.1080/2162402X.2017.1373231. PMID:29296526. PubMed DOI PMC

Nirschl CJ, Suarez-Farinas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, Liu Y, Zhu Q, Devi KSP, Carroll SL, et al.. IFNgamma-Dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell. 2017;170:127–41 e15. doi:10.1016/j.cell.2017.06.016. PubMed DOI PMC

Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D'Angelo SP, Shih KC, Lebbe C, Linette GP, Milella M, et al.. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85. doi:10.1016/S1470-2045(16)30364-3. PMID:27592805. PubMed DOI PMC

Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, Leach J, Edenfield WJ, Wang D, Grote HJ, et al.. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18:599–610. doi:10.1016/S1470-2045(17)30240-1. PMID:28373005. PubMed DOI PMC

Heery CR, O'Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, Lamping E, Oyelakin I, Marte JL, Lepone LM, et al.. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1 a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98. doi:10.1016/S1470-2045(17)30239-5. PMID:28373007. PubMed DOI PMC

Vanella V, Festino L, Strudel M, Simeone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncoimmunology. 2017;7:e1365209. doi:10.1080/2162402X.2017.1365209. PMID:29296516. PubMed DOI PMC

Schadendorf D, Nghiem P, Bhatia S, Hauschild A, Saiag P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. Oncoimmunology. 2017;6:e1338237. doi:10.1080/2162402X.2017.1338237. PMID:29123950. PubMed DOI PMC

Sander FE, Nilsson M, Rydstrom A, Aurelius J, Riise RE, Movitz C, Bernson E, Kiffin R, Stahlberg A, Brune M, et al.. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84. doi:10.1007/s00262-017-2040-9. PMID:28721449. PubMed DOI PMC

Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L, Cortesi E, Tomasello G, Ronzoni M, Spadi R, et al.. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18. doi:10.1056/NEJMoa1403108. PMID:25337750. PubMed DOI

Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, et al.. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24:311–8. doi:10.1016/j.cytogfr.2013.05.001. PMID:23787159. PubMed DOI

Iyer SP, Hunt CR, Pandita TK. Cross talk between radiation and immunotherapy: the twain shall meet. Radiat Res. 2017. doi:10.1667/RR14941.1. PMID:29261410. PubMed DOI PMC

Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, Wit M de, et al.. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377:1919–29. doi:10.1056/NEJMoa1709937. PMID:28885881. PubMed DOI

Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, Graham C, Binder D, Serkova N, Raben D, et al.. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology. 2017;6:e1356153. doi:10.1080/2162402X.2017.1356153. PMID:29123967. PubMed DOI PMC

Davison K, Chen BE, Kukreti V, Couban S, Benger A, Berinstein NL, Kaizer L, Desjardins P, Mangel J, Zhu L, et al.. Treatment outcomes for older patients with relapsed/refractory aggressive lymphoma receiving salvage chemotherapy and autologous stem cell transplantation are similar to younger patients: a subgroup analysis from the phase III CCTG LY.12 trial. Ann Oncol. 2017;28:622–7. PMID:27993811. PubMed

Elsayad K, Susek KH, Eich HT. Total skin electron beam therapy as part of multimodal treatment strategies for primary cutaneous T-cell lymphoma. Oncol Res Treat. 2017;40:244–52. doi:10.1159/000475634. PMID:28448985. PubMed DOI

Elsayad K, Kriz J, Moustakis C, Scobioala S, Reinartz G, Haverkamp U, Willich N, Weishaupt C, Stadler R, Sunderkotter C, et al.. Total skin electron beam for primary cutaneous t-cell lymphoma. Int J Radiat Oncol Biol Phys. 2015;93:1077–86. doi:10.1016/j.ijrobp.2015.08.041. PMID:26581145. PubMed DOI

Stilgenbauer S, Dohner H. Campath-1 H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med. 2002;347:452–3. doi:10.1056/NEJM200208083470619. PMID:12167696. PubMed DOI

Elter T, Gercheva-Kyuchukova L, Pylylpenko H, Robak T, Jaksic B, Rekhtman G, Kyrcz-Krzemien S, Vatutin M, Wu J, Sirard C, et al.. Fludarabine plus alemtuzumab versus fludarabine alone in patients with previously treated chronic lymphocytic leukaemia: a randomised phase 3 trial. Lancet Oncol. 2011;12:1204–13. doi:10.1016/S1470-2045(11)70242-X. PMID:21992852. PubMed DOI

Clifton GT, Litton JK, Arrington K, Ponniah S, Ibrahim NK, Gall V, Alatrash G, Peoples GE, Mittendorf EA. Results of a phase Ib trial of combination immunotherapy with a CD8+ T cell eliciting vaccine and trastuzumab in breast cancer patients. Ann Surg Oncol. 2017;24:2161–7. doi:10.1245/s10434-017-5844-0. PMID:28315060. PubMed DOI PMC

Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, et al.. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–201. doi:10.18632/oncotarget.11751. PMID:27589688. PubMed DOI PMC

Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, Jie Z, Xie X, Ma W, Qian J, et al.. IL-15 enhances the antitumor effect of human antigen-specific CD8(+) T cells by cellular senescence delay. Oncoimmunology. 2016;5:e1237327. doi:10.1080/2162402X.2016.1237327. PMID:28123872. PubMed DOI PMC

Chen S, Huang Q, Liu J, Xing J, Zhang N, Liu Y, Wang Z, Li Q. A targeted IL-15 fusion protein with potent anti-tumor activity. Cancer Biol Ther. 2015;16:1415–21. doi:10.1080/15384047.2015.1071739. PMID:26176990. PubMed DOI PMC

Galluzzi L, Martin P. CARs on a highway with roadblocks. Oncoimmunology. 2017;6:e1388486. doi:10.1080/2162402X.2017.1388486. PMID:29209574. PubMed DOI PMC

Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6:e1358335. doi:10.1080/2162402X.2017.1358335. PMID:29147620. PubMed DOI PMC

Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015;6:187. PMID:25964783. PubMed PMC

Puri RK, Hoon DS, Leland P, Snoy P, Rand RW, Pastan I, Kreitman RJ. Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma. Cancer Res. 1996;56:5631–7. PMID:8971168. PubMed

Husain SR, Behari N, Kreitman RJ, Pastan I, Puri RK. Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res. 1998;58:3649–53. PMID:9721874. PubMed

Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000;6:2157–65. PMID:10873064. PubMed

Weber F, Asher A, Bucholz R, Berger M, Prados M, Chang S, Bruce J, Hall W, Rainov NG, Westphal M, et al.. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol. 2003;64:125–37. doi:10.1007/BF02700027. PMID:12952293. PubMed DOI

Garland L, Gitlitz B, Ebbinghaus S, Pan H, Haan H de, Puri RK, Von Hoff D, Figlin R. Phase I trial of intravenous IL-4 pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother. 2005;28:376–81. doi:10.1097/01.cji.0000162782.86008.mL. PMID:16000956. PubMed DOI

Joshi BH, Suzuki A, Fujisawa T, Leland P, Varrichio F, Lababidi S, Lloyd R, Kasperbauer J, Puri RK. Identification, characterization, and targeting of IL-4 receptor by IL-4-Pseudomonas exotoxin in mouse models of anaplastic thyroid cancer. Discov Med. 2015;20:273–84. PMID:26645899. PubMed

Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. doi:10.1126/science.aaa4967. PMID:25838374. PubMed DOI PMC

Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40. doi:10.1016/j.cell.2017.01.016. PMID:28187291. PubMed DOI PMC

Sadelain M. CD19 CAR T cells. Cell. 2017;171:1471. doi:10.1016/j.cell.2017.12.002. PMID:29245005. PubMed DOI

Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE, Rooney CM, Brenner MK, Leen AM, Vera JF. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656. doi:10.1080/2162402X.2016.1253656. PMID:28180032. PubMed DOI PMC

Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017;7:e1368604. doi:10.1080/2162402X.2017.1368604. PMID:29296519. PubMed DOI PMC

Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, et al.. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113:E7788–e97. doi:10.1073/pnas.1610544113. PMID:27849617. PubMed DOI PMC

Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, et al.. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2017. doi:10.1038/leu.2017.226. PubMed DOI PMC

Le DT, Crocenzi TS, Uram JN, Lutz ER, Laheru DA, Sugar EA, Vonderheide RH, Fisher GA, Ko AH, Murphy A, et al.. Randomized phase 2 study of the safety, efficacy, and immune response of GVAX pancreas (with cyclophosphamide) and CRS-207 with or without nivolumab in patients with previously treated metastatic pancreatic adenocarcinoma (STELLAR). J. Clin. Oncol. 2016;34:TPS4153–TPS. doi:10.1200/jco.2016.34.4_suppl.tps486. DOI

Anderson PM, Ghisoli M, Barve MA, Gill JB, Wexler LH, DeAngulo G, Neville K, Manning L, Wallraven G, Senzer NN, et al.. A bi-shRNAfurin and GMCSF engineered autologous tumor cell immunotherapy vs. gemcitabine + docetaxel for Ewing sarcoma and with cryoablation in Ewing family tumors. J. Clin. Oncol. 2017;35:TPS11079–TPS.

Rekoske BT, Olson BM, McNeel DG. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. Oncoimmunology. 2016;5:e1165377. doi:10.1080/2162402X.2016.1165377. PMID:27471641. PubMed DOI PMC

Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2017. doi:10.2217/fon-2017-0531. PMID:29260582. PubMed DOI PMC

Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes. Clin Cancer Res. 2017;23:6764–70. doi:10.1158/1078-0432.CCR-17-0019. PMID:28663235. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace