Worldwide Genetic Structure Elucidates the Eurasian Origin and Invasion Pathways of Dothistroma septosporum, Causal Agent of Dothistroma Needle Blight

. 2021 Feb 03 ; 7 (2) : . [epub] 20210203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33546260

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000453 European Regional Development Fund, Project Phytophthora Research Centre Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000453
PSG136 Estonian Research Council grant PSG136
Dothistroma1 Forestry Commission, UK

Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.

Department Forest Ecosystems Protection University of Agriculture in Kraków 31 425 Kraków Poland

Department of Agricultural Food Environmental and Forest Sciences and Technologies University of Florence 50144 Firenze Italy

Department of Biochemistry Genetics and Microbiology Forestry and Agricultural Biotechnology Institute Pretoria 0002 South Africa

Department of Botany and Zoology Faculty of Science Masaryk University 61137 Brno Czech Republic

Department of Forest and Conservation Sciences Faculty of Forestry The University of British Columbia 2424 Main Mall Vancouver BC V6T 1Z4 Canada

Department of Forest Entomology Phytopathology and Game Fauna Forest Research Institut Bulgarian Academy of Sciences 1756 Sofia Bulgaria

Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences 75007 Uppsala Sweden

Department of Forest Protection Slovenian Forestry Institute Večna pot 2 SI 1000 Ljubljana Slovenia

Department of Forest Protection Ukrainian Research Institute of Forestry and Forest Melioration 61024 Kharkiv Ukraine

Department of Forest Protection Wood Science and Game Management Saint Petersburg State Forest Technical University 194021 Saint Petersburg Russia

Department of Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Večna pot 83 SI 1000 Ljubljana Slovenia

Department of Microbiology and Biomonitoring University of Agriculture in Kraków 30 059 Kraków Poland

Department of Plant Pathology and Mycology Institute of Forest Ecology SAS 949 01 Nitra Slovakia

Faculty of Forestry Çankırı Karatekin University 18200 Çankırı Turkey

Faculty of Forestry University of Zagreb 10002 Zagreb Croatia

Institut de Biologie Intégrative et des Systèmes Université Laval Pavillon Charles Eugène Marchand 1030 Avenue de la Médecine Québec City QC G1V 0A6 Canada

Institute for Sustainable Plant Protection 50019 Sesto Fiorentino Italy

Institute of Forestry and Rural Engineering Estonian University of Life Sciences 51006 Tartu Estonia

Natural Resources Institute FI 77600 Suonenjoki Finland

Natural Resources Institute Finland Bioeconomy and Environment P O Box 2 FI 00791 Helsinki Finland

Nature Research Centre Institute of Botany Žaliųjų Ežerų Str 49 LT 08406 Vilnius Lithuania

Norwegian institute of Bioeconomy P O Box 115 N 1431 Ås Norway

Phytophthora Research Centre Faculty of Forestry and Wood Technology Department of Forest Protection and Wildlife Management Mendel University in Brno Zemědělská 3 61300 Brno Czech Republic

Plant Health Diagnostic National Reference Laboratory National Food Chain Safety Office H 1118 Budapest Hungary

Swiss Federal Research Institute WSL Swiss Forest Protection 8903 Birmensdorf Switzerland

Vokė Branch of Lithuanian Research Centre for Agriculture and Forestry LT 02232 Vilnius Lithuania

Walloon Agricultural Research Centre Department of Life Sciences B 5030 Gembloux Belgium

Zobrazit více v PubMed

Drenkhan R., Tomešová-Haataja V., Fraser S., Bradshaw R.E., Vahalík P., Mullett M.S., Martín-García J., Bulman L.S., Wingfield M.J., Kirisits T., et al. Global Geographic Distribution and Host Range of Dothistroma Species: A Comprehensive Review. For. Pathol. 2016;46:408–442. doi: 10.1111/efp.12290. DOI

Brown A.V., Webber J. Red Band Needle Blight of Conifers in Britain. Forestry Commission; Edinburgh, UK: 2008. p. 8.

Bulman L. Foliar Diseases of Pine—The New Zealand Experience; Proceedings of the 54th Annual Western International Forest Disease Work Conference; Smithers, BC, Canada. 2–6 October 2006; pp. 57–60.

Price C. Appraising the Economic Impact of Tree Diseases in Britain: Several Shots in the Dark, and Possibly Also in the Wrong Ball-Park? Scand. For. Econ. 2010;43:45–61.

Brown A.V. Dothistroma Needle Blight. Background for Biosecurtiy Workshop 16 February 2011, Forest Research. [(accessed on 28 January 2021)];2011 Available online: http://saveourwoods.co.uk/wp-content/uploads/2011/03/Tree-Health-Threats-PtLM.pdf.

Barnes I., van der Nest A., Mullett M.S., Crous P.W., Drenkhan R., Musolin D.L., Wingfield M.J. Neotypification of Dothistroma septosporum and Epitypification of D. pini, Causal Agents of Dothistroma Needle Blight of Pine. For. Pathol. 2016;46:388–407. doi: 10.1111/efp.12304. DOI

Mullett M.S., Adamson K., Bragança H., Bulgakov T.S., Georgieva M., Henriques J., Jürisoo L., Laas M., Drenkhan R. New Country and Regional Records of the Pine Needle Blight Pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini. For. Pathol. 2018;48:e12440. doi: 10.1111/efp.12440. DOI

Gibson I.A.S. Dothistroma Blight of Pinus radiata. Annu. Rev. Phytopathol. 1972;10:51–72. doi: 10.1146/annurev.py.10.090172.000411. DOI

Rodas C.A., Wingfield M.J., Granados G.M., Barnes I. Dothistroma Needle Blight: An Emerging Epidemic Caused by Dothistroma septosporum in Colombia. Plant Pathol. 2016;65:53–63. doi: 10.1111/ppa.12389. DOI

Welsh C., Lewis K.J., Woods A.J. Regional Outbreak Dynamics of Dothistroma Needle Blight Linked to Weather Patterns in British Columbia, Canada. Can. J. For. Res. 2014;44:212–219. doi: 10.1139/cjfr-2013-0387. DOI

Woods A., Coates K.D., Hamann A. Is an Unprecedented Dothistroma Needle Blight Epidemic Related to Climate Change? Bioscience. 2005;55:761–769. doi: 10.1641/0006-3568(2005)055[0761:IAUDNB]2.0.CO;2. DOI

Fabre B., Ioos R., Piou D., Marçais B. Is the Emergence of Dothistroma Needle Blight of Pine in France Caused by the Cryptic Species Dothistroma pini? Phytopathology. 2012;102:47–54. doi: 10.1094/PHYTO-02-11-0036. PubMed DOI

Doroguine G. Une Maladie Cryptogamique Du Pin. Bull. Trimest. Société Mycol. Fr. 1911;27:105–106.

Evans H.C. The Genus Mycosphaerella and Its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines. [(accessed on 15 January 2021)];1984 :102. Available online: https://www.gov.uk/research-for-development-outputs/the-genus-mycosphaerella-and-its-anamorphs-cercoseptoria-dothistroma-and-lecanosticta-on-pines.

Saccardo P.A. Mycetes Boreali-Americani. Nuovo G. Bot. Ital. 1920;27:75–88.

Thyr B.D., Shaw C.G. Identity of the Fungus Causing Red Band Disease on Pines. Mycologia. 1964;56:103–109. doi: 10.1080/00275514.1964.12018087. DOI

Welsh C., Lewis K., Woods A. The Outbreak History of Dothistroma Needle Blight: An Emerging Forest Disease in Northwestern British Columbia, Canada. Can. J. For. Res. 2009;39:2505–2519. doi: 10.1139/X09-159. DOI

Ivory M.H. Records of Foliage Pathogens of Pinus Species in Tropical Countries. Plant Pathol. 1994;43:511–518. doi: 10.1111/j.1365-3059.1994.tb01585.x. DOI

Gibson I.A.S. Impact and Control of Dothistroma Blight of Pines. Eur. J. For. Pathol. 1974;4:89–100. doi: 10.1111/j.1439-0329.1974.tb00423.x. DOI

Adamson K., Mullett M.S., Solheim H., Barnes I., Müller M.M., Hantula J., Vuorinen M., Kačergius A., Markovskaja S., Musolin D.L., et al. Looking for Relationships between the Populations of Dothistroma septosporum in Northern Europe and Asia. Fungal Genet. Biol. 2018;110:15–25. doi: 10.1016/j.fgb.2017.12.001. PubMed DOI

Barnes I., Wingfield M.J., Carbone I., Kirisits T., Wingfield B. Population Structure and Diversity of an Invasive Pine Needle Pathogen Reflects Anthropogenic Activity. Ecol. Evol. 2014;4:3642–3661. doi: 10.1002/ece3.1200. PubMed DOI PMC

Dale A.L., Lewis K.J., Murray B.W. Sexual Reproduction and Gene Flow in the Pine Pathogen Dothistroma septosporum in British Columbia. Phytopathology. 2011;101:68–76. doi: 10.1094/PHYTO-04-10-0121. PubMed DOI

Mullett M.S., Brown A.V., Fraser S., Baden R., Tubby K.V. Insights into the Pathways of Spread and Potential Origins of Dothistroma septosporum in Britain. Fungal Ecol. 2017;26:85–98. doi: 10.1016/j.funeco.2017.01.002. DOI

Boroń P., Lenart-Boroń A., Mullett M., Kraj W., Grad B., Kowalski T. Temporal Changes in the Population Structure of Dothistroma septosporum at the Site of the First Recorded Outbreak in Poland. Plant Pathol. 2019;68:383–391. doi: 10.1111/ppa.12947. DOI

Capron A., Feau N., Heinzelmann R., Barnes I., Benowicz A., Bradshaw R.E., Dale A., Lewis K.J., Owen T.J., Reich R., et al. Signatures of Post-Glacial Genetic Isolation and Human-Driven Migration in the Dothistroma Needle Blight Pathogen in Western Canada. Phytopathology. 2020 doi: 10.1094/PHYTO-08-20-0350-FI. PubMed DOI

Drenkhan R., Hantula J., Vuorinen M., Jankovský L., Müller M.M. Genetic Diversity of Dothistroma septosporum in Estonia, Finland and Czech Republic. Eur. J. Plant Pathol. 2013;136:71–85. doi: 10.1007/s10658-012-0139-6. DOI

Mullett M.S., Brown A.V., Barnes I. Population Structure and Reproductive Mode of Dothistroma septosporum in the Brittany Peninsula of France. Eur. J. Plant Pathol. 2015;143:261–275. doi: 10.1007/s10658-015-0678-8. DOI

Oskay F., Tunalı Z., Lehtijärvi A.T., Doğmuş-Lehtijärvi H.T., Woodward S., Mullett M. Distribution and Genetic Diversity of Dothistroma septosporum in Pinus Brutia Forests of South-western Turkey. Plant Pathol. 2020;69:1551–1564. doi: 10.1111/ppa.13242. DOI

Tomšovský M., Tomešová V., Palovčíková D., Kostovčík M., Rohrer M., Hanáček P., Jankovský L. The Gene Flow and Mode of Reproduction of Dothistroma septosporum in the Czech Republic. Plant Pathol. 2013;62:59–68. doi: 10.1111/j.1365-3059.2012.02625.x. DOI

Janoušek J., Wingfield M.J., Monsivais J.G.M., Jankovský L., Stauffer C., Konečný A., Barnes I. Genetic Analyses Suggest Separate Introductions of the Pine Pathogen Lecanosticta acicola Into Europe. Phytopathology. 2015;106:1413–1425. doi: 10.1094/PHYTO-10-15-0271-R. PubMed DOI

Taerum S.J., Hoareau T.B., Duong T.A., de Beer Z.W., Jankowiak R., Wingfield M.J. Putative Origins of the Fungus Leptographium procerum. Fungal Biol. 2017;121:82–94. doi: 10.1016/j.funbio.2016.09.007. PubMed DOI

Guillemaud T., Beaumont M.A., Ciosi M., Cornuet J.-M., Estoup A. Inferring Introduction Routes of Invasive Species Using Approximate Bayesian Computation on Microsatellite Data. Heredity. 2010;104:88–99. doi: 10.1038/hdy.2009.92. PubMed DOI

Boroń P., Lenart-Boroń A., Mullett M. The Distribution of Dothistroma septosporum and Its Mating Types in Poland. For. Pathol. 2016;46:489–496. doi: 10.1111/efp.12262. DOI

Mullett M., Barnes I. Dothistroma Isolation and Molecular Identification Methods. [(accessed on 28 January 2021)];2012 Available online: https://www.forestresearch.gov.uk/documents/305/DIAROD_052012_Isolation_and_indentification_97fNCCI.pdf.

Bradshaw R.E., Ganley R.J., Jones W.T., Dyer P.S. High Levels of Dothistromin Toxin Produced by the Forest Pathogen Dothistroma pini. Mycol. Res. 2000;104:325–332. doi: 10.1017/S0953756299001367. DOI

Groenewald M., Barnes I., Bradshaw R.E., Brown A.V., Dale A., Groenewald J.Z., Lewis K.J., Wingfield B.D., Wingfield M.J., Crous P.W. Characterization and Distribution of Mating Type Genes in the Dothistroma Needle Blight Pathogens. Phytopathology. 2007;97:825–834. doi: 10.1094/PHYTO-97-7-0825. PubMed DOI

Barnes I., Cortinas M.N., Wingfield M.J., Wingfield B.D. Microsatellite Markers for the Red Band Needle Blight Pathogen, Dothistroma septosporum. Mol. Ecol. Resour. 2008;8:1026–1029. doi: 10.1111/j.1755-0998.2008.02142.x. PubMed DOI

Kamvar Z.N., Tabima J.F., Grünwald N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281. PubMed DOI PMC

Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 28 January 2021)];2013 Available online: https://cran.r-project.org/web/packages/vegan/index.html.

Shannon C.E., Weaver W. The Mathematical Theory of Communication. University of Illinois Press; Urbana, IL, USA: 1949.

Grünwald N.J., Goodwin S.B., Milgroom M.G., Fry W.E. Analysis of Genotypic Diversity Data for Populations of Microorganisms. Phytopathology. 2003;93:738–746. doi: 10.1094/PHYTO.2003.93.6.738. PubMed DOI

Stoddart J.A., Taylor J.F. Genotypic Diversity: Estimation and Prediction in Samples. Genetics. 1988;118:705–711. doi: 10.1093/genetics/118.4.705. PubMed DOI PMC

Simpson E.H. Measurement of Diversity. Nature. 1949;163:688. doi: 10.1038/163688a0. DOI

Zhan J., Pettway R.E., McDonald B.A. The Global Genetic Structure of the Wheat Pathogen Mycosphaerella graminicola Is Characterized by High Nuclear Diversity, Low Mitochondrial Diversity, Regular Recombination, and Gene Flow. Fungal Genet. Biol. 2003;38:286–297. doi: 10.1016/S1087-1845(02)00538-8. PubMed DOI

Nei M. Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals. Genetics. 1978;89:583–590. PubMed PMC

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Szpiech Z.A., Jakobsson M., Rosenberg N.A. ADZE: A Rarefaction Approach for Counting Alleles Private to Combinations of Populations. Bioinformatics. 2008;24:2498–2504. doi: 10.1093/bioinformatics/btn478. PubMed DOI PMC

Excoffier L., Lischer H.E.L. ARLEQUIN Suite Ver 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI

McDonald J.H. Handbook of Biological Statistics. 3rd ed. Sparky House Publishing; Baltimore, MD, USA: 2014. [(accessed on 28 January 2021)]. Available online: http://www.biostathandbook.com/exactgof.html.

Brown A.H.D., Feldman M.W., Nevo E. Multilocus Structure of Natural Populations of Hordeum spontaneum. Genetics. 1980;96:523–536. PubMed PMC

Agapow P.-M., Burt A. Indices of Multilocus Linkage Disequilibrium. Mol. Ecol. Notes. 2001;1:101–102. doi: 10.1046/j.1471-8278.2000.00014.x. DOI

Milgroom M.G. Recombination and the Multilocus Structure of Fungal Populations. Annu. Rev. Phytopathol. 1996;34:457–477. doi: 10.1146/annurev.phyto.34.1.457. PubMed DOI

Falush D., Stephens M., Pritchard J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics. 2003;164:1567–1587. PubMed PMC

Pritchard J.K., Stephens M., Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155:945–959. PubMed PMC

Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. Clumpak: A Program for Identifying Clustering Modes and Packaging Population Structure Inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC

Evanno G., Regnaut S., Goudet J. Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Rosenberg N.A. Distruct: A Program for the Graphical Display of Population Structure. Mol. Ecol. Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI

Jombart T., Devillard S., Balloux F. Discriminant Analysis of Principal Components: A New Method for the Analysis of Genetically Structured Populations. BMC Genet. 2010;11:94. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC

Jombart T. Adegenet: A R Package for the Multivariate Analysis of Genetic Markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI

Jombart T., Collins C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0. [(accessed on 28 January 2021)];2015 Available online: https://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf.

Cornuet J.-M., Pudlo P., Veyssier J., Dehne-Garcia A., Gautier M., Leblois R., Marin J.-M., Estoup A. DIYABC v2.0: A Software to Make Approximate Bayesian Computation Inferences about Population History Using Single Nucleotide Polymorphism, DNA Sequence and Microsatellite Data. Bioinformatics. 2014;30:1187–1189. doi: 10.1093/bioinformatics/btt763. PubMed DOI

Konečný A., Estoup A., Duplantier J.-M., Bryja J., Bâ K., Galan M., Tatard C., Cosson J.-F. Invasion Genetics of the Introduced Black Rat (Rattus Rattus) in Senegal, West Africa. Mol. Ecol. 2013;22:286–300. doi: 10.1111/mec.12112. PubMed DOI

Cornuet J.-M., Ravigné V., Estoup A. Inference on Population History and Model Checking Using DNA Sequence and Microsatellite Data with the Software DIYABC (v1.0) BMC Bioinform. 2010;11:401. doi: 10.1186/1471-2105-11-401. PubMed DOI PMC

Cornuet J.-M., Santos F., Beaumont M.A., Robert C.P., Marin J.-M., Balding D.J., Guillemaud T., Estoup A. Inferring Population History with DIY ABC: A User-Friendly Approach to Approximate Bayesian Computation. Bioinformatics. 2008;24:2713–2719. doi: 10.1093/bioinformatics/btn514. PubMed DOI PMC

Price R.A., Liston A., Strauss S.H. Phylogeny and systematics of Pinus. In: Richardson D.M., editor. Ecology and Biogeography of Pinus. Cambridge University Press; Cambridge, UK: 2000. pp. 49–68.

Richardson D.M., Rundel P.W. Ecology and bio- geography of Pinus: An introduction. In: Richardson D.M., editor. Ecology and Biogeography of Pinus. Cambridge University Press; Cambridge, UK: 2000. pp. 3–46.

Fielding J.M. The Introduction of Monterey Pine into Australia. Aust. For. 1957;21:15–16. doi: 10.1080/00049158.1957.10675333. DOI

Le Maitre D.C. Pines in cultivation: A global view. In: Richardson D.M., editor. Ecology and Biogeography of Pinus. Cambridge University Press; Cambridge, UK: 2000. pp. 407–431.

Wu H.X., Eldridge K.G., Matheson A.C., Powell M.B., McRae T.A., Butcher T.B., Johnson I.G. Achievements in Forest Tree Improvement in Australia and New Zealand 8. Successful Introduction and Breeding of Radiata Pine in Australia. Aust. For. 2007;70:215–225. doi: 10.1080/00049158.2007.10675023. DOI

de Villebonne D., Maugard F. Rapid Development of Dothistroma Needle Blight (Scirrhia pini) on Corsican Pine (Pinus nigra subsp. laricio) in France. Sante For. Annu. Rep. 1998;1:30–32.

Case T.J., Taper M.L. Interspecific Competition, Environmental Gradients, Gene Flow, and the Coevolution of Species’ Borders. Am. Nat. 2000;155:583–605. doi: 10.1086/303351. PubMed DOI

Hallatschek O., Hersen P., Ramanathan S., Nelson D.R. Genetic Drift at Expanding Frontiers Promotes Gene Segregation. Proc. Natl. Acad. Sci. USA. 2007;104:19926–19930. doi: 10.1073/pnas.0710150104. PubMed DOI PMC

Sexton J.P., McIntyre P.J., Angert A.L., Rice K.J. Evolution and Ecology of Species Range Limits. Annu. Rev. Ecol. Evol. Syst. 2009;40:415–436. doi: 10.1146/annurev.ecolsys.110308.120317. DOI

Rubal M., Veiga P., Maldonado C., Torres C., Moreira J. Population Attributes and Traits of Siphonaria pectinata (Mollusca: Siphonariidae) in Range-Edge and Non Range-Edge Populations at Its Eastern Atlantic Northern Distribution Boundary. J. Exp. Mar. Biol. Ecol. 2015;471:41–47. doi: 10.1016/j.jembe.2015.05.015. DOI

Hargreaves A.L., Eckert C.G. Local Adaptation Primes Cold-Edge Populations for Range Expansion but Not Warming-Induced Range Shifts. Ecol. Lett. 2019;22:78–88. doi: 10.1111/ele.13169. PubMed DOI

Hereford J. A Quantitative Survey of Local Adaptation and Fitness Trade-Offs. Am. Nat. 2009;173:579–588. doi: 10.1086/597611. PubMed DOI

Wallen R.M., Perlin M.H. An Overview of the Function and Maintenance of Sexual Reproduction in Dikaryotic Fungi. Front. Microbiol. 2018;9:503. doi: 10.3389/fmicb.2018.00503. PubMed DOI PMC

Hurst L.D., Peck J.R. Recent Advances in Understanding of the Evolution and Maintenance of Sex. Trends Ecol. Evol. 1996;11:46–52. doi: 10.1016/0169-5347(96)81041-X. PubMed DOI

Taylor J., Jacobson D., Fisher M. The Evolution of Asexual Fungi: Reproduction, Speciation and Classification. Annu. Rev. Phytopathol. 1999;37:197–246. doi: 10.1146/annurev.phyto.37.1.197. PubMed DOI

Ennos R.A., Sjökvist E.I., Piotrowska M.J., Riddell C., Hoebe P.N. Using Genome Resequencing to Investigate Racial Structure, Genetic Diversity, Sexual Reproduction and Hybridisation in the Pine Pathogen Dothistroma septosporum. Fungal Ecol. 2020;45:100921. doi: 10.1016/j.funeco.2020.100921. DOI

Piotrowska M.J., Riddell C., Hoebe P.N., Ennos R.A. Planting Exotic Relatives Has Increased the Threat Posed by Dothistroma septosporum to the Caledonian Pine Populations of Scotland. Evol. Appl. 2018;11:350–363. doi: 10.1111/eva.12562. PubMed DOI PMC

Markovskaja S., Raitelaitytė K., Kačergius A., Kolmakov P., Vasilevich V. Occurrence of Dothistroma Needle Blight in Lithuania and Belarus: The Risk Posed to Native Scots Pine Forests. For. Pathol. 2020:e12626. doi: 10.1111/efp.12626. DOI

Ennos R.A. The Introduction of Lodgepole Pine as a Major Forest Crop in Sweden: Implications for Host–Pathogen Evolution. For. Ecol. Manag. 2001;141:85–96. doi: 10.1016/S0378-1127(00)00491-6. DOI

Harrington T.C., Wingfield M.J. Ecology and Biogeography of Pinus. Cambridge University Press; Cambridge, UK: 1998. Diseases and the ecology of indigenous and exotic pines; pp. 381–401.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...