Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39353468
PubMed Central
PMC11490729
DOI
10.1016/j.virusres.2024.199476
PII: S0168-1702(24)00169-2
Knihovny.cz E-zdroje
- Klíčová slova
- Conifer pathogens, Dothistroma needle blight (DNB), High-throughput sequencing, Total RNA sequencing, Virus diversity,
- MeSH
- Ascomycota * virologie genetika MeSH
- borovice * mikrobiologie MeSH
- dvouvláknová RNA genetika MeSH
- fylogeneze * MeSH
- genom virový * MeSH
- mykoviry * genetika klasifikace izolace a purifikace MeSH
- nemoci rostlin * virologie mikrobiologie MeSH
- RNA virová * genetika MeSH
- RNA-viry genetika klasifikace izolace a purifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Itálie MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- RNA virová * MeSH
Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.
Zobrazit více v PubMed
Afonso C.L., Amarasinghe G.K., Bányai K., Bào Y., Basler C.F., Bavari S., Bejerman N., Blasdell K.R., Briand F.X., Briese T., Bukreyev A., Calisher C.H., Chandran K., Chéng J., Clawson A.N., Collins P.L., Dietzgen R.G., Dolnik O., Domier L.L., Dürrwald R., Dye J.M., Easton A.J., Ebihara H., Farkas S.L., Freitas-Astúa J., Formenty P., Fouchier R.A.M., Fù Y., Ghedin E., Goodin M.M., Hewson R., Horie M., Hyndman T.H., Jiāng D., Kitajima E.W., Kobinger G.P., Kondo H., Kurath G., Lamb R.A., Lenardon S., Leroy E.M., Li C.X., Lin X.D., Liú L., Longdon B., Marton S., Maisner A., Mühlberger E., Netesov S.V., Nowotny N., Patterson J.L., Payne S.L., Paweska J.T., Randall R.E., Rima B.K., Rota P., Rubbenstroth D., Schwemmle M., Shi M., Smither S.J., Stenglein M.D., Stone D.M., Takada A., Terregino C., Tesh R.B., Tian J.H., Tomonaga K., Tordo N., Towner J.S., Vasilakis N., Verbeek M., Volchkov V.E., Wahl-Jensen V., Walsh J.A., Walker P.J., Wang D., Wang L.F., Wetzel T., Whitfield A.E., Xiè J., Yuen K.Y., Zhang Y.Z., Kuhn J.H. Taxonomy of the order Mononegavirales: update 2016. Arch. Virol. 2016;161:2351–2360. doi: 10.1007/s00705-016-2880-1. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Anagnostakis S.L. Biological control of chestnut blight. Science (80-.). 1982;215:466–471. doi: 10.1126/science.215.4532.466. PubMed DOI
Arjona-Lopez J.M., Telengech P., Jamal A., Hisano S., Kondo H., Yelin M.D., Arjona-Girona I., Kanematsu S., Lopez-Herrera C.J., Suzuki N. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ. Microbiol. 2018;20:1464–1483. doi: 10.1111/1462-2920.14065. PubMed DOI
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Barnes I., Crous P.W., Wingfield B.D., Wingfield M.J. Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud. Mycol. 2004;50:551–565.
Barnes I., van der Nest A., Mullett M.S., Crous P.W., Drenkhan R., Musolin D.L., Wingfield M.J. Neotypification of Dothistroma septosporum and epitypification of D. pini, causal agents of Dothistroma needle blight of pine. For. Pathol. 2016;46:388–407. doi: 10.1111/efp.12304. DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Boshra H. Viruses; 2022. An Overview of the Infectious Cycle of Bunyaviruses. PubMed DOI PMC
Botella L., Hantula J. Description, distribution, and relevance of viruses of the forest pathogen Gremmeniella abietina. Viruses. 2018;10:1–14. doi: 10.3390/v10110654. PubMed DOI PMC
Botella L., Jung M.H., Rost M., Jung T. Natural populations from the Phytophthora palustris complex show a high diversity and abundance of ssRNA and dsRNA viruses. J. Fungi. 2022;8:1118. doi: 10.3390/jof8111118. PubMed DOI PMC
Botella L., Tuomivirta T.T., Hantula J., Diez J.J., Jankovsky L. The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol. 2015;119:125–135. doi: 10.1016/j.funbio.2014.12.001. PubMed DOI PMC
Botella L., Tuomivirta T.T., Vervuurt S., Diez J.J., Hantula J. Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol. 2012;116:872–882. doi: 10.1016/j.funbio.2012.05.004. PubMed DOI
Botella L., Vainio E.J., Hantula J., Diez J.J., Jankovsky L. Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch. Virol. 2015;160:1967–1975. doi: 10.1007/s00705-015-2456-5. PubMed DOI
Bradshaw R.E. Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. For. Pathol. 2004;34:163–185. doi: 10.1111/j.1439-0329.2004.00356.x. DOI
Bruenn J.A. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res. 1993;21:5667–5669. doi: 10.1093/nar/21.24.5667. PubMed DOI PMC
Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Bulman L.S., Bradshaw R.E., Fraser S., Martín-García J., Barnes I., Musolin D.L., La Porta N., Woods A.J., Diez J.J., Koltay A., Drenkhan R., Ahumada R., Poljakovic-Pajnik L., Queloz V., Piškur B., Doğmuş-Lehtijärvi H.T., Chira D., Tomešová-Haataja V., Georgieva M., Jankovský L., Anselmi N., Markovskaja S., Papazova-Anakieva I., Sotirovski K., Lazarević J., Adamčíková K., Boroń P., Bragança H., Vettraino A.M., Selikhovkin A.V., Bulgakov T.S., Tubby K. A worldwide perspective on the management and control of Dothistroma needle blight. For. Pathol. 2016;46:472–488. doi: 10.1111/efp.12305. DOI
Bushnell B., Rood J., Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0185056. PubMed DOI PMC
Čermáková V., Kudláček T., Rotková G., Rozsypálek J., Botella L. Hymenoscyphus fraxineus mitovirus 1 naturally disperses through the airborne inoculum of its host, Hymenoscyphus fraxineus, in the Czech Republic. Biocontrol Sci. Technol. 2017;27:992–1008. doi: 10.1080/09583157.2017.1368455. DOI
Chiapello M., Rodríguez-Romero J., Ayllón M.A., Turina M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020;6:1–18. doi: 10.1093/ve/veaa058. PubMed DOI PMC
Chiba Y., Oiki S., Yaguchi T., Urayama S.I., Hagiwara D. Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol. 2021;7:1–11. doi: 10.1093/ve/veaa101. PubMed DOI PMC
Chomczynski P., Wilfinger W., Kennedy A., Rymaszewski M., Mackey K. RNAzol® RT: a new single-step method for isolation of RNA. Nat. Methods. 2010;7:4–5. doi: 10.1038/nmeth.f.315. DOI
Daudu J., Snowden J., Tubby K., Coutts R., Kotta-Loizou I. Studying a mycovirus from Dothistroma septosporum, causative agent of pine needle blight. Access Microbiol. 2019;1 doi: 10.1099/acmi.ac2019.po0502. DOI
Dinan A.M., Lukhovitskaya N.I., Olendraite I., Firth A.E. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol. 2020;6:1–13. doi: 10.1093/ve/veaa007. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Drenkhan R., Tomešová-Haataja V., Fraser S., Bradshaw R.E., Vahalík P., Mullett M.S., Martín-García J., Bulman L.S., Wingfield M.J., Kirisits T., Cech T.L., Schmitz S., Baden R., Tubby K., Brown A., Georgieva M., Woods A., Ahumada R., Jankovský L., Thomsen I.M., Adamson K., Marçais B., Vuorinen M., Tsopelas P., Koltay A., Halasz A., La Porta N., Anselmi N., Kiesnere R., Markovskaja S., Kačergius A., Papazova-Anakieva I., Risteski M., Sotirovski K., Lazarević J., Solheim H., Boroń P., Bragança H., Chira D., Musolin D.L., Selikhovkin A.V., Bulgakov T.S., Keča N., Karadžić D., Galovic V., Pap P., Markovic M., Poljakovic Pajnik L., Vasic V., Ondrušková E., Piškur B., Sadiković D., Diez J.J., Solla A., Millberg H., Stenlid J., Angst A., Queloz V., Lehtijärvi A., Doğmuş-Lehtijärvi H.T., Oskay F., Davydenko K., Meshkova V., Craig D., Woodward S., Barnes I. Global geographic distribution and host range of Dothistroma species: a comprehensive review. For. Pathol. 2016;46:408–442. doi: 10.1111/efp.12290. DOI
Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC
EPPO PM 7/46 (3) Lecanosticta acicola (formerly Mycosphaerella dearnessii), Dothistroma septosporum (formerly Mycosphaerella pini) and Dothistroma pini. EPPO Bull. 2015;45:163–182. doi: 10.1111/epp.12217. DOI
Ferron F., Weber F., de la Torre J.C., Reguera J. Virus Res; 2017. Transcription and Replication Mechanisms of Bunyaviridae and Arenaviridae L proteins. PubMed DOI PMC
Forgia M., Chiapello M., Daghino S., Pacifico D., Crucitti D., Oliva D., Ayllon M., Turina M. Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. Virus Evol. 2022;8:1–14. doi: 10.1093/ve/veac038. PubMed DOI PMC
Gallie D.R., Walbot V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res. 1992;20:4631–4638. doi: 10.1093/nar/20.17.4631. PubMed DOI PMC
García-Pedrajas M.D., Cañizares M.C., Sarmiento-Villamil J.L., Jacquat A.G., Dambolena J.S. Mycoviruses in biological control: from basic research to field implementation. Phytopathology®. 2019;109:1828–1839. doi: 10.1094/PHYTO-05-19-0166-RVW. PubMed DOI
Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015:356–368. doi: 10.1016/j.virol.2015.02.034. 479–480. PubMed DOI
Ghabrial S.A., Suzuki N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 2009;47:353–384. doi: 10.1146/annurev-phyto-080508-081932. PubMed DOI
Gilbert K.B., Holcomb E.E., Allscheid R.L., Carrington J.C. Hiding in plain sight: new virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS ONE. 2019;14:1–51. doi: 10.1371/journal.pone.0219207. PubMed DOI PMC
Hantula J., Mäkelä S., Xu P., Brusila V., Nuorteva H., Kashif M., Hyder R., Vainio E.J. Multiple virus infections on Heterobasidion sp. Fungal Biol. 2020;124:102–109. doi: 10.1016/j.funbio.2019.12.004. PubMed DOI
Heiniger U., Rigling D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 1994;32:581–599. doi: 10.1146/annurev.py.32.090194.003053. DOI
Herrero N. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica. Arch. Virol. 2017;162:1113–1117. doi: 10.1007/s00705-016-3194-z. PubMed DOI
Hollings M. Viruses associated with a die-back disease of cultivated mushroom. Nature. 1962;196:962–965. doi: 10.1038/196962a0. DOI
Hough B., Steenkamp E., Wingfield B., Read D. Fungal viruses unveiled: a comprehensive review of mycoviruses. Viruses. 2023;15:1202. doi: 10.3390/v15051202. PubMed DOI PMC
Howitt R.L.J., Beever R.E., Pearson M.N., Forster R.L.S. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant “potex-like” viruses. J. Gen. Virol. 2001;82:67–78. doi: 10.1099/0022-1317-82-1-67. PubMed DOI
Jia J., Fu Y., Jiang D., Mu F., Cheng J., Lin Y., Li B., Marzano S.Y.L., Xie J. Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol. 2021;7:1–12. doi: 10.1093/ve/veab032. PubMed DOI PMC
Jiāng D., Ayllón M.A., Marzano S.Y.L. ICTV virus taxonomy profile: Mymonaviridae. J. Gen. Virol. 2019;100:1343–1344. doi: 10.1099/JGV.0.001301. PubMed DOI
Kashif M., Jurvansuu J., Vainio E.J., Hantula J. Alphapartitiviruses of Heterobasidion wood decay fungi affect each other's transmission and host growth. Front. Cell. Infect. Microbiol. 2019;9:1–11. doi: 10.3389/fcimb.2019.00064. PubMed DOI PMC
Kim J.W., Kim S.Y., Kim K.M. Genome organization and expression of the Penicillium stoloniferum virus S. Virus Genes. 2003;27:249–256. doi: 10.1023/A:1026343831909. PubMed DOI
Kondo H., Botella L., Suzuki N. Mycovirus diversity and evolution revealed/inferred from recent studies. Annu. Rev. Phytopathol. 2022;60:307–336. doi: 10.1146/annurev-phyto-021621-122122. PubMed DOI
Kondo H., Chiba S., Toyoda K., Suzuki N. Evidence for negative-strand RNA virus infection in fungi. Virology. 2013;435:201–209. doi: 10.1016/j.virol.2012.10.002. PubMed DOI
Kopylova E., Noé L., Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Kotta-Loizou I., Castón J.R., Coutts R.H.A., Hillman B.I., Jiang D., Kim D.-H., Moriyama H., Suzuki N. ICTV virus taxonomy profile: Chrysoviridae. J. Gen. Virol. 2020 doi: 10.1099/jgv.0.001383. PubMed DOI PMC
Leventhal S.S., Wilson D., Feldmann H., Hawman D.W. A look into Bunyavirales genomes: functions of non-structural (ns) proteins. Viruses. 2021 doi: 10.3390/v13020314. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Li Y., Zhou M., Yang Y., Liu Q., Zhang Z., Han C., Wang Y. Characterization of the mycovirome from the plant-pathogenic fungus Cercospora beticola. Viruses. 2021;13 doi: 10.3390/v13101915. PubMed DOI PMC
Lin Y.H., Fujita M., Chiba S., Hyodo K., Andika I.B., Suzuki N., Kondo H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes) Virology. 2019;533:125–136. doi: 10.1016/j.virol.2019.05.008. PubMed DOI
Linnakoski R., Sutela S., Coetzee M.P.A., Duong T.A., Pavlov I.N., Litovka Y.A., Hantula J., Wingfield B.D., Vainio E.J. Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 2021;11:7336. doi: 10.1038/s41598-021-86343-7. PubMed DOI PMC
Liu J.J., Chan D., Xiang Y., Williams H., Li X.R., Sniezko R.A., Sturrock R.N. Characterization of five novel mitoviruses in the white pine blister rust fungus Cronartium ribicola. PLoS ONE. 2016;11:1–20. doi: 10.1371/journal.pone.0154267. PubMed DOI PMC
Liu J.J., Xiang Y., Sniezko R.A., Schoettle A.W., Williams H., Zamany A. Characterization of Cronartium ribicola dsRNAs reveals novel members of the family Totiviridae and viral association with fungal virulence. Virol. J. 2019;16:1–13. doi: 10.1186/s12985-019-1226-5. PubMed DOI PMC
Liu L., Xie J., Cheng J., Fu Y., Li G., Yi X., Jiang D. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc. Natl. Acad. Sci. 2014;111:12205–12210. doi: 10.1073/pnas.1401786111. PubMed DOI PMC
Liu W., Duns G., Chen J. Genomic characterization of a novel partitivirus infecting Aspergillus ochraceus. Virus Genes. 2008;37:322–327. doi: 10.1007/s11262-008-0265-6. PubMed DOI
Martínez-Álvarez P., Vainio E.J., Botella L., Hantula J., Diez J.J. Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. Arch. Virol. 2014;159:2153–2155. doi: 10.1007/s00705-014-2012-8. PubMed DOI
Miller M.A., Pfeiffer W., Schwartz T. 2010 Gateway Computing Environments Workshop (GCE) IEEE; 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8. DOI
Morris T.J., Dodds J.A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology. 1979;69:854. doi: 10.1094/Phyto-69-854. DOI
Mueller S., Gausson V., Vodovar N., Deddouche S., Troxler L., Perot J., Pfeffer S., Hoffmann J.A., Saleh M.-C., Imler J.-L. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl. Acad. Sci. 2010;107:19390–19395. doi: 10.1073/pnas.1014378107. PubMed DOI PMC
Mullett M., Barnes I. Springer Netherlands; Dordrecht: 2012. Dothistroma, in: Dothistroma isolation and Molecular Identification Methods. pp. 176–176.
Mullett M.S., Adamson K., Bragança H., Bulgakov T.S., Georgieva M., Henriques J., Jürisoo L., Laas M., Drenkhan R. For. Pathol; 2018. New Country and Regional Records of the Pine Needle Blight Pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. DOI
Mullett M.S., Drenkhan R., Adamson K., Boroń P., Lenart-Boroń A., Barnes I., Tomšovský M., Jánošíková Z., Adamčíková K., Ondrušková E., Queloz V., Piškur B., Musolin D.L., Davydenko K., Georgieva M., Schmitz S., Kačergius A., Ghelardini L., Orlović J.K., Müller M., Oskay F., Hauptman T., Halász Á., Markovskaja S., Solheim H., Vuorinen M., Heinzelmann R., Hamelin R.C., Konečný A. Worldwide genetic structure elucidates the eurasian origin and invasion pathways of Dothistroma septosporum, causal agent of Dothistroma needle blight. J. Fungi. 2021;7:1–28. doi: 10.3390/jof7020111. PubMed DOI PMC
Muñoz-Adalia E.J., Diez J.J., Fernández M.M., Hantula J., Vainio E.J. Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch. Virol. 2018;163:1009–1018. doi: 10.1007/s00705-018-3712-2. PubMed DOI
Muñoz-Adalia E.J., Fernández M.M., Diez J.J. The use of mycoviruses in the control of forest diseases. Biocontrol Sci. Technol. 2016;26:577–604. doi: 10.1080/09583157.2015.1135877. DOI
Nerva L., Forgia M., Ciuffo M., Chitarra W., Chiapello M., Vallino M., Varese G.C., Turina M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019;273 doi: 10.1016/j.virusres.2019.197737. PubMed DOI
Nerva L., Turina M., Zanzotto A., Gardiman M., Gaiotti F., Gambino G., Chitarra W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 2019;21:2886–2904. doi: 10.1111/1462-2920.14651. PubMed DOI
Nibert M.L., Ghabrial S.A., Maiss E., Lesker T., Vainio E.J., Jiang D., Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 2014;188:128–141. doi: 10.1016/j.virusres.2014.04.007. PubMed DOI
Ning S., Kang Q., Liu H., Lu Y., Sui L., Xu W., Shi W., Li Q., Zhang Z. Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res. 2022;322 doi: 10.1016/j.virusres.2022.198933. PubMed DOI
O'Brien C.A., Hobson-Peters J., Yam A.W.Y., Colmant A.M.G., McLean B.J., Prow N.A., Watterson D., Hall-Mendelin S., Warrilow D., Ng M.L., Khromykh A.A., Hall R.A. Viral RNA Intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl. Trop. Dis. 2015;9:1–27. doi: 10.1371/journal.pntd.0003629. PubMed DOI PMC
Okonechnikov K., Golosova O., Fursov M., Team, the U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Osaki H., Sasaki A., Nomiyama K., Tomioka K. Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes. 2016;52:835–847. doi: 10.1007/s11262-016-1379-x. PubMed DOI
Pagnoni S., Oufensou S., Balmas V., Bulgari D., Gobbi E., Forgia M., Migheli Q., Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol. 2023;9 doi: 10.1093/ve/vead042. PubMed DOI PMC
Park D., Goh C.J., Lee J.S., Sebastiani F., Hahn Y. Identification of Pistacia-associated flexivirus 1, a putative mycovirus of the family Gammaflexiviridae, in the mastic tree (Pistacia lentiscus) transcriptome. Acta Virol. 2020;64:28–35. doi: 10.4149/av_2020_104. PubMed DOI
Pearson M.N., Beever R.E., Boine B., Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 2009;10:115–128. doi: 10.1111/j.1364-3703.2008.00503.x. PubMed DOI PMC
Preisig O., Wingfield B.D., Wingfield M.J. Coinfection of a fungal pathogen by two distinct double-stranded RNA viruses. Virology. 1998;252:399–406. doi: 10.1006/viro.1998.9480. PubMed DOI
Prospero S., Botella L., Santini A., Robin C. Biological control of emerging forest diseases: how can we move from dreams to reality? For. Ecol. Manage. 2021;496 doi: 10.1016/j.foreco.2021.119377. DOI
Raco M., Vainio E.J., Sutela S., Eichmeier A., Hakalová E., Jung T., Botella L. High Diversity of novel viruses in the tree pathogen Phytophthora castaneae revealed by high-throughput sequencing of total and small RNA. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.911474. PubMed DOI PMC
Ran H., Liu L., Li B., Jiasen C., Fu Y., Daohong J., Xie J. Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol. J. 2016;13:1–10. doi: 10.1186/s12985-016-0550-2. PubMed DOI PMC
Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Rombel I.T., Sykes K.F., Rayner S., Johnston S.A. ORF-FINDER: a vector for high-throughput gene identification. Gene. 2002;282:33–41. doi: 10.1016/S0378-1119(01)00819-8. PubMed DOI
Ruiz-Padilla A., Rodríguez-Romero J., Gómez-Cid I., Pacifico D., Ayllón M.A. Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. MBio. 2021;12 doi: 10.1128/mBio.03705-20. PubMed DOI PMC
Rwahnih M.A., Daubert S., Úrbez-Torres J.R., Cordero F., Rowhani A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch. Virol. 2011;156:397–403. doi: 10.1007/s00705-010-0869-8. PubMed DOI PMC
Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Farrell C.M., Feldgarden M., Fine A.M., Funk K., Hatcher E., Kannan S., Kelly C., Kim S., Klimke W., Landrum M.J., Lathrop S., Lu Z., Madden T.L., Malheiro A., Marchler-Bauer A., Murphy T.D., Phan L., Pujar S., Rangwala S.H., Schneider V.A., Tse T., Wang J., Ye J., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2023;51 doi: 10.1093/nar/gkac1032. D29–D38. PubMed DOI PMC
Schoebel C.N., Botella L., Lygis V., Rigling D. Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host. Mol. Ecol. 2017;26:2482–2497. doi: 10.1111/mec.14048. PubMed DOI
Shah U.A., Daudu J.O., Filippou C., Tubby K.V., Coutts R.H.A., Kotta-Loizou I. Identification and sequence determination of a new chrysovirus infecting the phytopathogenic fungus Dothistroma septosporum. Arch. Virol. 2023;168:144. doi: 10.1007/s00705-023-05768-9. PubMed DOI PMC
Shahi S., Chiba S., Kondo H., Suzuki N. Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range. Virology. 2021;554:55–65. doi: 10.1016/j.virol.2020.11.011. PubMed DOI
Shamsi W., Kondo H., Ulrich S., Rigling D., Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res. 2022;320 doi: 10.1016/j.virusres.2022.198901. PubMed DOI
Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI
Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:1–19. doi: 10.1093/ve/veaa076. PubMed DOI PMC
Svanella-Dumas L., Marais A., Faure C., Theil S., Lefebvre M., Candresse T. Genome characterization of a divergent isolate of the mycovirus Botrytis virus F from a grapevine metagenome. Arch. Virol. 2018;163:3181–3183. doi: 10.1007/s00705-018-3975-7. PubMed DOI
Thapa V., Roossinck M.J. Determinants of coinfection in the mycoviruses. Front. Cell. Infect. Microbiol. 2019 doi: 10.3389/fcimb.2019.00169. PubMed DOI PMC
Tonka T., Walterová L., Hejna O., Čurn V. Molecular characterization of a ssRNA mycovirus isolated from the forest pathogenic fungus Armillaria ostoyae. Acta Virol. 2022;66:290–294. doi: 10.4149/av_2022_309. PubMed DOI
Tubby K., Forster J. The potential role of aerial pesticide applications to control landscape-scale outbreaks of pests and diseases in British forestry with a focus on Dothistroma needle blight. For. An Int. J. For. Res. 2021;94:347–362. doi: 10.1093/forestry/cpaa038. DOI
Tuomivirta T.T., Hantula J. Three unrelated viruses occur in a single isolate of Gremmeniella abietina var. abietina type A. Virus Res. 2005;110:31–39. doi: 10.1016/j.virusres.2004.12.005. PubMed DOI
Tuomivirta T.T., Hantula J. Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus. Arch. Virol. 2003;148:2429–2436. doi: 10.1007/s00705-003-0195-5. PubMed DOI
Tuomivirta T.T., Hantula J. Two unrelated double-stranded RNA molecule patterns in Gremmeniella abietina type A code for putative viruses of the families Totiviridae and Partitiviridae. Arch. Virol. 2003;148:2293–2305. doi: 10.1007/s00705-003-0194-6. PubMed DOI
Tuomivirta T.T., Kaitera J., Hantula J. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J. Gen. Virol. 2009;90:2299–2305. doi: 10.1099/vir.0.011973-0. PubMed DOI
Tuomivirta T.T., Uotila A., Hantula J. Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. For. Pathol. 2002;32:197–205. doi: 10.1046/j.1439-0329.2002.00285.x. DOI
Vainio E.J. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res. 2019;271 doi: 10.1016/j.virusres.2019.197681. PubMed DOI
Vainio E.J., Chiba S., Ghabrial S.A., Maiss E., Roossinck M., Sabanadzovic S., Suzuki N., Xie J., Nibert M. ICTV virus taxonomy profile: Partitiviridae. J. Gen. Virol. 2018;99:17–18. doi: 10.1099/jgv.0.000985. PubMed DOI PMC
Vainio E.J., Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res. 2016;219:2–10. doi: 10.1016/j.virusres.2015.10.014. PubMed DOI
Vainio Eeva J., Jurvansuu J., Hyder R., Kashif M., Piri T., Tuomivirta T., Poimala A., Xu P., Mäkelä S., Nitisa D., Hantula J. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J. Virol. 2018;92 doi: 10.1128/JVI.01744-17. PubMed DOI PMC
Vainio E.J., Jurvansuu J., Streng J., Rajamäki M.-L., Hantula J., Valkonen J.P.T. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 2015;96:714–725. doi: 10.1099/jgv.0.000003. PubMed DOI
Vainio E.J., Martínez-Álvarez P., Bezos D., Hantula J., Diez J.J. Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses. Arch. Virol. 2015;160:2093–2098. doi: 10.1007/s00705-015-2462-7. PubMed DOI
Vainio E.J., Müller M.M., Korhonen K., Piri T., Hantula J. Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J. 2015;9:497–507. doi: 10.1038/ismej.2014.145. PubMed DOI PMC
Vainio E.J., Piri T., Hantula J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. Microb. Ecol. 2013;65:28–38. doi: 10.1007/s00248-012-0118-7. PubMed DOI
Vainio E.J., Sutela S. Mixed infection by a partitivirus and a negative-sense RNA virus related to mymonaviruses in the polypore fungus Bondarzewia berkeleyi. Virus Res. 2020;286 doi: 10.1016/j.virusres.2020.198079. PubMed DOI
van der Nest A., Wingfield M.J., Sadiković D., Mullett M.S., Marçais B., Queloz V., Adamčíková K., Davydenko K., Barnes I. Population structure and diversity of the needle pathogen Dothistroma pini suggests human-mediated movement in Europe. Front. Genet. 2023;14:1–14. doi: 10.3389/fgene.2023.1103331. PubMed DOI PMC
Velasco L., Arjona-Girona I., Cretazzo E., López-Herrera C. Viromes in Xylariaceae fungi infecting avocado in Spain. Virology. 2019;532:11–21. doi: 10.1016/j.virol.2019.03.021. PubMed DOI
Voth P.D., Mairura L., Lockhart B.E., May G. Phylogeography of Ustilago maydis virus H1 in the USA and Mexico. J. Gen. Virol. 2006;87:3433–3441. doi: 10.1099/vir.0.82149-0. PubMed DOI
Wang Q., Li T., Xu K., Zhang W., Wang X., Quan J., Jin W., Zhang M., Fan G., Wang M.-B., Shan W. The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Front. Plant Sci. 2016;07:1–14. doi: 10.3389/fpls.2016.01938. PubMed DOI PMC
Weber F., Wagner V., Rasmussen S.B., Hartmann R., Paludan S.R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 2006;80:5059–5064. doi: 10.1128/JVI.80.10.5059-5064.2006. PubMed DOI PMC
White T.J., Bruns T., Lee S., Taylor J. PCR Protocols. Elsevier; 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322. DOI
Wichgers Schreur P.J., Kormelink R., Kortekaas J. Curr. Opin. Virol; 2018. Genome Packaging of the Bunyavirales. PubMed DOI
Zhai L., Zhang M., Hong N., Xiao F., Fu M., Xiang J., Wang G., Shahi S., Chiba S., Kondo H., Suzuki N. Identification and characterization of a novel hepta-segmented dsRNA virus from the phytopathogenic fungus Colletotrichum fructicola. Front. Microbiol. 2018;9:1–13. doi: 10.3389/fmicb.2018.00754. PubMed DOI PMC
Zhang T., Cai X., Teng L., Li X., Zhong N., Liu H. Molecular characterization of three novel mycoviruses in the plant pathogenic fungus Exobasidium. Virus Res. 2022;307 doi: 10.1016/j.virusres.2021.198608. PubMed DOI
Zhang Y.-Z., Chen Y.-M., Wang W., Qin X.-C., Holmes E.C. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 2019;6:119–139. doi: 10.1146/annurev-virology-092818-015851. PubMed DOI