Dothistroma septosporum and Dothistroma pini, the causal agents of Dothistroma needle blight, are infected by multiple viruses

. 2024 Dec ; 350 () : 199476. [epub] 20241005

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39353468

Dothistroma septosporum and Dothistroma pini are severe foliar pathogens of conifers. They infect a broad spectrum of hosts (mainly Pinus spp.), causing chlorosis, defoliation of needles, and eventually the death of pine trees in extreme cases. Mycoviruses represent a novel and innovative avenue for controlling pathogens. To search for possible viruses hosted by Dothistroma spp. we screened a subset of isolates (20 strains of D. septosporum and one D. pini) originating from the Czech Republic, Slovenia, Italy, Austria and Ireland for viral dsRNA segments. Only five of them showed the presence of dsRNA segments. A total of 21 fungal isolates were prepared for total RNA extractions. RNA samples were pooled, and two separate RNA libraries were constructed for stranded total RNA sequencing. RNA-Seq data processing, pairwise sequence comparisons (PASC) and phylogenetic analyses revealed the presence of thirteen novel putative viruses with varying genome types: seven negative-sense single-stranded RNA viruses, including six bunya-like viruses and one new member of the order Mononegavirales; three positive-sense single-stranded RNA viruses, two of which are similar to those of the family Narnaviridae, while the genome of the third correspond to those of the family Gammaflexiviridae; and three double-stranded RNA viruses, comprising two novel members of the family Chrysoviridae and a potentially new species of gammapartitivirus. The results were confirmed with RT-PCR screening that the fungal pathogens hosted all the viruses and showed that particular fungal strains harbour multiple virus infections and that they are transmitted vertically. In this study, we described the narnavirus infecting D. pini. To our knowledge, this is the first virus discovered in D. pini.

Zobrazit více v PubMed

Afonso C.L., Amarasinghe G.K., Bányai K., Bào Y., Basler C.F., Bavari S., Bejerman N., Blasdell K.R., Briand F.X., Briese T., Bukreyev A., Calisher C.H., Chandran K., Chéng J., Clawson A.N., Collins P.L., Dietzgen R.G., Dolnik O., Domier L.L., Dürrwald R., Dye J.M., Easton A.J., Ebihara H., Farkas S.L., Freitas-Astúa J., Formenty P., Fouchier R.A.M., Fù Y., Ghedin E., Goodin M.M., Hewson R., Horie M., Hyndman T.H., Jiāng D., Kitajima E.W., Kobinger G.P., Kondo H., Kurath G., Lamb R.A., Lenardon S., Leroy E.M., Li C.X., Lin X.D., Liú L., Longdon B., Marton S., Maisner A., Mühlberger E., Netesov S.V., Nowotny N., Patterson J.L., Payne S.L., Paweska J.T., Randall R.E., Rima B.K., Rota P., Rubbenstroth D., Schwemmle M., Shi M., Smither S.J., Stenglein M.D., Stone D.M., Takada A., Terregino C., Tesh R.B., Tian J.H., Tomonaga K., Tordo N., Towner J.S., Vasilakis N., Verbeek M., Volchkov V.E., Wahl-Jensen V., Walsh J.A., Walker P.J., Wang D., Wang L.F., Wetzel T., Whitfield A.E., Xiè J., Yuen K.Y., Zhang Y.Z., Kuhn J.H. Taxonomy of the order Mononegavirales: update 2016. Arch. Virol. 2016;161:2351–2360. doi: 10.1007/s00705-016-2880-1. PubMed DOI PMC

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Anagnostakis S.L. Biological control of chestnut blight. Science (80-.). 1982;215:466–471. doi: 10.1126/science.215.4532.466. PubMed DOI

Arjona-Lopez J.M., Telengech P., Jamal A., Hisano S., Kondo H., Yelin M.D., Arjona-Girona I., Kanematsu S., Lopez-Herrera C.J., Suzuki N. Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ. Microbiol. 2018;20:1464–1483. doi: 10.1111/1462-2920.14065. PubMed DOI

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Barnes I., Crous P.W., Wingfield B.D., Wingfield M.J. Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud. Mycol. 2004;50:551–565.

Barnes I., van der Nest A., Mullett M.S., Crous P.W., Drenkhan R., Musolin D.L., Wingfield M.J. Neotypification of Dothistroma septosporum and epitypification of D. pini, causal agents of Dothistroma needle blight of pine. For. Pathol. 2016;46:388–407. doi: 10.1111/efp.12304. DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Boshra H. Viruses; 2022. An Overview of the Infectious Cycle of Bunyaviruses. PubMed DOI PMC

Botella L., Hantula J. Description, distribution, and relevance of viruses of the forest pathogen Gremmeniella abietina. Viruses. 2018;10:1–14. doi: 10.3390/v10110654. PubMed DOI PMC

Botella L., Jung M.H., Rost M., Jung T. Natural populations from the Phytophthora palustris complex show a high diversity and abundance of ssRNA and dsRNA viruses. J. Fungi. 2022;8:1118. doi: 10.3390/jof8111118. PubMed DOI PMC

Botella L., Tuomivirta T.T., Hantula J., Diez J.J., Jankovsky L. The European race of Gremmeniella abietina hosts a single species of Gammapartitivirus showing a global distribution and possible recombinant events in its history. Fungal Biol. 2015;119:125–135. doi: 10.1016/j.funbio.2014.12.001. PubMed DOI PMC

Botella L., Tuomivirta T.T., Vervuurt S., Diez J.J., Hantula J. Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol. 2012;116:872–882. doi: 10.1016/j.funbio.2012.05.004. PubMed DOI

Botella L., Vainio E.J., Hantula J., Diez J.J., Jankovsky L. Description and prevalence of a putative novel mycovirus within the conifer pathogen Gremmeniella abietina. Arch. Virol. 2015;160:1967–1975. doi: 10.1007/s00705-015-2456-5. PubMed DOI

Bradshaw R.E. Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. For. Pathol. 2004;34:163–185. doi: 10.1111/j.1439-0329.2004.00356.x. DOI

Bruenn J.A. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses. Nucleic Acids Res. 1993;21:5667–5669. doi: 10.1093/nar/21.24.5667. PubMed DOI PMC

Buchfink B., Xie C., Huson D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Bulman L.S., Bradshaw R.E., Fraser S., Martín-García J., Barnes I., Musolin D.L., La Porta N., Woods A.J., Diez J.J., Koltay A., Drenkhan R., Ahumada R., Poljakovic-Pajnik L., Queloz V., Piškur B., Doğmuş-Lehtijärvi H.T., Chira D., Tomešová-Haataja V., Georgieva M., Jankovský L., Anselmi N., Markovskaja S., Papazova-Anakieva I., Sotirovski K., Lazarević J., Adamčíková K., Boroń P., Bragança H., Vettraino A.M., Selikhovkin A.V., Bulgakov T.S., Tubby K. A worldwide perspective on the management and control of Dothistroma needle blight. For. Pathol. 2016;46:472–488. doi: 10.1111/efp.12305. DOI

Bushnell B., Rood J., Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0185056. PubMed DOI PMC

Čermáková V., Kudláček T., Rotková G., Rozsypálek J., Botella L. Hymenoscyphus fraxineus mitovirus 1 naturally disperses through the airborne inoculum of its host, Hymenoscyphus fraxineus, in the Czech Republic. Biocontrol Sci. Technol. 2017;27:992–1008. doi: 10.1080/09583157.2017.1368455. DOI

Chiapello M., Rodríguez-Romero J., Ayllón M.A., Turina M. Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evol. 2020;6:1–18. doi: 10.1093/ve/veaa058. PubMed DOI PMC

Chiba Y., Oiki S., Yaguchi T., Urayama S.I., Hagiwara D. Discovery of divided RdRp sequences and a hitherto unknown genomic complexity in fungal viruses. Virus Evol. 2021;7:1–11. doi: 10.1093/ve/veaa101. PubMed DOI PMC

Chomczynski P., Wilfinger W., Kennedy A., Rymaszewski M., Mackey K. RNAzol® RT: a new single-step method for isolation of RNA. Nat. Methods. 2010;7:4–5. doi: 10.1038/nmeth.f.315. DOI

Daudu J., Snowden J., Tubby K., Coutts R., Kotta-Loizou I. Studying a mycovirus from Dothistroma septosporum, causative agent of pine needle blight. Access Microbiol. 2019;1 doi: 10.1099/acmi.ac2019.po0502. DOI

Dinan A.M., Lukhovitskaya N.I., Olendraite I., Firth A.E. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol. 2020;6:1–13. doi: 10.1093/ve/veaa007. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Drenkhan R., Tomešová-Haataja V., Fraser S., Bradshaw R.E., Vahalík P., Mullett M.S., Martín-García J., Bulman L.S., Wingfield M.J., Kirisits T., Cech T.L., Schmitz S., Baden R., Tubby K., Brown A., Georgieva M., Woods A., Ahumada R., Jankovský L., Thomsen I.M., Adamson K., Marçais B., Vuorinen M., Tsopelas P., Koltay A., Halasz A., La Porta N., Anselmi N., Kiesnere R., Markovskaja S., Kačergius A., Papazova-Anakieva I., Risteski M., Sotirovski K., Lazarević J., Solheim H., Boroń P., Bragança H., Chira D., Musolin D.L., Selikhovkin A.V., Bulgakov T.S., Keča N., Karadžić D., Galovic V., Pap P., Markovic M., Poljakovic Pajnik L., Vasic V., Ondrušková E., Piškur B., Sadiković D., Diez J.J., Solla A., Millberg H., Stenlid J., Angst A., Queloz V., Lehtijärvi A., Doğmuş-Lehtijärvi H.T., Oskay F., Davydenko K., Meshkova V., Craig D., Woodward S., Barnes I. Global geographic distribution and host range of Dothistroma species: a comprehensive review. For. Pathol. 2016;46:408–442. doi: 10.1111/efp.12290. DOI

Edgar R.C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. doi: 10.1186/1471-2105-5-113. PubMed DOI PMC

EPPO PM 7/46 (3) Lecanosticta acicola (formerly Mycosphaerella dearnessii), Dothistroma septosporum (formerly Mycosphaerella pini) and Dothistroma pini. EPPO Bull. 2015;45:163–182. doi: 10.1111/epp.12217. DOI

Ferron F., Weber F., de la Torre J.C., Reguera J. Virus Res; 2017. Transcription and Replication Mechanisms of Bunyaviridae and Arenaviridae L proteins. PubMed DOI PMC

Forgia M., Chiapello M., Daghino S., Pacifico D., Crucitti D., Oliva D., Ayllon M., Turina M. Three new clades of putative viral RNA-dependent RNA polymerases with rare or unique catalytic triads discovered in libraries of ORFans from powdery mildews and the yeast of oenological interest Starmerella bacillaris. Virus Evol. 2022;8:1–14. doi: 10.1093/ve/veac038. PubMed DOI PMC

Gallie D.R., Walbot V. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res. 1992;20:4631–4638. doi: 10.1093/nar/20.17.4631. PubMed DOI PMC

García-Pedrajas M.D., Cañizares M.C., Sarmiento-Villamil J.L., Jacquat A.G., Dambolena J.S. Mycoviruses in biological control: from basic research to field implementation. Phytopathology®. 2019;109:1828–1839. doi: 10.1094/PHYTO-05-19-0166-RVW. PubMed DOI

Ghabrial S.A., Castón J.R., Jiang D., Nibert M.L., Suzuki N. 50-plus years of fungal viruses. Virology. 2015:356–368. doi: 10.1016/j.virol.2015.02.034. 479–480. PubMed DOI

Ghabrial S.A., Suzuki N. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 2009;47:353–384. doi: 10.1146/annurev-phyto-080508-081932. PubMed DOI

Gilbert K.B., Holcomb E.E., Allscheid R.L., Carrington J.C. Hiding in plain sight: new virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS ONE. 2019;14:1–51. doi: 10.1371/journal.pone.0219207. PubMed DOI PMC

Hantula J., Mäkelä S., Xu P., Brusila V., Nuorteva H., Kashif M., Hyder R., Vainio E.J. Multiple virus infections on Heterobasidion sp. Fungal Biol. 2020;124:102–109. doi: 10.1016/j.funbio.2019.12.004. PubMed DOI

Heiniger U., Rigling D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 1994;32:581–599. doi: 10.1146/annurev.py.32.090194.003053. DOI

Herrero N. Identification and sequence determination of a new chrysovirus infecting the entomopathogenic fungus Isaria javanica. Arch. Virol. 2017;162:1113–1117. doi: 10.1007/s00705-016-3194-z. PubMed DOI

Hollings M. Viruses associated with a die-back disease of cultivated mushroom. Nature. 1962;196:962–965. doi: 10.1038/196962a0. DOI

Hough B., Steenkamp E., Wingfield B., Read D. Fungal viruses unveiled: a comprehensive review of mycoviruses. Viruses. 2023;15:1202. doi: 10.3390/v15051202. PubMed DOI PMC

Howitt R.L.J., Beever R.E., Pearson M.N., Forster R.L.S. Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant “potex-like” viruses. J. Gen. Virol. 2001;82:67–78. doi: 10.1099/0022-1317-82-1-67. PubMed DOI

Jia J., Fu Y., Jiang D., Mu F., Cheng J., Lin Y., Li B., Marzano S.Y.L., Xie J. Interannual dynamics, diversity and evolution of the virome in Sclerotinia sclerotiorum from a single crop field. Virus Evol. 2021;7:1–12. doi: 10.1093/ve/veab032. PubMed DOI PMC

Jiāng D., Ayllón M.A., Marzano S.Y.L. ICTV virus taxonomy profile: Mymonaviridae. J. Gen. Virol. 2019;100:1343–1344. doi: 10.1099/JGV.0.001301. PubMed DOI

Kashif M., Jurvansuu J., Vainio E.J., Hantula J. Alphapartitiviruses of Heterobasidion wood decay fungi affect each other's transmission and host growth. Front. Cell. Infect. Microbiol. 2019;9:1–11. doi: 10.3389/fcimb.2019.00064. PubMed DOI PMC

Kim J.W., Kim S.Y., Kim K.M. Genome organization and expression of the Penicillium stoloniferum virus S. Virus Genes. 2003;27:249–256. doi: 10.1023/A:1026343831909. PubMed DOI

Kondo H., Botella L., Suzuki N. Mycovirus diversity and evolution revealed/inferred from recent studies. Annu. Rev. Phytopathol. 2022;60:307–336. doi: 10.1146/annurev-phyto-021621-122122. PubMed DOI

Kondo H., Chiba S., Toyoda K., Suzuki N. Evidence for negative-strand RNA virus infection in fungi. Virology. 2013;435:201–209. doi: 10.1016/j.virol.2012.10.002. PubMed DOI

Kopylova E., Noé L., Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Kotta-Loizou I., Castón J.R., Coutts R.H.A., Hillman B.I., Jiang D., Kim D.-H., Moriyama H., Suzuki N. ICTV virus taxonomy profile: Chrysoviridae. J. Gen. Virol. 2020 doi: 10.1099/jgv.0.001383. PubMed DOI PMC

Leventhal S.S., Wilson D., Feldmann H., Hawman D.W. A look into Bunyavirales genomes: functions of non-structural (ns) proteins. Viruses. 2021 doi: 10.3390/v13020314. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Li Y., Zhou M., Yang Y., Liu Q., Zhang Z., Han C., Wang Y. Characterization of the mycovirome from the plant-pathogenic fungus Cercospora beticola. Viruses. 2021;13 doi: 10.3390/v13101915. PubMed DOI PMC

Lin Y.H., Fujita M., Chiba S., Hyodo K., Andika I.B., Suzuki N., Kondo H. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes) Virology. 2019;533:125–136. doi: 10.1016/j.virol.2019.05.008. PubMed DOI

Linnakoski R., Sutela S., Coetzee M.P.A., Duong T.A., Pavlov I.N., Litovka Y.A., Hantula J., Wingfield B.D., Vainio E.J. Armillaria root rot fungi host single-stranded RNA viruses. Sci. Rep. 2021;11:7336. doi: 10.1038/s41598-021-86343-7. PubMed DOI PMC

Liu J.J., Chan D., Xiang Y., Williams H., Li X.R., Sniezko R.A., Sturrock R.N. Characterization of five novel mitoviruses in the white pine blister rust fungus Cronartium ribicola. PLoS ONE. 2016;11:1–20. doi: 10.1371/journal.pone.0154267. PubMed DOI PMC

Liu J.J., Xiang Y., Sniezko R.A., Schoettle A.W., Williams H., Zamany A. Characterization of Cronartium ribicola dsRNAs reveals novel members of the family Totiviridae and viral association with fungal virulence. Virol. J. 2019;16:1–13. doi: 10.1186/s12985-019-1226-5. PubMed DOI PMC

Liu L., Xie J., Cheng J., Fu Y., Li G., Yi X., Jiang D. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc. Natl. Acad. Sci. 2014;111:12205–12210. doi: 10.1073/pnas.1401786111. PubMed DOI PMC

Liu W., Duns G., Chen J. Genomic characterization of a novel partitivirus infecting Aspergillus ochraceus. Virus Genes. 2008;37:322–327. doi: 10.1007/s11262-008-0265-6. PubMed DOI

Martínez-Álvarez P., Vainio E.J., Botella L., Hantula J., Diez J.J. Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. Arch. Virol. 2014;159:2153–2155. doi: 10.1007/s00705-014-2012-8. PubMed DOI

Miller M.A., Pfeiffer W., Schwartz T. 2010 Gateway Computing Environments Workshop (GCE) IEEE; 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8. DOI

Morris T.J., Dodds J.A. Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. Phytopathology. 1979;69:854. doi: 10.1094/Phyto-69-854. DOI

Mueller S., Gausson V., Vodovar N., Deddouche S., Troxler L., Perot J., Pfeffer S., Hoffmann J.A., Saleh M.-C., Imler J.-L. RNAi-mediated immunity provides strong protection against the negative-strand RNA vesicular stomatitis virus in Drosophila. Proc. Natl. Acad. Sci. 2010;107:19390–19395. doi: 10.1073/pnas.1014378107. PubMed DOI PMC

Mullett M., Barnes I. Springer Netherlands; Dordrecht: 2012. Dothistroma, in: Dothistroma isolation and Molecular Identification Methods. pp. 176–176.

Mullett M.S., Adamson K., Bragança H., Bulgakov T.S., Georgieva M., Henriques J., Jürisoo L., Laas M., Drenkhan R. For. Pathol; 2018. New Country and Regional Records of the Pine Needle Blight Pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. DOI

Mullett M.S., Drenkhan R., Adamson K., Boroń P., Lenart-Boroń A., Barnes I., Tomšovský M., Jánošíková Z., Adamčíková K., Ondrušková E., Queloz V., Piškur B., Musolin D.L., Davydenko K., Georgieva M., Schmitz S., Kačergius A., Ghelardini L., Orlović J.K., Müller M., Oskay F., Hauptman T., Halász Á., Markovskaja S., Solheim H., Vuorinen M., Heinzelmann R., Hamelin R.C., Konečný A. Worldwide genetic structure elucidates the eurasian origin and invasion pathways of Dothistroma septosporum, causal agent of Dothistroma needle blight. J. Fungi. 2021;7:1–28. doi: 10.3390/jof7020111. PubMed DOI PMC

Muñoz-Adalia E.J., Diez J.J., Fernández M.M., Hantula J., Vainio E.J. Characterization of small RNAs originating from mitoviruses infecting the conifer pathogen Fusarium circinatum. Arch. Virol. 2018;163:1009–1018. doi: 10.1007/s00705-018-3712-2. PubMed DOI

Muñoz-Adalia E.J., Fernández M.M., Diez J.J. The use of mycoviruses in the control of forest diseases. Biocontrol Sci. Technol. 2016;26:577–604. doi: 10.1080/09583157.2015.1135877. DOI

Nerva L., Forgia M., Ciuffo M., Chitarra W., Chiapello M., Vallino M., Varese G.C., Turina M. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. Virus Res. 2019;273 doi: 10.1016/j.virusres.2019.197737. PubMed DOI

Nerva L., Turina M., Zanzotto A., Gardiman M., Gaiotti F., Gambino G., Chitarra W. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 2019;21:2886–2904. doi: 10.1111/1462-2920.14651. PubMed DOI

Nibert M.L., Ghabrial S.A., Maiss E., Lesker T., Vainio E.J., Jiang D., Suzuki N. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res. 2014;188:128–141. doi: 10.1016/j.virusres.2014.04.007. PubMed DOI

Ning S., Kang Q., Liu H., Lu Y., Sui L., Xu W., Shi W., Li Q., Zhang Z. Interspecific spread of dsRNA mycoviruses in entomogenous fungi Beauveria spp. Virus Res. 2022;322 doi: 10.1016/j.virusres.2022.198933. PubMed DOI

O'Brien C.A., Hobson-Peters J., Yam A.W.Y., Colmant A.M.G., McLean B.J., Prow N.A., Watterson D., Hall-Mendelin S., Warrilow D., Ng M.L., Khromykh A.A., Hall R.A. Viral RNA Intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl. Trop. Dis. 2015;9:1–27. doi: 10.1371/journal.pntd.0003629. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M., Team, the U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Osaki H., Sasaki A., Nomiyama K., Tomioka K. Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes. 2016;52:835–847. doi: 10.1007/s11262-016-1379-x. PubMed DOI

Pagnoni S., Oufensou S., Balmas V., Bulgari D., Gobbi E., Forgia M., Migheli Q., Turina M. A collection of Trichoderma isolates from natural environments in Sardinia reveals a complex virome that includes negative-sense fungal viruses with unprecedented genome organizations. Virus Evol. 2023;9 doi: 10.1093/ve/vead042. PubMed DOI PMC

Park D., Goh C.J., Lee J.S., Sebastiani F., Hahn Y. Identification of Pistacia-associated flexivirus 1, a putative mycovirus of the family Gammaflexiviridae, in the mastic tree (Pistacia lentiscus) transcriptome. Acta Virol. 2020;64:28–35. doi: 10.4149/av_2020_104. PubMed DOI

Pearson M.N., Beever R.E., Boine B., Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 2009;10:115–128. doi: 10.1111/j.1364-3703.2008.00503.x. PubMed DOI PMC

Preisig O., Wingfield B.D., Wingfield M.J. Coinfection of a fungal pathogen by two distinct double-stranded RNA viruses. Virology. 1998;252:399–406. doi: 10.1006/viro.1998.9480. PubMed DOI

Prospero S., Botella L., Santini A., Robin C. Biological control of emerging forest diseases: how can we move from dreams to reality? For. Ecol. Manage. 2021;496 doi: 10.1016/j.foreco.2021.119377. DOI

Raco M., Vainio E.J., Sutela S., Eichmeier A., Hakalová E., Jung T., Botella L. High Diversity of novel viruses in the tree pathogen Phytophthora castaneae revealed by high-throughput sequencing of total and small RNA. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.911474. PubMed DOI PMC

Ran H., Liu L., Li B., Jiasen C., Fu Y., Daohong J., Xie J. Co-infection of a hypovirulent isolate of Sclerotinia sclerotiorum with a new botybirnavirus and a strain of a mitovirus. Virol. J. 2016;13:1–10. doi: 10.1186/s12985-016-0550-2. PubMed DOI PMC

Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Rombel I.T., Sykes K.F., Rayner S., Johnston S.A. ORF-FINDER: a vector for high-throughput gene identification. Gene. 2002;282:33–41. doi: 10.1016/S0378-1119(01)00819-8. PubMed DOI

Ruiz-Padilla A., Rodríguez-Romero J., Gómez-Cid I., Pacifico D., Ayllón M.A. Novel mycoviruses discovered in the mycovirome of a necrotrophic fungus. MBio. 2021;12 doi: 10.1128/mBio.03705-20. PubMed DOI PMC

Rwahnih M.A., Daubert S., Úrbez-Torres J.R., Cordero F., Rowhani A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch. Virol. 2011;156:397–403. doi: 10.1007/s00705-010-0869-8. PubMed DOI PMC

Sayers E.W., Bolton E.E., Brister J.R., Canese K., Chan J., Comeau D.C., Farrell C.M., Feldgarden M., Fine A.M., Funk K., Hatcher E., Kannan S., Kelly C., Kim S., Klimke W., Landrum M.J., Lathrop S., Lu Z., Madden T.L., Malheiro A., Marchler-Bauer A., Murphy T.D., Phan L., Pujar S., Rangwala S.H., Schneider V.A., Tse T., Wang J., Ye J., Trawick B.W., Pruitt K.D., Sherry S.T. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2023;51 doi: 10.1093/nar/gkac1032. D29–D38. PubMed DOI PMC

Schoebel C.N., Botella L., Lygis V., Rigling D. Population genetic analysis of a parasitic mycovirus to infer the invasion history of its fungal host. Mol. Ecol. 2017;26:2482–2497. doi: 10.1111/mec.14048. PubMed DOI

Shah U.A., Daudu J.O., Filippou C., Tubby K.V., Coutts R.H.A., Kotta-Loizou I. Identification and sequence determination of a new chrysovirus infecting the phytopathogenic fungus Dothistroma septosporum. Arch. Virol. 2023;168:144. doi: 10.1007/s00705-023-05768-9. PubMed DOI PMC

Shahi S., Chiba S., Kondo H., Suzuki N. Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range. Virology. 2021;554:55–65. doi: 10.1016/j.virol.2020.11.011. PubMed DOI

Shamsi W., Kondo H., Ulrich S., Rigling D., Prospero S. Novel RNA viruses from the native range of Hymenoscyphus fraxineus, the causal fungal agent of ash dieback. Virus Res. 2022;320 doi: 10.1016/j.virusres.2022.198901. PubMed DOI

Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008;57:758–771. doi: 10.1080/10635150802429642. PubMed DOI

Sutela S., Forgia M., Vainio E.J., Chiapello M., Daghino S., Vallino M., Martino E., Girlanda M., Perotto S., Turina M. The virome from a collection of endomycorrhizal fungi reveals new viral taxa with unprecedented genome organization. Virus Evol. 2020;6:1–19. doi: 10.1093/ve/veaa076. PubMed DOI PMC

Svanella-Dumas L., Marais A., Faure C., Theil S., Lefebvre M., Candresse T. Genome characterization of a divergent isolate of the mycovirus Botrytis virus F from a grapevine metagenome. Arch. Virol. 2018;163:3181–3183. doi: 10.1007/s00705-018-3975-7. PubMed DOI

Thapa V., Roossinck M.J. Determinants of coinfection in the mycoviruses. Front. Cell. Infect. Microbiol. 2019 doi: 10.3389/fcimb.2019.00169. PubMed DOI PMC

Tonka T., Walterová L., Hejna O., Čurn V. Molecular characterization of a ssRNA mycovirus isolated from the forest pathogenic fungus Armillaria ostoyae. Acta Virol. 2022;66:290–294. doi: 10.4149/av_2022_309. PubMed DOI

Tubby K., Forster J. The potential role of aerial pesticide applications to control landscape-scale outbreaks of pests and diseases in British forestry with a focus on Dothistroma needle blight. For. An Int. J. For. Res. 2021;94:347–362. doi: 10.1093/forestry/cpaa038. DOI

Tuomivirta T.T., Hantula J. Three unrelated viruses occur in a single isolate of Gremmeniella abietina var. abietina type A. Virus Res. 2005;110:31–39. doi: 10.1016/j.virusres.2004.12.005. PubMed DOI

Tuomivirta T.T., Hantula J. Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus. Arch. Virol. 2003;148:2429–2436. doi: 10.1007/s00705-003-0195-5. PubMed DOI

Tuomivirta T.T., Hantula J. Two unrelated double-stranded RNA molecule patterns in Gremmeniella abietina type A code for putative viruses of the families Totiviridae and Partitiviridae. Arch. Virol. 2003;148:2293–2305. doi: 10.1007/s00705-003-0194-6. PubMed DOI

Tuomivirta T.T., Kaitera J., Hantula J. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J. Gen. Virol. 2009;90:2299–2305. doi: 10.1099/vir.0.011973-0. PubMed DOI

Tuomivirta T.T., Uotila A., Hantula J. Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. For. Pathol. 2002;32:197–205. doi: 10.1046/j.1439-0329.2002.00285.x. DOI

Vainio E.J. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res. 2019;271 doi: 10.1016/j.virusres.2019.197681. PubMed DOI

Vainio E.J., Chiba S., Ghabrial S.A., Maiss E., Roossinck M., Sabanadzovic S., Suzuki N., Xie J., Nibert M. ICTV virus taxonomy profile: Partitiviridae. J. Gen. Virol. 2018;99:17–18. doi: 10.1099/jgv.0.000985. PubMed DOI PMC

Vainio E.J., Hantula J. Taxonomy, biogeography and importance of Heterobasidion viruses. Virus Res. 2016;219:2–10. doi: 10.1016/j.virusres.2015.10.014. PubMed DOI

Vainio Eeva J., Jurvansuu J., Hyder R., Kashif M., Piri T., Tuomivirta T., Poimala A., Xu P., Mäkelä S., Nitisa D., Hantula J. Heterobasidion partitivirus 13 mediates severe growth debilitation and major alterations in the gene expression of a fungal forest pathogen. J. Virol. 2018;92 doi: 10.1128/JVI.01744-17. PubMed DOI PMC

Vainio E.J., Jurvansuu J., Streng J., Rajamäki M.-L., Hantula J., Valkonen J.P.T. Diagnosis and discovery of fungal viruses using deep sequencing of small RNAs. J. Gen. Virol. 2015;96:714–725. doi: 10.1099/jgv.0.000003. PubMed DOI

Vainio E.J., Martínez-Álvarez P., Bezos D., Hantula J., Diez J.J. Fusarium circinatum isolates from northern Spain are commonly infected by three distinct mitoviruses. Arch. Virol. 2015;160:2093–2098. doi: 10.1007/s00705-015-2462-7. PubMed DOI

Vainio E.J., Müller M.M., Korhonen K., Piri T., Hantula J. Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME J. 2015;9:497–507. doi: 10.1038/ismej.2014.145. PubMed DOI PMC

Vainio E.J., Piri T., Hantula J. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. Microb. Ecol. 2013;65:28–38. doi: 10.1007/s00248-012-0118-7. PubMed DOI

Vainio E.J., Sutela S. Mixed infection by a partitivirus and a negative-sense RNA virus related to mymonaviruses in the polypore fungus Bondarzewia berkeleyi. Virus Res. 2020;286 doi: 10.1016/j.virusres.2020.198079. PubMed DOI

van der Nest A., Wingfield M.J., Sadiković D., Mullett M.S., Marçais B., Queloz V., Adamčíková K., Davydenko K., Barnes I. Population structure and diversity of the needle pathogen Dothistroma pini suggests human-mediated movement in Europe. Front. Genet. 2023;14:1–14. doi: 10.3389/fgene.2023.1103331. PubMed DOI PMC

Velasco L., Arjona-Girona I., Cretazzo E., López-Herrera C. Viromes in Xylariaceae fungi infecting avocado in Spain. Virology. 2019;532:11–21. doi: 10.1016/j.virol.2019.03.021. PubMed DOI

Voth P.D., Mairura L., Lockhart B.E., May G. Phylogeography of Ustilago maydis virus H1 in the USA and Mexico. J. Gen. Virol. 2006;87:3433–3441. doi: 10.1099/vir.0.82149-0. PubMed DOI

Wang Q., Li T., Xu K., Zhang W., Wang X., Quan J., Jin W., Zhang M., Fan G., Wang M.-B., Shan W. The tRNA-derived small RNAs regulate gene expression through triggering sequence-specific degradation of target transcripts in the oomycete pathogen Phytophthora sojae. Front. Plant Sci. 2016;07:1–14. doi: 10.3389/fpls.2016.01938. PubMed DOI PMC

Weber F., Wagner V., Rasmussen S.B., Hartmann R., Paludan S.R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 2006;80:5059–5064. doi: 10.1128/JVI.80.10.5059-5064.2006. PubMed DOI PMC

White T.J., Bruns T., Lee S., Taylor J. PCR Protocols. Elsevier; 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics; pp. 315–322. DOI

Wichgers Schreur P.J., Kormelink R., Kortekaas J. Curr. Opin. Virol; 2018. Genome Packaging of the Bunyavirales. PubMed DOI

Zhai L., Zhang M., Hong N., Xiao F., Fu M., Xiang J., Wang G., Shahi S., Chiba S., Kondo H., Suzuki N. Identification and characterization of a novel hepta-segmented dsRNA virus from the phytopathogenic fungus Colletotrichum fructicola. Front. Microbiol. 2018;9:1–13. doi: 10.3389/fmicb.2018.00754. PubMed DOI PMC

Zhang T., Cai X., Teng L., Li X., Zhong N., Liu H. Molecular characterization of three novel mycoviruses in the plant pathogenic fungus Exobasidium. Virus Res. 2022;307 doi: 10.1016/j.virusres.2021.198608. PubMed DOI

Zhang Y.-Z., Chen Y.-M., Wang W., Qin X.-C., Holmes E.C. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 2019;6:119–139. doi: 10.1146/annurev-virology-092818-015851. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...