Trial Watch-Oncolytic viruses and cancer therapy

. 2016 Feb ; 5 (2) : e1117740. [epub] 20151208

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu přehledy, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27057469

Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.

Group of Immune receptors of the Innate and Adaptive System Institut d'Investigacions Biomédiques August Pi i Sunyer Barcelona Spain

Gustave Roussy Cancer Campus Villejuif France

Gustave Roussy Cancer Campus Villejuif France; INSERM U1015 CICBT507 Villejuif France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Gustave Roussy Cancer Campus Villejuif France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer Center de Recherche des Cordeliers Paris France; Pôle de Biologie Hôpital Européen Georges Pompidou AP HP Paris France; Metabolomics and Cell Biology Platforms Gustave Roussy Cancer Campus Villejuif France; Department of Women's and Children's Health Karolinska University Hospital Stockholm Sweden

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Equipe 13 Center de Recherche des Cordeliers Paris France

INSERM U1138 Paris France; Université Paris Descartes Paris 5 Sorbonne Paris Cité Paris France; Université Pierre et Marie Curie Paris 6 Paris France; Laboratory of Integrative Cancer Immunology Centre de Recherche des Cordeliers Paris France

Sotio Prague Czech Republic; Dept of Immunology 2nd Faculty of Medicine and University Hospital Motol Charles University Prague Czech Republic

Transgene S A Illkirch Graffenstaden France

Zobrazit více v PubMed

Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30:658-70; PMID:22781695; http://dx.doi.org/10.1038/nbt.2287 PubMed DOI PMC

Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216; PMID:17383089; http://dx.doi.org/10.1016/j.canlet.2007.02.002 PubMed DOI PMC

Walther W, Schlag PM. Current status of gene therapy for cancer. Curr Opin Oncol 2013; 25:659-64; PMID:24100345; http://dx.doi.org/10.1097/CCO.0000000000000004 PubMed DOI

Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe 2014; 15:260-5; PMID:24629333; http://dx.doi.org/10.1016/j.chom.2014.01.002 PubMed DOI PMC

Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14:559-67; PMID:24990523; http://dx.doi.org/10.1038/nrc3770 PubMed DOI

Cheema TA, Fecci PE, Ning J, Rabkin SD. Immunovirotherapy for the treatment of glioblastoma. Oncoimmunology 2014; 3:e27218; PMID:24575383; http://dx.doi.org/10.4161/onci.27218 PubMed DOI PMC

Griffith TS, Kawakita M, Tian J, Ritchey J, Tartaglia J, Sehgal I, Thompson TC, Zhao W, Ratliff TL. Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses. J Natl Cancer Inst 2001; 93:998-1007; PMID:11438565; http://dx.doi.org/10.1093/jnci/93.13.998 PubMed DOI

Makela AR, Matilainen H, White DJ, Ruoslahti E, Oker-Blom C. Enhanced baculovirus-mediated transduction of human cancer cells by tumor-homing peptides. J Virol 2006; 80:6603-11; PMID:16775347; http://dx.doi.org/10.1128/JVI.00528-06 PubMed DOI PMC

Singh P, Destito G, Schneemann A, Manchester M. Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 2006; 4:2; PMID:16476163; http://dx.doi.org/10.1186/1477-3155-4-2 PubMed DOI PMC

Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G. Viral control of mitochondrial apoptosis. PLoS Pathog 2008; 4:e1000018; PMID:18516228; http://dx.doi.org/10.1371/journal.ppat.1000018 PubMed DOI PMC

Boisgerault N, Guillerme JB, Pouliquen D, Mesel-Lemoine M, Achard C, Combredet C, Fonteneau JF, Tangy F, Grégoire M. Natural oncolytic activity of live-attenuated measles virus against human lung and colorectal adenocarcinomas. Biomed Res Int 2013; 2013:387362; PMID:23586034; http://dx.doi.org/10.1155/2013/387362 PubMed DOI PMC

Donnelly O, Harrington K, Melcher A, Pandha H. Live viruses to treat cancer. J R Soc Med 2013; 106:310-4; PMID:23824333; http://dx.doi.org/10.1177/0141076813494196 PubMed DOI PMC

Kochneva G, Zonov E, Grazhdantseva A, Yunusova A, Sibolobova G, Popov E, Taranov O, Netesov S, Chumakov P, Ryabchikova E. Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression. Oncotarget 2014; 5:11269-82; PMID:25358248; http://dx.doi.org/10.18632/oncotarget.2579 PubMed DOI PMC

Kim MK, Breitbach CJ, Moon A, Heo J, Lee YK, Cho M, Lee JW, Kim SG, Kang DH, Bell JC et al.. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci Transl Med 2013; 5:185ra63; PMID:23677592; http://dx.doi.org/10.1186/1479-5876-11-185 PubMed DOI

Liikanen I, Ahtiainen L, Hirvinen ML, Bramante S, Cerullo V, Nokisalmi P, Hemminki O, Diaconu I, Pesonen S, Koski A et al.. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther 2013; 21:1212-23; PMID:23546299; http://dx.doi.org/10.1038/mt.2013.51 PubMed DOI PMC

Kanerva A, Nokisalmi P, Diaconu I, Koski A, Cerullo V, Liikanen I, Tähtinen S, Oksanen M, Heiskanen R, Pesonen S et al.. Antiviral and antitumor T-cell immunity in patients treated with GM-CSF-coding oncolytic adenovirus. Clin Cancer Res 2013; 19:2734-44; PMID:23493351; http://dx.doi.org/10.1158/1078-0432.CCR-12-2546 PubMed DOI

Batenchuk C, Le Boeuf F, Stubbert L, Falls T, Atkins HL, Bell JC, Conrad DP. Non-replicating rhabdovirus-derived particles (NRRPs) eradicate acute leukemia by direct cytolysis and induction of antitumor immunity. Blood Cancer J 2013; 3:e123; PMID:23852158; http://dx.doi.org/10.1038/bcj.2013.23 PubMed DOI PMC

Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, Debets R, Lamfers M. The in vivo therapeutic efficacy of the oncolytic adenovirus Delta24-RGD is mediated by tumor-specific immunity. PLoS One 2014; 9:e97495; PMID:24866126; http://dx.doi.org/10.1371/journal.pone.0097495 PubMed DOI PMC

Jiang H, Fueyo J. Healing after death: antitumor immunity induced by oncolytic adenoviral therapy. Oncoimmunology 2014; 3:e947872; PMID:25954598; http://dx.doi.org/10.4161/21624011.2014.947872 PubMed DOI PMC

Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA, Fielding AK. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97:3746-54; PMID:11389012; http://dx.doi.org/10.1182/blood.V97.12.3746 PubMed DOI

Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62:4656-62; PMID:12183422 PubMed

Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR, Desmond RA, Wang M, Takayama K, Hakkarainen T et al.. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene Ther 2005; 12:87-94; PMID:15385953; http://dx.doi.org/10.1038/sj.gt.3302387 PubMed DOI

Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 2001; 8:341-8; PMID:11313809; http://dx.doi.org/10.1038/sj.gt.3301389 PubMed DOI

Massari I, Donnini A, Argentati K, Straino S, Mangoni A, Gaetano C, Viticchi C, Capogrossi M, Provinciali M. Age-dependent effects of repeated immunization with a first generation adenovirus vector on the immune response and transgene expression in young and old rats. Exp Gerontol 2002; 37:823-31; PMID:12175482; http://dx.doi.org/10.1016/S0531-5565(02)00011-6 PubMed DOI

Ikeda K, Wakimoto H, Ichikawa T, Jhung S, Hochberg FH, Louis DN, Chiocca EA. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J Virol 2000; 74:4765-75; PMID:10775615; http://dx.doi.org/10.1128/JVI.74.10.4765-4775.2000 PubMed DOI PMC

Pensiero MN, Wysocki CA, Nader K, Kikuchi GE. Development of amphotropic murine retrovirus vectors resistant to inactivation by human serum. Hum Gene Ther 1996; 7:1095-101; PMID:8773511; http://dx.doi.org/10.1089/hum.1996.7.9-1095 PubMed DOI

Bernt KM, Ni S, Gaggar A, Li ZY, Shayakhmetov DM, Lieber A. The effect of sequestration by nontarget tissues on anti-tumor efficacy of systemically applied, conditionally replicating adenovirus vectors. Mol Ther 2003; 8:746-55; PMID:14599807; http://dx.doi.org/10.1016/j.ymthe.2003.07.006 PubMed DOI

Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 2002; 20:825-52; PMID:11861619; http://dx.doi.org/10.1146/annurev.immunol.20.103001.114744 PubMed DOI

Taipale K, Liikanen I, Juhila J, Turkki R, Tahtinen S, Kankainen M, Vassilev L, Ristimäki A, Koski A, Kanerva A et al.. Chronic activation of innate immunity correlates with poor prognosis in cancer patients treated with oncolytic adenovirus. Mol Ther 2015; PMID:26310629; http://dx.doi.org/10.1038/mt.2015.143 PubMed DOI PMC

Alvarez-Breckenridge CA, Yu J, Caligiuri MA, Chiocca EA. Uncovering a novel mechanism whereby NK cells interfere with glioblastoma virotherapy. Oncoimmunology 2013; 2:e23658; PMID:23734319; http://dx.doi.org/10.4161/onci.23658 PubMed DOI PMC

Ayala-Breton C, Barber GN, Russell SJ, Peng KW. Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum Gene Ther 2012; 23:484-91; PMID:22171635; http://dx.doi.org/10.1089/hum.2011.146 PubMed DOI PMC

Muik A, Kneiske I, Werbizki M, Wilflingseder D, Giroglou T, Ebert O, Kraft A, Dietrich U, Zimmer G, Momma S et al.. Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism. J Virol 2011; 85:5679-84; PMID:21450833; http://dx.doi.org/10.1128/JVI.02511-10 PubMed DOI PMC

Uchida H, Marzulli M, Nakano K, Goins WF, Chan J, Hong CS, Mazzacurati L, Yoo JY, Haseley A, Nakashima H et al.. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21:561-9; PMID:23070115; http://dx.doi.org/10.1038/mt.2012.211 PubMed DOI PMC

Bach P, Abel T, Hoffmann C, Gal Z, Braun G, Voelker I, Ball CR, Johnston IC, Lauer UM, Herold-Mende C et al.. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res 2013; 73:865-74; PMID:23293278; http://dx.doi.org/10.1158/0008-5472.CAN-12-2221 PubMed DOI

Nanni P, Gatta V, Menotti L, De Giovanni C, Ianzano M, Palladini A, Grosso V, Dall'ora M, Croci S, Nicoletti G et al.. Preclinical therapy of disseminated HER-2(+) ovarian and breast carcinomas with a HER-2-retargeted oncolytic herpesvirus. PLoS Pathog 2013; 9:e1003155; PMID:23382683; http://dx.doi.org/10.1371/journal.ppat.1003155 PubMed DOI PMC

Sugio K, Sakurai F, Katayama K, Tashiro K, Matsui H, Kawabata K, Kawase A, Iwaki M, Hayakawa T, Fujiwara T et al.. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin Cancer Res 2011; 17:2807-18; PMID:21346145; http://dx.doi.org/10.1158/1078-0432.CCR-10-2008 PubMed DOI

Kelly EJ, Nace R, Barber GN, Russell SJ. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J Virol 2010; 84:1550-62; PMID:19906911; http://dx.doi.org/10.1128/JVI.01788-09 PubMed DOI PMC

Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther 2008; 16:1437-43; PMID:18560417; http://dx.doi.org/10.1038/mt.2008.130 PubMed DOI

Kelly EJ, Hadac EM, Greiner S, Russell SJ. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008; 14:1278-83; PMID:18953352; http://dx.doi.org/10.1038/nm.1776 PubMed DOI

Callegari E, Elamin BK, D'Abundo L, Falzoni S, Donvito G, Moshiri F, Milazzo M, Altavilla G, Giacomelli L, Fornari F et al.. Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS One 2013; 8:e73964; PMID:24069256; http://dx.doi.org/10.1371/journal.pone.0073964 PubMed DOI PMC

Li JM, Kao KC, Li LF, Yang TM, Wu CP, Horng YM, Jia WW, Yang CT. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10:241; PMID:23876001; http://dx.doi.org/10.1186/1743-422X-10-241 PubMed DOI PMC

Ylosmaki E, Lavilla-Alonso S, Jaamaa S, Vaha-Koskela M, af Hallstrom T, Hemminki A, Arola J, Mäkisalo H, Saksela K. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver. PLoS One 2013; 8:e54506; PMID:23349911; http://dx.doi.org/10.1371/journal.pone.0054506 PubMed DOI PMC

Yang X, Chen E, Jiang H, Muszynski K, Harris RD, Giardina SL, Gromeier M, Mitra G, Soman G. Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay. J Virol Methods 2009; 155:44-54; PMID:18951922; http://dx.doi.org/10.1016/j.jviromet.2008.09.020 PubMed DOI PMC

Ammayappan A, Nace R, Peng KW, Russell SJ. Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28; PMID:23283963; http://dx.doi.org/10.1128/JVI.02984-12 PubMed DOI PMC

Goetz C, Gromeier M. Preparing an oncolytic poliovirus recombinant for clinical application against glioblastoma multiforme. Cytokine Growth Factor Rev 2010; 21:197-203; PMID:20299272; http://dx.doi.org/10.1016/j.cytogfr.2010.02.005 PubMed DOI PMC

Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenroder O, Putzer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2014; 5:5893-907; PMID:25071017; http://dx.doi.org/10.18632/oncotarget.1839 PubMed DOI PMC

Passer BJ, Cheema T, Zhou B, Wakimoto H, Zaupa C, Razmjoo M, Sarte J, Wu S, Wu CL, Noah JW et al.. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication. Cancer Res 2010; 70:3890-5; PMID:20424118; http://dx.doi.org/10.1158/0008-5472.CAN-10-0155 PubMed DOI PMC

Lee CY, Bu LX, DeBenedetti A, Williams BJ, Rennie PS, Jia WW. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol Ther 2010; 18:929-35; PMID:20179676; http://dx.doi.org/10.1038/mt.2010.26 PubMed DOI PMC

Cuevas Y, Hernandez-Alcoceba R, Aragones J, Naranjo-Suarez S, Castellanos MC, Esteban MA, Martín-Puig S, Landazuri MO, del Peso L. Specific oncolytic effect of a new hypoxia-inducible factor-dependent replicative adenovirus on von Hippel-Lindau-defective renal cell carcinomas. Cancer Res 2003; 63:6877-84; PMID:14583486 PubMed

Post DE, Van Meir EG. A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22:2065-72; PMID:12687009; http://dx.doi.org/10.1038/sj.onc.1206464 PubMed DOI

Lin WH, Yeh SH, Yang WJ, Yeh KH, Fujiwara T, Nii A, Chang SS, Chen PJ. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int J Cancer 2013; 132:1451-62; PMID:22886913; http://dx.doi.org/10.1002/ijc.27770 PubMed DOI

Takahashi H, Hyakusoku H, Horii C, Takahashi M, Nishimura G, Taguchi T, Kondo N, Sakakibara A, Urata Y, Sano D. Telomerase-specific oncolytic adenovirus: Antitumor effects on radiation-resistant head and neck squamous cell carcinoma cells. Head Neck 2014; 36:411-8; PMID:23728900; http://dx.doi.org/10.1002/hed.23309 PubMed DOI

Jin C, Yu D, Cancer M, Nilsson B, Leja J, Essand M. Tat-PTD-modified oncolytic adenovirus driven by the SCG3 promoter and ASH1 enhancer for neuroblastoma therapy. Hum Gene Ther 2013; 24:766-75; PMID:23889332; http://dx.doi.org/10.1089/hum.2012.132 PubMed DOI PMC

Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q et al.. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60; PMID:2447383323345509 PubMed PMC

Shobana R, Samal SK, Elankumaran S. Prostate-specific antigen-retargeted recombinant newcastle disease virus for prostate cancer virotherapy. J Virol 2013; 87:3792-800; PMID:23345509; http://dx.doi.org/10.1128/JVI.02394-12 PubMed DOI PMC

Seo HK, Seo JB, Nam JK, Jeong KC, Shin SP, Kim IH, Lee SD, Lee SJ. Development of replication-competent adenovirus for bladder cancer by controlling adenovirus E1a and E4 gene expression with the survivin promoter. Oncotarget 2014; 5:5615-23; PMID:25015402; http://dx.doi.org/10.18632/oncotarget.2151 PubMed DOI PMC

Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q et al.. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60; PMID:24473833; http://dx.doi.org/10.18632/oncotarget.1430 PubMed DOI PMC

Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S, Marius R, Reynard J, Poliquin L, Atkins H et al.. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 2003; 4:263-75; PMID:14585354; http://dx.doi.org/10.1016/S1535-6108(03)00241-1 PubMed DOI

Sarinella F, Calistri A, Sette P, Palu G, Parolin C. Oncolysis of pancreatic tumour cells by a gamma34.5-deleted HSV-1 does not rely upon Ras-activation, but on the PI 3-kinase pathway. Gene Ther 2006; 13:1080-7; PMID:16554839; http://dx.doi.org/10.1038/sj.gt.3302770 PubMed DOI

Krishnamurthy S, Takimoto T, Scroggs RA, Portner A. Differentially regulated interferon response determines the outcome of Newcastle disease virus infection in normal and tumor cell lines. J Virol 2006; 80:5145-55; PMID:16698995; http://dx.doi.org/10.1128/JVI.02618-05 PubMed DOI PMC

Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6:821-5; PMID:10888934; http://dx.doi.org/10.1038/77558 PubMed DOI

Coffey MC, Strong JE, Forsyth PA, Lee PW. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282:1332-4; PMID:9812900; http://dx.doi.org/10.1126/science.282.5392.1332 PubMed DOI

Cheng PH, Rao XM, McMasters KM, Zhou HS. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E. PLoS One 2013; 8:e57340; PMID:23437375; http://dx.doi.org/10.1371/journal.pone.0057340 PubMed DOI PMC

Okemoto K, Wagner B, Meisen H, Haseley A, Kaur B, Chiocca EA. STAT3 activation promotes oncolytic HSV1 replication in glioma cells. PLoS One 2013; 8:e71932; PMID:23936533; http://dx.doi.org/10.1371/journal.pone.0071932 PubMed DOI PMC

Maitra R, Seetharam R, Tesfa L, Augustine TA, Klampfer L, Coffey MC, Mariadason JM, Goel S. Oncolytic reovirus preferentially induces apoptosis in KRAS mutant colorectal cancer cells, and synergizes with irinotecan. Oncotarget 2014; 5:2807-19; PMID:24798549; http://dx.doi.org/10.18632/oncotarget.1921 PubMed DOI PMC

Li J, Liu H, Li L, Wu H, Wang C, Yan Z, Wang Y, Su C, Jin H, Zhou F et al.. The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. Oncol Rep 2013; 29:895-902; PMID:23292657; http://dx.doi.org/10.3892/or.2012.2217 PubMed DOI PMC

Banaszynski LA, Sellmyer MA, Contag CH, Wandless TJ, Thorne SH. Chemical control of protein stability and function in living mice. Nat Med 2008; 14:1123-7; PMID:18836461; http://dx.doi.org/10.1038/nm.1754 PubMed DOI PMC

Glass M, Busche A, Wagner K, Messerle M, Borst EM. Conditional and reversible disruption of essential herpesvirus proteins. Nat Methods 2009; 6:577-9; PMID:19578384; http://dx.doi.org/10.1038/nmeth.1346 PubMed DOI

Wildner O, Blaese RM, Morris JC. Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999; 59:410-3; PMID:9927055 PubMed

Tseng JC, Zanzonico PB, Levin B, Finn R, Larson SM, Meruelo D. Tumor-specific in vivo transfection with HSV-1 thymidine kinase gene using a Sindbis viral vector as a basis for prodrug ganciclovir activation and PET. J Nucl Med 2006; 47:1136-43; PMID:16818948 PubMed

Foloppe J, Kintz J, Futin N, Findeli A, Cordier P, Schlesinger Y, Hoffmann C, Tosch C, Balloul JM, Erbs P. Targeted delivery of a suicide gene to human colorectal tumors by a conditionally replicating vaccinia virus. Gene Ther 2008; 15:1361-71; PMID:18480846; http://dx.doi.org/10.1038/gt.2008.82 PubMed DOI

Liu Y, Deisseroth A. Oncolytic adenoviral vector carrying the cytosine deaminase gene for melanoma gene therapy. Cancer Gene Ther 2006; 13:845-55; PMID:16710344; http://dx.doi.org/10.1038/sj.cgt.7700962 PubMed DOI

Leveille S, Samuel S, Goulet ML, Hiscott J. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy. Cancer Gene Ther 2011; 18:435-43; PMID:21394109; http://dx.doi.org/10.1038/cgt.2011.14 PubMed DOI

Dong X, Qu W, Ma S, Zhu Z, Zheng C, He A, Karlsson A, Xu K, Zheng X. Potent antitumoral effects of targeted promoter-driven oncolytic adenovirus armed with Dm-dNK for breast cancer in vitro and in vivo. Cancer Lett 2013; 328:95-103; PMID:23000515; http://dx.doi.org/10.1016/j.canlet.2012.09.003 PubMed DOI

Hartkopf AD, Bossow S, Lampe J, Zimmermann M, Taran FA, Wallwiener D, Fehm T, Bitzer M, Lauer UM. Enhanced killing of ovarian carcinoma using oncolytic measles vaccine virus armed with a yeast cytosine deaminase and uracil phosphoribosyltransferase. Gynecol Oncol 2013; 130:362-8; PMID:23676551; http://dx.doi.org/10.1016/j.ygyno.2013.05.004 PubMed DOI

Lampe J, Bossow S, Weiland T, Smirnow I, Lehmann R, Neubert W, Bitzer M, Lauer UM. An armed oncolytic measles vaccine virus eliminates human hepatoma cells independently of apoptosis. Gene Ther 2013; 20:1033-41; PMID:23719065; http://dx.doi.org/10.1038/gt.2013.28 PubMed DOI

Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H. Adenovirus-mediated transfer of p53 and Fas ligand drastically enhances apoptosis in gliomas. Cancer Gene Ther 2000; 7:732-8; PMID:10830720; http://dx.doi.org/10.1038/sj.cgt.7700160 PubMed DOI

Zhao L, Dong A, Gu J, Liu Z, Zhang Y, Zhang W, Wang Y, He L, Qian C, Qian Q et al.. The antitumor activity of TRAIL and IL-24 with replicating oncolytic adenovirus in colorectal cancer. Cancer Gene Ther 2006; 13:1011-22; PMID:16799468; http://dx.doi.org/10.1038/sj.cgt.7700969 PubMed DOI

Zhu W, Zhang H, Shi Y, Song M, Zhu B, Wei L. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 2013; 14:1016-23; PMID:24025362; http://dx.doi.org/10.4161/cbt.26043 PubMed DOI PMC

Jiang G, Li J, Zeng Z, Xian L. Lentivirus-mediated gene therapy by suppressing survivin in BALB/c nude mice bearing oral squamous cell carcinoma. Cancer Biol Ther 2006; 5:435-40; PMID:16575205; http://dx.doi.org/10.4161/cbt.5.4.2542 PubMed DOI

Shen W, Tu JK, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin RNA interference and 5-fluorouracil synergistically suppress the lymphatic metastasis of colorectal cancer. Oncol Rep 2010; 24:1285-90; PMID:20878122; http://dx.doi.org/10.3892/or_00000864 PubMed DOI

Shen W, Wang CY, Wang XH, Fu ZX. Oncolytic adenovirus mediated Survivin knockdown by RNA interference suppresses human colorectal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res 2009; 28:81; PMID:19527508; http://dx.doi.org/10.1186/1756-9966-28-81 PubMed DOI PMC

Tong Y, You L, Liu H, Li L, Meng H, Qian Q, Qian W. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia. Oncotarget 2013; 4:860-74; PMID:23765161; http://dx.doi.org/10.18632/oncotarget.1018 PubMed DOI PMC

Fernandez-Ulibarri I, Hammer K, Arndt MA, Kaufmann JK, Dorer D, Engelhardt S, Kontermann RE, Hess J, Allgayer H, Krauss J et al.. Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity. Int J Cancer 2015; 136:2228-40; PMID:25303768; http://dx.doi.org/10.1002/ijc.29258 PubMed DOI

Pol JG, Zhang L, Bridle BW, Stephenson KB, Resseguier J, Hanson S, Chen L, Kazdhan N, Bramson JL, Stojdl DF et al.. Maraba virus as a potent oncolytic vaccine vector. Mol Ther 2014; 22:420-9; PMID:24322333; http://dx.doi.org/10.1038/mt.2013.249 PubMed DOI PMC

Bridle BW, Chen L, Lemay CG, Diallo JS, Pol J, Nguyen A, Capretta A, He R, Bramson JL, Bell JC et al.. HDAC inhibition suppresses primary immune responses, enhances secondary immune responses, and abrogates autoimmunity during tumor immunotherapy. Mol Ther 2013; 21:887-94; PMID:23295947; http://dx.doi.org/10.1038/mt.2012.265 PubMed DOI PMC

Bridle BW, Clouthier D, Zhang L, Pol J, Chen L, Lichty BD, Bramson JL, Wan Y. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 T-cell responses to anticancer vaccines. Oncoimmunology 2013; 2:e26013; PMID:24083086; http://dx.doi.org/10.4161/onci.26013 PubMed DOI PMC

Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E, Brunellière J, Bramson JL, Lichty BD, Wan Y. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 2010; 184:4269-75; PMID:20551919; http://dx.doi.org/10.1038/mt.2010.98 PubMed DOI PMC

Bridle BW, Boudreau JE, Lichty BD, Brunelliere J, Stephenson K, Koshy S, Bramson JL, Wan Y. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17:1814-21; PMID:19603003; http://dx.doi.org/10.1038/mt.2009.154 PubMed DOI PMC

Woller N, Gurlevik E, Ureche CI, Schumacher A, Kuhnel F. Oncolytic viruses as anticancer vaccines. Front Oncol 2014; 4:188; PMID:25101244; http://dx.doi.org/10.3389/fonc.2014.00188 PubMed DOI PMC

Diaconu I, Cerullo V, Hirvinen ML, Escutenaire S, Ugolini M, Pesonen SK, Bramante S, Parviainen S, Kanerva A, Loskog AS et al.. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res 2012; 72:2327-38; PMID:22396493; http://dx.doi.org/10.1158/0008-5472.CAN-11-2975 PubMed DOI

Pesonen S, Diaconu I, Kangasniemi L, Ranki T, Kanerva A, Pesonen SK, Gerdemann U, Leen AM, Kairemo K, Oksanen M et al.. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res 2012; 72:1621-31; PMID:22323527; http://dx.doi.org/10.1158/0008-5472.CAN-11-3001 PubMed DOI

Gomes EM, Rodrigues MS, Phadke AP, Butcher LD, Starling C, Chen S, Chang D, Hernandez-Alcoceba R, Newman JT, Stone MJ et al.. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin Cancer Res 2009; 15:1317-25; PMID:19228733; http://dx.doi.org/10.1158/1078-0432.CCR-08-1360 PubMed DOI

Choi KJ, Kim JH, Lee YS, Kim J, Suh BS, Kim H, Cho S, Sohn JH, Kim GE, Yun CO. Concurrent delivery of GM-CSF and B7-1 using an oncolytic adenovirus elicits potent antitumor effect. Gene Ther 2006; 13:1010-20; PMID:16525479; http://dx.doi.org/10.1038/sj.gt.3302759 PubMed DOI

Parviainen S, Ahonen M, Diaconu I, Hirvinen M, Karttunen A, Vaha-Koskela M, Hemminki A, Cerullo V. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Ther 2014; 21:195-204; PMID:24305418; http://dx.doi.org/10.1038/gt.2013.73 PubMed DOI

Wei H, Zhao L, Hellstrom I, Hellstrom KE, Guo Y. Dual targeting of CD137 co-stimulatory and PD-1 co-inhibitory molecules for ovarian cancer immunotherapy. Oncoimmunology 2014; 3:e28248; PMID:25050196; http://dx.doi.org/10.4161/onci.28248 PubMed DOI PMC

Thomas LJ, He LZ, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T-cell activation and antitumor immunity. Oncoimmunology 2014; 3:e27255; PMID:24605266; http://dx.doi.org/10.4161/onci.27255 PubMed DOI PMC

Zamarin D, Vigil A, Kelly K, Garcia-Sastre A, Fong Y. Genetically engineered Newcastle disease virus for malignant melanoma therapy. Gene Ther 2009; 16:796-804; PMID:19242529; http://dx.doi.org/10.1038/gt.2009.14 PubMed DOI PMC

Takehara Y, Satoh T, Nishizawa A, Saeki K, Nakamura M, Masuzawa M, Kaneda Y, Katayama I, Yokozeki H. Anti-tumor effects of inactivated Sendai virus particles with an IL-2 gene on angiosarcoma. Clin Immunol 2013; 149:1-10; PMID:23886549; http://dx.doi.org/10.1016/j.clim.2013.05.019 PubMed DOI

Beyer M. Interleukin-2 treatment of tumor patients can expand regulatory T cells. Oncoimmunology 2012; 1:1181-2; PMID:23170272; http://dx.doi.org/10.4161/onci.20639 PubMed DOI PMC

Wong RJ, Chan MK, Yu Z, Ghossein RA, Ngai I, Adusumilli PS, Stiles BM, Shah JP, Singh B, Fong Y. Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 2004; 10:4509-16; PMID:15240543; http://dx.doi.org/10.1158/1078-0432.CCR-04-0081 PubMed DOI

Zhang SN, Choi IK, Huang JH, Yoo JY, Choi KJ, Yun CO. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 2011; 19:1558-68; PMID:21468000; http://dx.doi.org/10.1038/mt.2011.29 PubMed DOI PMC

Parker JN, Gillespie GY, Love CE, Randall S, Whitley RJ, Markert JM. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci U S A 2000; 97:2208-13; PMID:10681459; http://dx.doi.org/10.1073/pnas.040557897 PubMed DOI PMC

Passer BJ, Cheema T, Wu S, Wu CL, Rabkin SD, Martuza RL. Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 2013; 20:17-24; PMID:23138870; http://dx.doi.org/10.1038/cgt.2012.75 PubMed DOI PMC

Zhang W, Fulci G, Wakimoto H, Cheema TA, Buhrman JS, Jeyaretna DS, Stemmer Rachamimov AO, Rabkin SD, Martuza RL. Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 2013; 15:591-9; PMID:23730207; http://dx.doi.org/10.1593/neo.13158 PubMed DOI PMC

Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20:1131-9; PMID:23842593; http://dx.doi.org/10.1038/gt.2013.40 PubMed DOI PMC

Roth JC, Cassady KA, Cody JJ, Parker JN, Price KH, Coleman JM, Peggins JO, Noker PE, Powers N, Grimes S et al.. Evaluation of the safety and biodistribution of M032, an attenuated HSV-1 virus expressing hIL-12, after intracerebral administration to aotus non-human primates. Hum Gene Ther Clin Dev 2014; PMID:24579875 PubMed PMC

Malvicini M, Alaniz L, Bayo J, Garcia M, Piccioni F, Fiore E, Atorrasagasti C, Aquino JB, Matar P, Mazzolini G. Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice. Oncoimmunology 2012; 1:1038-47; PMID:23170252; http://dx.doi.org/10.4161/onci.20684 PubMed DOI PMC

Wong HC, Jeng EK, Rhode PR. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8 T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2013; 2:e26442; PMID:24404427; http://dx.doi.org/10.4161/onci.26442 PubMed DOI PMC

Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther 2012; 19:238-46; PMID:22158521; http://dx.doi.org/10.1038/cgt.2011.81 PubMed DOI

Liu J, Wennier S, Reinhard M, Roy E, MacNeill A, McFadden G. Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. J Virol 2009; 83:5933-8; PMID:19279088; http://dx.doi.org/10.1128/JVI.00204-09 PubMed DOI PMC

van Rikxoort M, Michaelis M, Wolschek M, Muster T, Egorov A, Seipelt J, Doerr HW, Cinatl J Jr. Oncolytic effects of a novel influenza A virus expressing interleukin-15 from the NS reading frame. PLoS One 2012; 7:e36506; PMID:22563505; http://dx.doi.org/10.1371/journal.pone.0036506 PubMed DOI PMC

Gaston DC, Odom CI, Li L, Markert JM, Roth JC, Cassady KA, Whitley RJ, Parker JN. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS One 2013; 8:e81768; PMID:24312353; http://dx.doi.org/10.1371/journal.pone.0081768 PubMed DOI PMC

Vincent M, Quemener A, Jacques Y. Antitumor activity of an immunocytokine composed of an anti-GD2 antibody and the IL-15 superagonist RLI. Oncoimmunology 2013; 2:e26441; PMID:24349876; http://dx.doi.org/10.4161/onci.26441 PubMed DOI PMC

Choi IK, Li Y, Oh E, Kim J, Yun CO. Oncolytic adenovirus expressing IL-23 and p35 elicits IFN-gamma- and TNF-alpha-co-producing T cell-mediated antitumor immunity. PLoS One 2013; 8:e67512; PMID:23844018; http://dx.doi.org/10.1371/journal.pone.0067512 PubMed DOI PMC

Jiang G, Jiang AJ, Cheng Q, Tian H, Li LT, Zheng JN. A dual-regulated oncolytic adenovirus expressing interleukin-24 sensitizes melanoma cells to temozolomide via the induction of apoptosis. Tumour Biol 2013; 34:1263-71; PMID:23430584; http://dx.doi.org/10.1007/s13277-013-0701-7 PubMed DOI

Lou W, Chen Q, Ma L, Liu J, Yang Z, Shen J, Cui Y, Bian XW, Qian C. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experimental tumor model. J Mol Med (Berl) 2013; 91:715-25; PMID:23292172; http://dx.doi.org/10.1007/s00109-012-0985-x PubMed DOI

He B, Huang X, Liu X, Xu B. Cancer targeting gene-viro-therapy for pancreatic cancer using oncolytic adenovirus ZD55-IL-24 in immune-competent mice. Mol Biol Rep 2013; 40:5397-405; PMID:23666064; http://dx.doi.org/10.1007/s11033-013-2638-8 PubMed DOI

Fang L, Cheng Q, Bai J, Qi YD, Liu JJ, Li LT, Zheng JN. An oncolytic adenovirus expressing interleukin-24 enhances antitumor activities in combination with paclitaxel in breast cancer cells. Mol Med Rep 2013; 8:1416-24; PMID:24042845; http://dx.doi.org/10.3892/mmr.2013.1680 PubMed DOI

Pesonen S, Diaconu I, Cerullo V, Escutenaire S, Raki M, Kangasniemi L, Nokisalmi P, Dotti G, Guse K, Laasonen L et al.. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int J Cancer 2012; 130:1937-47; PMID:21630267; http://dx.doi.org/10.1002/ijc.26216 PubMed DOI

Burke JM, Lamm DL, Meng MV, Nemunaitis JJ, Stephenson JJ, Arseneau JC, Aimi J, Lerner S, Yeung AW, Kazarian   et al.. A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 2012; 188:2391-7; PMID:23088985; http://dx.doi.org/10.1016/j.juro.2012.07.097 PubMed DOI

Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW et al.. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19:329-36; PMID:23396206; http://dx.doi.org/10.1038/nm.3089 PubMed DOI PMC

Thorne SH. The role of GM-CSF in enhancing immunotherapy of cancer. Immunotherapy 2013; 5:817-9; PMID:23902549; http://dx.doi.org/10.2217/imt.13.65 PubMed DOI

Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C, Ungerechts G. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 2013; 24:644-54; PMID:23642239; http://dx.doi.org/10.1089/hum.2012.205 PubMed DOI PMC

Liu H, Yuan SJ, Chen YT, Xie YB, Cui L, Yang WZ, Yang DX, Tian YT. Preclinical evaluation of herpes simplex virus armed with granulocyte-macrophage colony-stimulating factor in pancreatic carcinoma. World J Gastroenterol 2013; 19:5138-43; PMID:23964149; http://dx.doi.org/10.3748/wjg.v19.i31.5138 PubMed DOI PMC

Egilmez NK, Harden JL, Rowswell-Turner RB. Chemoimmunotherapy as long-term maintenance therapy for cancer. Oncoimmunology 2012; 1:563-5; PMID:22754788; http://dx.doi.org/10.4161/onci.19369 PubMed DOI PMC

Dempe S, Lavie M, Struyf S, Bhat R, Verbeke H, Paschek S, Berghmans N, Geibig R, Rommelaere J, Van Damme J et al.. Antitumoral activity of parvovirus-mediated IL-2 and MCP-3/CCL7 delivery into human pancreatic cancer: implication of leucocyte recruitment. Cancer Immunol Immunother 2012; 61:2113-23; PMID:22576056; http://dx.doi.org/10.1007/s00262-012-1279-4 PubMed DOI PMC

Li J, O'Malley M, Sampath P, Kalinski P, Bartlett DL, Thorne SH. Expression of CCL19 from oncolytic vaccinia enhances immunotherapeutic potential while maintaining oncolytic activity. Neoplasia 2012; 14:1115-21; PMID:23308044; http://dx.doi.org/10.1593/neo.121272 PubMed DOI PMC

Kwon OJ, Kang E, Choi JW, Kim SW, Yun CO. Therapeutic targeting of chitosan-PEG-folate-complexed oncolytic adenovirus for active and systemic cancer gene therapy. J Control Release 2013; 169:257-65; PMID:23562633; http://dx.doi.org/10.1016/j.jconrel.2013.03.030 PubMed DOI

Shikano T, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M, Nishikawa Y, Shirota T, Yamada S, Fujii T et al.. High therapeutic potential for systemic delivery of a liposome-conjugated herpes simplex virus Curr Cancer Drug Targets 2011; 11:111-22; PMID:21062239; http://dx.doi.org/10.2174/156800911793743673 PubMed DOI

Green NK, Hale A, Cawood R, Illingworth S, Herbert C, Hermiston T, Subr V, Ulbrich K, van Rooijen N, Seymour LW et al.. Tropism ablation and stealthing of oncolytic adenovirus enhances systemic delivery to tumors and improves virotherapy of cancer. Nanomedicine (Lond) 2012; 7:1683-95; PMID:22709345; http://dx.doi.org/10.2217/nnm.12.50 PubMed DOI

Muthana M, Rodrigues S, Chen YY, Welford A, Hughes R, Tazzyman S, Essand M, Morrow F, Lewis CE. Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation. Cancer Res 2013; 73:490-5; PMID:23172310; http://dx.doi.org/10.1158/0008-5472.CAN-12-3056 PubMed DOI

Adair RA, Scott KJ, Fraser S, Errington-Mais F, Pandha H, Coffey M, Selby P, Cook GP, Vile R, Harrington KJ et al.. Cytotoxic and immune-mediated killing of human colorectal cancer by reovirus-loaded blood and liver mononuclear cells. Int J Cancer 2013; 132:2327-38; PMID:23114986; http://dx.doi.org/10.1002/ijc.27918 PubMed DOI PMC

Eisenstein S, Coakley BA, Briley-Saebo K, Ma G, Chen HM, Meseck M, Ward S, Divino C, Woo S, Chen SH et al.. Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 2013; 73:5003-15; PMID:23536556; http://dx.doi.org/10.1158/0008-5472.CAN-12-1597 PubMed DOI PMC

Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses. Oncoimmunology 2013; 2:e25083; PMID:24083075; http://dx.doi.org/10.4161/onci.25083 PubMed DOI PMC

Mader EK, Butler G, Dowdy SC, Mariani A, Knutson KL, Federspiel MJ, Russell SJ, Galanis E, Dietz AB, Peng KW. Optimizing patient derived mesenchymal stem cells as virus carriers for a phase I clinical trial in ovarian cancer. J Transl Med 2013; 11:20; PMID:23347343; http://dx.doi.org/10.1186/1479-5876-11-20 PubMed DOI PMC

Ong HT, Federspiel MJ, Guo CM, Ooi LL, Russell SJ, Peng KW, Hui KM. Systemically delivered measles virus-infected mesenchymal stem cells can evade host immunity to inhibit liver cancer growth. J Hepatol 2013; 59:999-1006; PMID:23867315; http://dx.doi.org/10.1016/j.jhep.2013.07.010 PubMed DOI PMC

Castleton A, Dey A, Beaton B, Patel B, Aucher A, Davis DM, Fielding AK. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2014; 123:1327-35; PMID:24345754; http://dx.doi.org/10.1182/blood-2013-09-528851 PubMed DOI

Chisholm J, Howe K, Taj M, Zambon M. Influenza immunisation in children with solid tumours. Eur J Cancer 2005; 41:2280-7; PMID:16143516; http://dx.doi.org/10.1016/j.ejca.2005.07.006 PubMed DOI

Cooksley CD, Avritscher EB, Bekele BN, Rolston KV, Geraci JM, Elting LS. Epidemiology and outcomes of serious influenza-related infections in the cancer population. Cancer 2005; 104:618-28; PMID:15973737; http://dx.doi.org/10.1002/cncr.21203 PubMed DOI

Hicks KL, Chemaly RF, Kontoyiannis DP. Common community respiratory viruses in patients with cancer: more than just "common colds". Cancer 2003; 97:2576-87; PMID:12733157; http://dx.doi.org/10.1002/cncr.11353 PubMed DOI

Nemunaitis J, Khuri F, Ganly I, Arseneau J, Posner M, Vokes E, Kuhn J, McCarty T, Landers S, Blackburn A et al.. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19:289-98; PMID:11208818 PubMed

Geevarghese SK, Geller DA, de Haan HA, Horer M, Knoll AE, Mescheder A, Reid TR, Sze DY, Tanabe KK, Tawfik H et al.. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010; 21:1119-28; PMID:20486770; http://dx.doi.org/10.1089/hum.2010.020 PubMed DOI PMC

Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M et al.. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348:255-6; PMID:12529469; http://dx.doi.org/10.1056/NEJM200301163480314 PubMed DOI

Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E et al.. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415-9; PMID:14564000; http://dx.doi.org/10.1126/science.1088547 PubMed DOI

Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014 PubMed DOI

Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; PMID:25941597; http://dx.doi.org/10.4161/21624011.2014.967147 PubMed DOI PMC

Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626 PubMed DOI

Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P et al.. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508; PMID:25537519; http://dx.doi.org/10.18632/oncotarget.2998 PubMed DOI PMC

Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N et al.. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691; PMID:25941621; http://dx.doi.org/10.4161/21624011.2014.955691 PubMed DOI PMC

Engeland CE, Grossardt C, Veinalde R, Bossow S, Lutz D, Kaufmann JK, Shevchenko I, Umansky V, Nettelbeck DM, Weichert W et al.. CTLA-4 and PD-L1 checkpoint blockade enhances oncolytic measles virus therapy. Mol Ther 2014; 22:1949-59; PMID:25156126; http://dx.doi.org/10.1038/mt.2014.160 PubMed DOI PMC

Rojas J, Sampath P, Hou W, Thorne SH. Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin Cancer Res 2015; 21:5543-51; PMID:26187615; http://dx.doi.org/2302124710.1158/1078-0432.CCR-14-200 PubMed DOI PMC

Cerullo V, Koski A, Vaha-Koskela M, Hemminki A. Chapter eight–Oncolytic adenoviruses for cancer immunotherapy: data from mice, hamsters, and humans. Adv Cancer Res 2012; 115:265-318; PMID:23021247; http://dx.doi.org/10.1016/B978-0-12-398342-8.00008-2 PubMed DOI

Liang M. Clinical development of oncolytic viruses in China. Curr Pharm Biotechnol 2012; 13:1852-7; PMID:21740357; http://dx.doi.org/10.2174/138920112800958760 PubMed DOI

Raty JK, Pikkarainen JT, Wirth T, Yla-Herttuala S. Gene therapy: the first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol 2008; 1:13-23; PMID:20021420; http://dx.doi.org/10.2174/1874467210801010013 PubMed DOI

Dolgin E. Oncolytic viruses get a boost with first FDA-approval recommendation. Nat Rev Drug Discov 2015; 14:369-71; PMID:26027526; http://dx.doi.org/10.1038/nrd4643 PubMed DOI

Killock D. Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nat Rev Clin Oncol 2015; 12:438; PMID:26077044; http://dx.doi.org/10.1038/nrclinonc.2015.106 PubMed DOI

Dharmadhikari N, Mehnert JM, Kaufman HL. Oncolytic virus immunotherapy for melanoma. Curr Treat Options Oncol 2015; 16:326; PMID:25777572; http://dx.doi.org/10.1007/s11864-014-0326-0 PubMed DOI

Kohlhapp FJ, Zloza A, Kaufman HL. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today (Barc) 2015; 51:549-58; PMID:26488034; http://dx.doi.org/10.1358/dot.2015.51.9.2383044 PubMed DOI

Johnson DB, Puzanov I, Kelley MC. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7:611-9; PMID:26098919; http://dx.doi.org/10.2217/imt.15.35 PubMed DOI PMC

Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS et al.. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33:2780-8; PMID:26014293; http://dx.doi.org/10.1200/JCO.2014.58.3377 PubMed DOI

Kaufman H, Amatruda T, Nemunaitis JJ, Chesney JA, Delman KA, Spitler LE, Collichio FA, Ross MI, Zhang Y, Shilkrut M et al.. Tumor size and clinical outcomes in melanoma patients (MEL pts) treated with talimogene laherparepvec (T-VEC). ASCO Meeting Abstracts 2015; 33:9074

Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297 PubMed DOI PMC

Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, Fridman WH, Fucikova J, Galon J, Marabelle A et al.. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e1008814; PMID:26137403; http://dx.doi.org/10.1080/2162402X.2015.1008814 PubMed DOI PMC

Puzanov I, Milhem MM, Andtbacka RHI, Minor DR, Hamid O, Li A, Chou J, Kaufman H. Survival, safety, and response patterns in a phase 1b multicenter trial of talimogene laherparepvec (T-VEC) and ipilimumab (ipi) in previously untreated, unresected stage IIIB-IV melanoma. ASCO Meeting Abstracts 2015; 33:9063

Vidal L, Pandha HS, Yap TA, White CL, Twigger K, Vile RG, Melcher A, Coffey M, Harrington KJ, DeBono JS. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008; 14:7127-37; PMID:18981012; http://dx.doi.org/10.1158/1078-0432.CCR-08-0524 PubMed DOI

Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther 2014; 22:1056-62; PMID:24553100; http://dx.doi.org/10.1038/mt.2014.21 PubMed DOI PMC

Sborov DW, Nuovo GJ, Stiff A, Mace T, Lesinski GB, Benson DM Jr., Efebera YA, Rosko AE, Pichiorri F, Grever MR et al.. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 2014; 20:5946-55; PMID:25294913; http://dx.doi.org/10.1158/1078-0432.CCR-14-1404 PubMed DOI PMC

Weir GM, Hrytsenko O, Stanford MM, Berinstein NL, Karkada M, Liwski RS, Mansour M. Metronomic cyclophosphamide enhances HPV16E7 peptide vaccine induced antigen-specific and cytotoxic T-cell mediated antitumor immune response. Oncoimmunology 2014; 3:e953407; PMID:25960932; http://dx.doi.org/10.4161/21624011.2014.953407 PubMed DOI PMC

Sheng Sow H, Mattarollo SR. Combining low-dose or metronomic chemotherapy with anticancer vaccines: A therapeutic opportunity for lymphomas. Oncoimmunology 2013; 2:e27058; PMID:24498564; http://dx.doi.org/10.4161/onci.27058 PubMed DOI PMC

Kolb EA, Sampson V, Stabley D, Walter A, Sol-Church K, Cripe T, Hingorani P, Ahern CH, Weigel BJ, Zwiebel J et al.. A phase I trial and viral clearance study of reovirus (Reolysin) in children with relapsed or refractory extra-cranial solid tumors: a Children's Oncology Group Phase I Consortium report. Pediatr Blood Cancer 2015; 62:751-8; PMID:25728527; http://dx.doi.org/10.1002/pbc.25464 PubMed DOI PMC

Roulstone V, Khan K, Pandha HS, Rudman S, Coffey M, Gill GM, Melcher AA, Vile R, Harrington KJ, de Bono J et al.. Phase I trial of cyclophosphamide as an immune modulator for optimizing oncolytic reovirus delivery to solid tumors. Clin Cancer Res 2015; 21:1305-12; PMID:25424857; http://dx.doi.org/10.1158/1078-0432.CCR-14-1770 PubMed DOI PMC

Au GG, Lindberg AM, Barry RD, Shafren DR. Oncolysis of vascular malignant human melanoma tumors by Coxsackievirus A21. Int J Oncol 2005; 26:1471-6; PMID:15870858; http://dx.doi.org/10.3892/ijo.26.6.1471 PubMed DOI

Andtbacka RH, Curti B, Hallmeyer S, Shafren DR. Phase II CALM study: Changes in the tumor microenvironment induced by the immunotherapeutic agent coxsackievirus A21 delivered intratumorally in patients with advanced melanoma. Cancer Res 2015; 75:Abstract CT214

Andtbacka RHI, Curti BD, Kaufman H, Daniels GA, Nemunaitis JJ, Spitler LE, Hallmeyer S, Lutzky J, Schultz SM, Whitman ED, Zhou K et al.. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. ASCO Meeting Abstracts 2015; 33:9030

Pandha H, Harrington K, Ralph C, Melcher A, Shafren DR. Intravenous delivery of a novel oncolytic immunotherapy agent, CAVATAK, in advanced cancer patients. Cancer Res 2015; 75:Abstract CT205; http://dx.doi.org/10.1158/1538-7445.AM2015-CT205 DOI

Bramante S, Koski A, Kipar A, Diaconu I, Liikanen I, Hemminki O, Vassilev L, Parviainen S, Cerullo V, Pesonen SK et al.. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer 2014; 135:720-30; PMID:24374597; http://dx.doi.org/10.1002/ijc.28696 PubMed DOI

Ranki T, Joensuu T, Jager E, Karbach J, Wahle C, Kairemo K, Alanko T, Partanen K, Turkki R, Linder N et al.. Local treatment of a pleural mesothelioma tumor with ONCOS-102 induces a systemic antitumor CD8 T-cell response, prominent infiltration of CD8 lymphocytes and Th1 type polarization. Oncoimmunology 2014; 3:e958937; PMID:25941579; http://dx.doi.org/10.4161/21624011.2014.958937 PubMed DOI PMC

Bramante S, Kaufmann JK, Veckman V, Liikanen I, Nettelbeck DM, Hemminki O, Vassilev L, Cerullo V, Oksanen M, Heiskanen R et al.. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans. Int J Cancer 2015; 137:1775-83; PMID:25821063; http://dx.doi.org/10.1002/ijc.29536 PubMed DOI

Kanerva A, Koski A, Liikanen I, Oksanen M, Joensuu T, Hemminki O, Palmgren J, Hemminki K, Hemminki A. Case-control estimation of the impact of oncolytic adenovirus on the survival of patients with refractory solid tumors. Mol Ther 2015; 23:321-9; PMID:25381801; http://dx.doi.org/10.1038/mt.2014.218 PubMed DOI PMC

Hemminki O, Parviainen S, Juhila J, Turkki R, Linder N, Lundin J, Kankainen M, Ristimäki A, Koski A, Liikanen I et al.. Immunological data from cancer patients treated with Ad5/3-E2F-Delta24-GMCSF suggests utility for tumor immunotherapy. Oncotarget 2015; 6:4467-81; PMID:25714011; http://dx.doi.org/10.18632/oncotarget.2901 PubMed DOI PMC

Pesonen SA, Ranki T, Jager E, Karbach J, Wahle C, Joensuu TK, Alanko T, Partanen K, Kairemo K, Turkki R et al.. An evaluation of local and systemic immune markers following intratumoral administration of a chimeric adenovirus Ad5/3-D24-GMCSF in refractory cancer patients with solid tumors. ASCO Meeting Abstracts 2015; 33:3085

Park BH, Hwang T, Liu TC, Sze DY, Kim JS, Kwon HC, Oh SY, Han SY, Yoon JH, Hong SH et al.. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9:533-42; PMID:18495536; http://dx.doi.org/10.1016/S1470-2045(08)70107-4 PubMed DOI

Park SH, Breitbach CJ, Lee J, Park JO, Lim HY, Kang WK, Moon A, Mun JH, Sommermann EM, Maruri Avidal L et al.. Phase 1b Trial of Biweekly Intravenous Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus in Colorectal Cancer. Mol Ther 2015; 23:1532-40; PMID:26073886; http://dx.doi.org/10.1038/mt.2015.109 PubMed DOI PMC

Cripe TP, Ngo MC, Geller JI, Louis CU, Currier MA, Racadio JM, Towbin AJ, Rooney CM, Pelusio A, Moon A et al.. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther 2015; 23:602-8; PMID:25531693; http://dx.doi.org/10.1038/mt.2014.243 PubMed DOI PMC

Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10:167; PMID:22901246; http://dx.doi.org/10.1186/1479-5876-10-167 PubMed DOI PMC

Krug LM, Zauderer MG, Adusumili PS, McGee E, Sepkowitz K, Klang M, Yu YA, Scigalla P, Rusch VW. Phase I study of intra-pleural administration of GL-ONC1, an oncolytic vaccinia virus, in patients with malignant pleural effusion. ASCO Meeting Abstracts 2015; 33:7559

Kono K, Mimura K. Immunogenic tumor cell death induced by chemoradiotherapy in a clinical setting. Oncoimmunology 2013; 2:e22197; PMID:23482346; http://dx.doi.org/10.4161/onci.22197 PubMed DOI PMC

Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 2014; 3:e28518; PMID:25071979; http://dx.doi.org/10.4161/onci.28518 PubMed DOI PMC

Mell LK, Yu YA, Brumund KT, Daniels GA, Advani SJ, Weisman RA, Sanghvi PR, Martin PJ, Wright ME, Onyeama SJ et al.. Phase I trial of intravenous attenuated vaccinia virus (GL-ONC1) with concurrent chemoradiotherapy (CRT) for locoregionally advanced head and neck carcinoma. ASCO Meeting Abstracts 2015; 33:6026

Kooby DA, Carew JF, Halterman MW, Mack JE, Bertino JR, Blumgart LH, Federoff HJ, Fong Y. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13:1325-34; PMID:10428757 PubMed

Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, Nabors LB, Markiewicz M, Agee BS, Coleman JM et al.. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014; 22:1048-55; PMID:24572293; http://dx.doi.org/10.1038/mt.2014.22 PubMed DOI PMC

Morton CL, Houghton PJ, Kolb EA, Gorlick R, Reynolds CP, Kang MH, Maris JM, Keir ST, Wu J, Smith MA. Initial testing of the replication competent Seneca Valley virus (NTX-010) by the pediatric preclinical testing program. Pediatr Blood Cancer 2010; 55:295-303; PMID:20582972; http://dx.doi.org/10.1002/pbc.22535 PubMed DOI PMC

Burke MJ, Ahern C, Weigel BJ, Poirier JT, Rudin CM, Chen Y, Cripe TP, Bernhardt MB, Blaney SM. Phase I trial of Seneca Valley Virus (NTX-010) in children with relapsed/refractory solid tumors: a report of the Children's Oncology Group. Pediatr Blood Cancer 2015; 62:743-50; PMID:25307519; http://dx.doi.org/10.1002/pbc.25269 PubMed DOI PMC

Barton KN, Paielli D, Zhang Y, Koul S, Brown SL, Lu M, Seely J, Kim JH, Freytag SO. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol Ther 2006; 13:347-56; PMID:16290236; http://dx.doi.org/10.1016/j.ymthe.2005.10.005 PubMed DOI

Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:24319634; http://dx.doi.org/10.4161/onci.25595 PubMed DOI PMC

Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e954929; PMID:25941606; http://dx.doi.org/10.4161/21624011.2014.954929 PubMed DOI PMC

Freytag SO, Stricker H, Lu M, Elshaikh M, Aref I, Pradhan D, Levin K, Kim JH, Peabody J, Siddiqui F et al.. Prospective randomized phase 2 trial of intensity modulated radiation therapy with or without oncolytic adenovirus-mediated cytotoxic gene therapy in intermediate-risk prostate cancer. Int J Radiat Oncol Biol Phys 2014; 89:268-76; PMID:24837889; http://dx.doi.org/10.1016/j.ijrobp.2014.02.034 PubMed DOI PMC

Kimata H, Takakuwa H, Goshima F, Teshigahara O, Nakao A, Kurata T, Sata T, Nishiyama Y. Effective treatment of disseminated peritoneal colon cancer with new replication-competent herpes simplex viruses. Hepatogastroenterology 2003; 50:961-6; PMID:12845959 PubMed

Kasuya H, Kodera Y, Nakao A, Yamamura K, Gewen T, Zhiwen W, Hotta Y, Yamada S, Fujii T, Fukuda S et al.. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepatogastroenterology 2014; 61:599-605; PMID:26176043 PubMed

Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R, Morris JC, Russell SJ. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103:1641-6; PMID:14604966; http://dx.doi.org/10.1182/blood-2003-07-2233 PubMed DOI

Fonteneau JF, Guillerme JB, Tangy F, Gregoire M. Attenuated measles virus used as an oncolytic virus activates myeloid and plasmacytoid dendritic cells. Oncoimmunology 2013; 2:e24212; PMID:23762802; http://dx.doi.org/10.4161/onci.24212 PubMed DOI PMC

Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG, Lowe V, O'Connor MK, Kyle RA, Leung N et al.. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc 2014; 89:926-33; PMID:24835528; http://dx.doi.org/10.1016/j.mayocp.2014.04.003 PubMed DOI PMC

Umeoka T, Kawashima T, Kagawa S, Teraishi F, Taki M, Nishizaki M, Kyo S, Nagai K, Urata Y, Tanaka N et al.. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a transferred green fluorescent protein gene. Cancer Res 2004; 64:6259-65; PMID:15342413; http://dx.doi.org/10.1158/0008-5472.CAN-04-1335 PubMed DOI

Tanabe S, Tazawa H, Kagawa S, Noma K, Takehara K, Koujima T, Kashima H, Kato T, Kuroda S, Kikuchi S et al.. Phase I/II trial of endoscopic intratumoral administration of OBP-301, a novel telomerase-specific oncolytic virus, with radiation in elderly esophageal cancer patients. Cancer Res 2015; 75:Abstract CT213; http://dx.doi.org/10.1158/1538-7445.AM2015-CT123 DOI

Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Front Oncol 2014; 4:155; PMID:24987615; http://dx.doi.org/10.3389/fonc.2014.00155 PubMed DOI PMC

Zeh HJ, Downs-Canner S, McCart JA, Guo ZS, Rao UN, Ramalingam L, Thorne SH, Jones HL, Kalinski P, Wieckowski E et al.. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2015; 23:202-14; PMID:25292189; http://dx.doi.org/10.1038/mt.2014.194 PubMed DOI PMC

Spary LK, Salimu J, Webber JP, Clayton A, Mason MD, Tabi Z. Tumor stroma-derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14 PD-L1 phenotype in prostate cancer. Oncoimmunology 2014; 3:e955331; PMID:25941611; http://dx.doi.org/10.4161/21624011.2014.955331 PubMed DOI PMC

Mesange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2014; 5:4709-21; PMID:25015210; http://dx.doi.org/10.18632/oncotarget.1671 PubMed DOI PMC

Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol 2015; 15:405-14; PMID:26027717; http://dx.doi.org/10.1038/nri3845 PubMed DOI

Arulanandam R, Batenchuk C, Angarita FA, Ottolino-Perry K, Cousineau S, Mottashed A, Burgess E, Falls TJ, De Silva N, Tsang J et al.. VEGF-Mediated Induction of PRD1-BF1/Blimp1 Expression Sensitizes Tumor Vasculature to Oncolytic Virus Infection. Cancer Cell 2015; 28:210-24; PMID:26212250; http://dx.doi.org/10.1016/j.ccell.2015.06.009 PubMed DOI

Kim BR, Yoon K, Byun HJ, Seo SH, Lee SH, Rho SB. The anti-tumor activator sMEK1 and paclitaxel additively decrease expression of HIF-1alpha and VEGF via mTORC1-S6K/4E-BP-dependent signaling pathways. Oncotarget 2014; 5:6540-51; PMID:25153728; http://dx.doi.org/10.18632/oncotarget.2119 PubMed DOI PMC

Lovat F, Ishii H, Schiappacassi M, Fassan M, Barbareschi M, Galligioni E, Gasparini P, Baldassarre G, Croce CM, Vecchione A. LZTS1 downregulation confers paclitaxel resistance and is associated with worse prognosis in breast cancer. Oncotarget 2014; 5:970-7; PMID:24448468; http://dx.doi.org/10.18632/oncotarget.1630 PubMed DOI PMC

Arulanandam R, Batenchuk C, Varette O, Zakaria C, Garcia V, Forbes NE, Davis C, Krishnan R, Karmacharya R, Cox J et al.. Microtubule disruption synergizes with oncolytic virotherapy by inhibiting interferon translation and potentiating bystander killing. Nat Commun 2015; 6:6410; PMID:25817275; http://dx.doi.org/10.1038/ncomms7410 PubMed DOI

Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G et al.. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:25050207; http://dx.doi.org/10.4161/onci.28344 PubMed DOI PMC

Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; PMID:23762803; http://dx.doi.org/10.4161/onci.24238 PubMed DOI PMC

Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, Bouchier-Hayes L, Savoldo B, Dotti G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74:5195-205; PMID:25060519; http://dx.doi.org/10.1158/0008-5472.CAN-14-0697 PubMed DOI PMC

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008 PubMed DOI

Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:24800173; http://dx.doi.org/10.4161/onci.27878 PubMed DOI PMC

Hamouda MA, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, Mari B, Auberger P, Luciano F. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget 2014; 5:6252-66; PMID:25051369; http://dx.doi.org/10.18632/oncotarget.2193 PubMed DOI PMC

Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-kappaB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget 2014; 5:634-48; PMID:24504138; http://dx.doi.org/10.18632/oncotarget.1596 PubMed DOI PMC

Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; PMID:23687621; http://dx.doi.org/10.4161/onci.23510 PubMed DOI PMC

Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D et al.. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20:3787-98; PMID:24815720; http://dx.doi.org/10.1158/1078-0432.CCR-14-0553 PubMed DOI PMC

Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:23482847; http://dx.doi.org/10.4161/onci.22789 PubMed DOI PMC

Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/10.4161/onci.27048 PubMed DOI PMC

Parrish C, Scott GB, Migneco G, Scott KJ, Steele LP, Ilett E, West EJ, Hall K, Selby PJ, Buchanan D et al.. Oncolytic reovirus enhances rituximab-mediated antibody-dependent cellular cytotoxicity against chronic lymphocytic leukaemia. Leukemia 2015; 29:1799-810; PMID:25814029; http://dx.doi.org/10.1038/leu.2015.88 PubMed DOI PMC

Ho SS, Gasser S. NKG2D ligands link oncogenic RAS to innate immunity. Oncoimmunology 2013; 2:e22244; PMID:23482418; http://dx.doi.org/10.4161/onci.22244 PubMed DOI PMC

Komatsu Y, Christian SL, Ho N, Pongnopparat T, Licursi M, Hirasawa K. Oncogenic Ras inhibits IRF1 to promote viral oncolysis. Oncogene 2015; 34:3985-93; PMID:25347735; http://dx.doi.org/10.1038/onc.2014.331 PubMed DOI

Ilkow CS, Marguerie M, Batenchuk C, Mayer J, Ben Neriah D, Cousineau S, Falls T, Jennings VA, Boileau M, Bellamy D et al.. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat Med 2015; 21:530-6; PMID:25894825; http://dx.doi.org/10.1038/nm.3848 PubMed DOI

Gayral M, Lulka H, Hanoun N, Biollay C, Selves J, Vignolle-Vidoni A, Berthommé H, Trempat P, Epstein AL, Buscail L et al.. Targeted oncolytic herpes simplex virus type 1 eradicates experimental pancreatic tumors. Hum Gene Ther 2015; 26:104-13; PMID:25423447; http://dx.doi.org/10.1089/hum.2014.072 PubMed DOI PMC

Byrne SN, Sarchio SN. AMD3100 protects from UV-induced skin cancer. Oncoimmunology 2014; 3:e27562; PMID:24744978; http://dx.doi.org/10.4161/onci.27562 PubMed DOI PMC

Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2013; 2:e24117; PMID:23734336; http://dx.doi.org/10.4161/onci.24117 PubMed DOI PMC

Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, Odunsi KO, Kozbor D. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 2014; 193:5327-37; PMID:25320277; http://dx.doi.org/10.4049/jimmunol.1400201 PubMed DOI PMC

Martens A, Zelba H, Garbe C, Pawelec G, Weide B. Monocytic myeloid-derived suppressor cells in advanced melanoma patients: Indirect impact on prognosis through inhibition of tumor-specific T-cell responses? Oncoimmunology 2014; 3:e27845; PMID:24800171; http://dx.doi.org/10.4161/onci.27845 PubMed DOI PMC

Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA et al.. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. J Immunol 2015; 194:4397-412; PMID:25825443; http://dx.doi.org/10.4049/jimmunol.1402132 PubMed DOI

Paglino JC, Andres W, van den Pol AN. Autonomous parvoviruses neither stimulate nor are inhibited by the type I interferon response in human normal or cancer cells. J Virol 2014; 88:4932-42; PMID:24554651; http://dx.doi.org/10.1128/JVI.03508-13 PubMed DOI PMC

Zloza A, Kim DW, Kim-Schulze S, Jagoda MC, Monsurro V, Marincola FM, Kaufman HL. Immunoglobulin-like transcript 2 (ILT2) is a biomarker of therapeutic response to oncolytic immunotherapy with vaccinia viruses. J Immunother Cancer 2014; 2:1; PMID:24829758; http://dx.doi.org/10.1186/2051-1426-2-1 PubMed DOI PMC

Adkins I, Fucikova J, Garg AD, Agostinis P, Spisek R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 2014; 3:e968434; PMID:25964865; http://dx.doi.org/10.4161/21624011.2014.968434 PubMed DOI PMC

Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al.. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179 PubMed DOI PMC

Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94; PMID:23567086; http://dx.doi.org/10.1016/j.jhep.2013.03.033 PubMed DOI

Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:24083080; http://dx.doi.org/10.4161/onci.25238 PubMed DOI PMC

Liikanen I, Koski A, Merisalo-Soikkeli M, Hemminki O, Oksanen M, Kairemo K, Joensuu T, Kanerva A, Hemminki A. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncoimmunology 2015; 4:e989771; PMID:25949903; http://dx.doi.org/10.4161/2162402X.2014.989771 PubMed DOI PMC

Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21; PMID:24876106; http://dx.doi.org/10.1158/0008-5472.CAN-13-3472 PubMed DOI PMC

Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol 2015; 15:231-42; PMID:25790790; http://dx.doi.org/10.1038/nri3806 PubMed DOI

McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103; PMID:25614319; http://dx.doi.org/10.1038/nri3787 PubMed DOI PMC

Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C et al.. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 2014; 20:1301-9; PMID:25344738; http://dx.doi.org/10.1038/nm.3708 PubMed DOI

Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L et al.. Trial Watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:25097804; http://dx.doi.org/10.4161/onci.28694 PubMed DOI PMC

Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, Reddy PS, Yu DC. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor–armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 2006; 12:305-13; PMID:16397056; http://dx.doi.org/10.1158/1078-0432.CCR-05-1059 PubMed DOI

Huang TT, Hlavaty J, Ostertag D, Espinoza FL, Martin B, Petznek H, Rodriguez-Aguirre M, Ibañez CE, Kasahara N, Gunzburg W et al.. Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther 2013; 20:544-51; PMID:23969884; http://dx.doi.org/10.1038/cgt.2013.51 PubMed DOI

Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D et al.. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther 2012; 20:1689-98; PMID:22547150; http://dx.doi.org/10.1038/mt.2012.83 PubMed DOI PMC

Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, Galvao da Silva AP, Lin AH, Valenta DT, Perez OD, Ibañez CE et al.. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol 2012; 14:145-59; PMID:22070930; http://dx.doi.org/10.1093/neuonc/nor199 PubMed DOI PMC

Ghiringhelli F, Bruchard M, Apetoh L. Immune effects of 5-fluorouracil: Ambivalence matters. Oncoimmunology 2013; 2:e23139; PMID:23802066; http://dx.doi.org/10.4161/onci.23139 PubMed DOI PMC

Alonso MM, Gomez-Manzano C, Bekele BN, Yung WK, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 2007; 67:11499-504; PMID:18089777; http://dx.doi.org/10.1158/0008-5472.CAN-07-5312 PubMed DOI

Alonso MM, Jiang H, Yokoyama T, Xu J, Bekele NB, Lang FF, Kondo S, Gomez-Manzano C, Fueyo J. Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 2008; 16:487-93; PMID:18253154; http://dx.doi.org/10.1038/sj.mt.6300400 PubMed DOI

Kleijn A, Kloezeman J, Treffers-Westerlaken E, Fulci G, Leenstra S, Dirven C, Debets R, Lamfers M. The therapeutic efficacy of the oncolytic virus Delta24-RGD in a murine glioma model depends primarily on antitumor immunity. Oncoimmunology 2014; 3:e955697; PMID:25941622; http://dx.doi.org/10.4161/21624011.2014.955697 PubMed DOI PMC

Brichard VG, Godechal Q. MAGE-A3-specific anticancer immunotherapy in the clinical practice. Oncoimmunology 2013; 2:e25995; PMID:24244898; http://dx.doi.org/10.4161/onci.25995 PubMed DOI PMC

Schmidt N, Flecken T, Thimme R. Tumor-associated antigen specific CD8 T cells in hepatocellular carcinoma - a promising target for immunotherapy. Oncoimmunology 2014; 3:e954919; PMID:25941604; http://dx.doi.org/10.4161/21624011.2014.954919 PubMed DOI PMC

Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:24073369; http://dx.doi.org/10.4161/onci.24850 PubMed DOI PMC

Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030 PubMed DOI PMC

Andtbacka RHI, Chastain M, Li A, Shilkrut M, Ross MI. Phase 2, multicenter, randomized, open-label trial assessing efficacy and safety of talimogene laherparepvec (T-VEC) neoadjuvant treatment (tx) plus surgery vs surgery for resectable stage IIIB/C and IVM1a melanoma (MEL). ASCO Meeting Abstracts 2015; 33:TPS9094

Taube JM. Unleashing the immune system: PD-1 and PD-Ls in the pre-treatment tumor microenvironment and correlation with response to PD-1/PD-L1 blockade. Oncoimmunology 2014; 3:e963413; PMID:25914862; http://dx.doi.org/10.4161/21624011.2014.963413 PubMed DOI PMC

Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 T cells. Oncoimmunology 2013; 2:e23991; PMID:23734334; http://dx.doi.org/10.4161/onci.23991 PubMed DOI PMC

Kharaziha P, De Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A et al.. Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 2012; 72:5348-62; PMID:22952216; http://dx.doi.org/10.1158/0008-5472.CAN-12-0658 PubMed DOI

Kharaziha P, Rodriguez P, Li Q, Rundqvist H, Bjorklund AC, Augsten M, Ullén A, Egevad L, Wiklund P, Nilsson S et al.. Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells. Cell Death Dis 2012; 3:e262; PMID:22278289; http://dx.doi.org/10.1038/cddis.2012.1 PubMed DOI PMC

Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. A phase 2, open-label, randomized study of pexa-vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular Carcinoma. Methods Mol Biol 2015; 1317:343-57; PMID:26072416; http://dx.doi.org/10.1007/978-1-4939-2727-2_19 PubMed DOI

Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612; PMID:23894720; http://dx.doi.org/10.4161/onci.24612 PubMed DOI PMC

McNeish IA, Michael A, Twelves C, Glasspool R, Ajaz MA, Morrison R, Xeniou Q, Brown R, Fisher K, Blanc C. A phase I/II study of Enadenotucirev, an oncolytic Ad11/Ad3 chimeric group B adenovirus, administered intraperitoneally (IP): Dose finding and proof of concept in platinum-resistant epithelial ovarian cancer. ASCO Meeting Abstracts 2015; 33:TPS5611

Ferris RL, Gross ND, Nemunaitis JJ, Andtbacka RHI, Argiris A, Ohr J, Vetto JT, Senzer NN, Bedell C, Ungerleider RS et al.. Phase I trial of intratumoral therapy using HF10, an oncolytic HSV-1, demonstrates safety in HSV+/HSV- patients with refractory and superficial cancers. ASCO Meeting Abstracts 2014; 32:6082

Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, Tolcher AW, Hamid O. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2013; 2:e23033; PMID:23483678; http://dx.doi.org/10.4161/onci.23033 PubMed DOI PMC

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G. Molecular mechanisms of cisplatin resistance. Oncogene 2012; 31:1869-83; PMID:21892204; http://dx.doi.org/10.1038/onc.2011.384 PubMed DOI

Gujar SA, Clements D, Lee PW. Two is better than one: Complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:24804161; http://dx.doi.org/10.4161/onci.27622 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multi-Institutional Evaluation of Pathologists' Assessment Compared to Immunoscore

. 2023 Aug 10 ; 15 (16) : . [epub] 20230810

Calreticulin and cancer

. 2021 Jan ; 31 (1) : 5-16. [epub] 20200730

Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors

. 2018 ; 7 (12) : e1503032. [epub] 20180827

Trial watch: Immune checkpoint blockers for cancer therapy

. 2017 ; 6 (11) : e1373237. [epub] 20170831

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...