Population structure and diversity of the needle pathogen Dothistroma pini suggests human-mediated movement in Europe
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36873952
PubMed Central
PMC9978111
DOI
10.3389/fgene.2023.1103331
PII: 1103331
Knihovny.cz E-resources
- Keywords
- Dothistroma needle blight, Dothistroma pini, Mycosphaerella pini, mating types, microsatellites, pine needle pathogen, red band needle blight,
- Publication type
- Journal Article MeSH
Dothistroma needle blight (DNB) is an important disease of Pinus species that can be caused by one of two distinct but closely related pathogens; Dothistroma septosporum and Dothistroma pini. Dothistroma septosporum has a wide geographic distribution and is relatively well-known. In contrast, D. pini is known only from the United States and Europe, and there is a distinct lack of knowledge regarding its population structure and genetic diversity. The recent development of 16 microsatellite markers for D. pini provided an opportunity to investigate the diversity, structure, and mode of reproduction for populations collected over a period of 12 years, on eight different hosts in Europe. In total, 345 isolates from Belgium, the Czech Republic, France, Hungary, Romania, Western Russia, Serbia, Slovakia, Slovenia, Spain, Switzerland, and Ukraine were screened using microsatellite and species-specific mating type markers. A total of 109 unique multilocus haplotypes were identified and structure analyses suggested that the populations are influenced by location rather than host species. Populations from France and Spain displayed the highest levels of genetic diversity followed by the population in Ukraine. Both mating types were detected in most countries, with the exception of Hungary, Russia and Slovenia. Evidence for sexual recombination was supported only in the population from Spain. The observed population structure and several shared haplotypes between non-bordering countries provides good evidence that the movement of D. pini in Europe has been strongly influenced by human activity in Europe.
Phytophthora Research Centre Mendel University in Brno Brno Czechia
Slovenian Forestry Institute Ljubljana Slovenia
Southern Swedish Forest Research Centre Swedish University of Agricultural Science Alnarp Sweden
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Ukrainian Forest Research Institute Forestry and Forest Melioration Kharkiv Ukraine Slovakia
Université de Lorraine INRAE Grand Est UMR1136 Interactions Arbres Microorganismes Nancy France
See more in PubMed
Adamčíková K., Jánošíková Z., Van Der Nest A., Adamčík S., Ondrušková E., Barnes I. (2021). Population structure and genetic diversity suggest recent introductions of Dothistroma pini in Slovakia. Plant Pathol. 70, 1883–1896. 10.1111/ppa.13428 DOI
Adamson K., Mullett M. S., Solheim H., Barnes I., Müller M. M., Hantula J., et al. (2018). Looking for relationships between the populations of Dothistroma septosporum in northern Europe and Asia. Fungal Genet. Biol. 110, 15–25. 10.1016/j.fgb.2017.12.001 PubMed DOI
Agapow P., Burt A. (2001). Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. 10.1046/j.1471-8278.2000.00014.x DOI
Aglietti C., Meinecke C. D., Ghelardini L., Barnes I., Van Der Nest A., Villari C. (2021). Rapid detection of pine pathogens Lecanosticta acicola, Dothistroma pini and D. septosporum on needles by probe-based LAMP assays. Forests 12, 479. 10.3390/f12040479 DOI
Barnes I., Cortinas M. N., Wingfield M. J., Wingfield B. D. (2008a). Microsatellite markers for the red band needle blight pathogen, Dothistroma septosporum . Mol. Ecol. Resour. 8, 1026–1029. 10.1111/j.1755-0998.2008.02142.x PubMed DOI
Barnes I., Crous P. W., Wingfield B. D., Wingfield M. J. (2004). Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini . Stud. Mycol. 50, 551–565.
Barnes I., Kirisits T., Akulov A., Chhetri D. B., Wingfield B. D., Bulgakov T. S., et al. (2008b). New host and country records of the Dothistroma needle blight pathogens from Europe and Asia. For. Pathol. 38, 178–195. 10.1111/j.1439-0329.2007.00536.x DOI
Barnes I., Kirisits T., Wingfield M. J., Wingfield B. D. (2011). Needle blight of pine caused by two species of Dothistroma in Hungary. For. Pathol. 41, 361–369. 10.1111/j.1439-0329.2010.00689.x DOI
Barnes I., Van Der Nest A., Granados G. M., Wingfield M. J. (2022). “Chapter 11 - Dothistroma needle blight,” in Forest Microbiology. Editors ASIEGBU F. O., KOVALCHUK A. (Massachusetts, United States: Academic Press; ).
Barnes I., Van Der Nest A., Mullett M. S., Crous P. W., Drenkhan R., Musolin D. L., et al. (2016). Neotypification of Dothistroma septosporum and epitypification of D. pini, causal agents of Dothistroma needle blight of pine. For. Pathol. 46, 388–407. 10.1111/efp.12304 DOI
Barnes I., Walla J. A., Bergdahl A., Wingfield M. J. (2014a). Four new host and three new state records of Dothistroma needle blight caused by Dothistroma pini in the United States. Plant Dis. 98, 1443. 10.1094/PDIS-06-14-0606-PDN PubMed DOI
Barnes I., Wingfield M. J., Carbone I., Kirisits T., Wingfield B. D. (2014b). Population structure and diversity of an invasive pine needle pathogen reflects anthropogenic activity. Ecol. Evol. 4, 3642–3661. 10.1002/ece3.1200 PubMed DOI PMC
Bergová E., Kryštofová A. (2014). First occurrence of Dothistroma pini in the Czech republic. Prague: Conference Mikromyco, 17–18.
Boroń P., Lenart-Boroń A., Mullett M. (2016). The distribution of Dothistroma septosporum and its mating types in Poland. For. Pathol. 46, 489–496. 10.1111/efp.12262 DOI
Bradshaw R. E., Sim A. D., Chettri P., Dupont P.-Y., Guo Y., Hunziker L., et al. (2019). Global population genomics of the forest pathogen Dothistroma septosporum reveal chromosome duplications in high dothistromin‐producing strains. Mol. Plant Pathol. 20, 784–799. 10.1111/mpp.12791 PubMed DOI PMC
Brown A. H., Feldman M. W., Nevo E. (1980). Multilocus structure of natural populations of Hordeum Spontaneum . Genet. 96, 523–536. 10.1093/genetics/96.2.523 PubMed DOI PMC
Bruvo R., Michiels N. K., D’souza T. G., Schulenburg H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106. 10.1111/j.1365-294X.2004.02209.x PubMed DOI
Capron A., Feau N., Heinzelmann R., Barnes I., Benowicz A., Bradshaw R. E., et al. (2021). Signatures of post-glacial genetic isolation and human-driven migration in the Dothistroma needle blight pathogen in Western Canada. Phytopathology® 111, 116–127. 10.1094/PHYTO-08-20-0350-FI PubMed DOI
Drenkhan R., Hanso M. (2009). Recent invasion of foliage fungi of pines (Pinus spp.) to the Northern Baltics. For. Stud. 51, 49–64. 10.2478/v10132-011-0077-7 DOI
Drenkhan R., Hantula J., Vuorinen M., Jankovský L., Müller M. M. (2013). Genetic diversity of Dothistroma septosporum in Estonia, Finland and Czech republic. Eur. J. Plant Pathology 136, 71–85. 10.1007/s10658-012-0139-6 DOI
Drenkhan R., Tomešová-Haataja V., Fraser S., Bradshaw R. E., Vahalík P., Mullett M. S., et al. (2016). Global geographic distribution and host range of Dothistroma species: A comprehensive review. For. Pathol. 46, 408–442. 10.1111/efp.12290 DOI
Dubach V., Meyer J. B., Schneider S., Ruffner B., Queloz V. (2018). Nationales Monitoring von zwei besonders gefährlichen Föhrenkrankheiten 2016. Suivi national de deux maladies du pin particulièrement dangereuses 2016. Monitoraggio nazionale di due malattie particolarmente pericolose del pino 2016. Phytopathologie, WSL and Im Auftrag des Bundesamtes für Umwelt . Birmensdorf: BAFU.
Ennos R. A., Sjökvist E. I., Piotrowska M. J., Riddell C., Hoebe P. N. (2020). Using genome resequencing to investigate racial structure, genetic diversity, sexual reproduction and hybridisation in the pine pathogen Dothistroma septosporum . Fungal Ecol. 45, e100921. 10.1016/j.funeco.2020.100921 DOI
EPPO (2019). First report of Dothistroma pini in Germany. EPPO reporting Service no. 2 Num. article: 2019/042. Available at: https://gd.eppo.int/reporting/article-6472 .
Evanno G., Regnaut S., Goudet J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 2611–2620. 10.1111/j.1365-294X.2005.02553.x PubMed DOI
Fabre B., Ioos R., Piou D., Marçais B. (2012). Is the emergence of Dothistroma needle blight of pine in France caused by the cryptic species Dothistroma pini? Phytopathology 102, 47–54. 10.1094/PHYTO-02-11-0036 PubMed DOI
Falush D., Stephens M., Pritchard J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587. 10.1093/genetics/164.4.1567 PubMed DOI PMC
Ghelardini L., Aglietti C., Loria F., Cerboneschi M., Gionni A., Goti E., et al. (2020). Dothistroma Needle Blight in protected pine forests in Italy. Manag. Biol. Invasions 11, 689–702. 10.3391/mbi.2020.11.4.05 DOI
Gibson I. a. S. (1972). Dothistroma blight of Pinus radiata . Annu. Rev. Phytopathology 10, 51–72. 10.1146/annurev.py.10.090172.000411 DOI
Groenewald M., Barnes I., Bradshaw R. E., Anna V., B., Dale A., Groenewald J. Z., et al. (2007). Characterization and distribution of mating type genes in the Dothistroma needle blight pathogens. Phytopathology 97, 825–834. 10.1094/PHYTO-97-7-0825 PubMed DOI
Grünwald N. J., Goodwin S. B., Milgroom M. G., Fry W. E. (2003). Analysis of genotypic diversity data for populations of microorganisms. Phytopathology® 93, 738–746. 10.1094/PHYTO.2003.93.6.738 PubMed DOI
Guo Y., Hunziker L., Mesarich C. H., Chettri P., Dupont P.-Y., Ganley R. J., et al. (2020). DsEcp2-1 is a polymorphic effector that restricts growth of Dothistroma septosporum in pine. Fungal Genet. Biol. 135, 103300. 10.1016/j.fgb.2019.103300 PubMed DOI
Havenga M., Wingfield B. D., Wingfield M. J., Marincowitz S., Dreyer L. L., Roets F., et al. (2021). Genetic recombination in Teratosphaeria destructans causing a new disease outbreak in Malaysia. For. Pathol. 51, e12683. 10.1111/efp.12683 DOI
Hurlbert S. H. (1971). The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586. 10.2307/1934145 PubMed DOI
Ioos R., Fabre B., Saurat C., Fourrier C., Frey P., Marcais B. (2010). Development, comparison, and validation of real-time and conventional PCR tools for the detection of the fungal pathogens causing Brown spot and red band needle blights of pine. Am. Phytopathological Soc. 100, 105–114. 10.1094/PHYTO-100-1-0105 PubMed DOI
Iturritxa E., Mesanza N., Brenning A. (2015). Spatial analysis of the risk of major forest diseases in Monterey pine plantations. Plant Pathol. 64, 880–889. 10.1111/ppa.12328 DOI
Jánošíková-Hečková Z., Ondrušková E., Barta M., Ostrovský R., Kádasi-Horáková M., Pastirčáková K., et al. (2018). The hosts and geographic range of Dothistroma needle blight in Slovakia. For. Pathol. 48, e12421. 10.1111/efp.12421 DOI
Janoušek J., Krumbock S., Kirisits T., Bradshaw R. E., Barnes I., Jankovský L., et al. (2014). Development of microsatellite and mating type markers for the pine needle pathogen Lecanosticta acicola . Australas. Plant Pathol. 43, 161–165. 10.1007/s13313-013-0256-5 DOI
Jombart T., Ahmed I. (2011). Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071. 10.1093/bioinformatics/btr521 PubMed DOI PMC
Jombart T., Devillard S., Balloux F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94. 10.1186/1471-2156-11-94 PubMed DOI PMC
Kamvar Z. N., Tabima J. F., Grünwald N. J. (2014). Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. 10.7717/peerj.281 PubMed DOI PMC
Kopelman N. M., Mayzel J., Jakobsson M., Rosenberg N. A., Mayrose I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191. 10.1111/1755-0998.12387 PubMed DOI PMC
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Lazarević J., Davydenko K., Millberg H. (2017). Dothistroma needle blight on high altitude pine forests in Montenegro. Balt. For. 23, 294–302.
Li Y., Liu J. (2018). StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177. 10.1111/1755-0998.12719 PubMed DOI
Matsiakh I., Doğmuş-Lehtijärvi H. T., Kramarets V., Aday Kaya A. G., Oskay F., Drenkhan R., et al. (2018). Dothistroma spp. in western Ukraine and Georgia. For. Pathol. 48, e12409. 10.1111/efp.12409 DOI
Mesanza N., Raposo R., Elvira‐Recuenco M., Barnes I., Van Der Nest A., Hernández M., et al. (2021). New hosts for Lecanosticta acicola and Dothistroma septosporum in newly established arboreta in Spain. For. Pathol. 51, e12650. 10.1111/efp.12650 DOI
Milgroom M. G., Jiménez-Gasco M. D. M., Olivares García C., Drott M. T., Jiménez-Díaz R. M. (2014). Recombination between clonal lineages of the asexual fungus Verticillium dahliae detected by genotyping by sequencing. PloS one 9, e106740. 10.1371/journal.pone.0106740 PubMed DOI PMC
Mullett M., Adamson K., Bragança H., Bulgakov T., Georgieva M., Henriques J., et al. (2018). New country and regional records of the pine needle blight pathogens Lecanosticta acicola, Dothistroma septosporum and Dothistroma pini . For. Pathol. 48, e12440. 10.1111/efp.12440 DOI
Mullett M. S., Brown A. V., Barnes I. (2015). Population structure and reproductive mode of Dothistroma septosporum in the Brittany peninsula of France. Eur. J. Plant Pathology 143, 261–275. 10.1007/s10658-015-0678-8 DOI
Mullett M. S., Drenkhan R., Adamson K., Boroń P., Lenart-Boroń A., Barnes I., et al. (2021). Worldwide genetic structure elucidates the Eurasian origin and invasion pathways of Dothistroma septosporum, causal agent of Dothistroma needle blight. J. fungi 7, 111. 10.3390/jof7020111 PubMed DOI PMC
Myrholm C. L., Tomm B. D., Heinzelmann R., Feau N., Hamelin R. C., Mcdougal R., et al. (2021). Development of a rapid loop-mediated isothermal amplification assay for the detection of Dothistroma septosporum . Forests 12, 362. 10.3390/f12030362 DOI
Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590. 10.1093/genetics/89.3.583 PubMed DOI PMC
Ondrušková E., Hečková Z., Kádasi Horáková M., Koltay A., Ostrovský R., Pažitný J., et al. (2017). Distribution and characterization of Dothistroma needle blight pathogens on Pinus mugo in Slovakia. Eur. J. Plant Pathology 148, 283–294. 10.1007/s10658-016-1088-2 DOI
Ondrušková E., Hečková-Jánošíková Z., Adamčík S., Kádasi Horáková M., Rakúsová-Sládková D., Adamčíková K. (2018). Needle blight caused by Dothistroma pini in Slovakia: Distribution, host range and mating types. Scand. J. For. Res. 33, 650–656. 10.1080/02827581.2018.1482954 DOI
Ortíz De Urbina E., Mesanza N., Aragonés A., Raposo R., Elvira-Recuenco M., Boqué R., et al. (2017). Emerging needle blight diseases in Atlantic Pinus ecosystems of Spain. Forests 8, 18. 10.3390/f8010018 DOI
Oskay F., Tunalı Z., Lehtijärvi A. T., Doğmuş‐Lehtijärvi H. T., Woodward S., Mullett M. (2020). Distribution and genetic diversity of Dothistroma septosporum in Pinus brutia forests of south‐Western Turkey. Plant Pathol. 69, 1551–1564. 10.1111/ppa.13242 DOI
Pap P., Drekić M., Poljaković-Pajnik L., Marković M., Vasić V. (2015). Forest health monitoring in Vojvodina in 2015. Topola: Serbian, 117–133.
Pautasso M., Jeger M. J. (2014). Network epidemiology and plant trade networks. AoB PLANTS 6, plu007. 10.1093/aobpla/plu007 PubMed DOI PMC
Peakall R., Smouse P. E. (2012). GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC
Piškur B., Hauptman T., Jurc D. (2013). Dothistroma needle blight in Slovenia is caused by two cryptic species: Dothistroma pini and Dothistroma septosporum . For. Pathol. 43, 518–521. 10.1111/efp.12059 DOI
Puechmaille S. (2016). The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627. 10.1111/1755-0998.12512 PubMed DOI
Queloz V., Wey T., Holdenrieder O. (2014). First record of Dothistroma pini on Pinus nigra in Switzerland. Plant Dis. 98, 1744. 10.1094/PDIS-06-14-0630-PDN PubMed DOI
Rodas C. A., Wingfield M. J., Granados G. M., Barnes I. (2016). Dothistroma needle blight: An emerging epidemic caused by Dothistroma septosporum in Colombia. Plant Pathol. 65, 53–63. 10.1111/ppa.12389 DOI
Rosenberg N. (2004). Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. 10.1046/j.1471-8286.2003.00566.x DOI
Schmitz S., Gischer F., Chandelier A. (2013). First detection of Dothistroma pini in Belgium. Poster presentation at COST Action FP1102 meeting, 23–24.
Schneider S., Jung E., Queloz V., Meyer J. B., Rigling D. (2019). Detection of pine needle diseases caused by Dothistroma septosporum, Dothistroma pini and Lecanosticta acicola using different methodologies. For. Pathol. 2019, e12495. 10.1111/efp.12495.1111/efp.12495 DOI
Shannon C. E. (2001). A mathematical theory of communication. ACM Sigmob. Mob. Comput. Commun. Rev. 5, 3–55. 10.1145/584091.584093 DOI
Short D. P. G., Gurung S., Hu X., Inderbitzin P., Subbarao K. V. (2014). Maintenance of sex-related genes and the co-occurrence of both mating types in Verticillium dahliae . PLOS ONE 9, e112145. 10.1371/journal.pone.0112145 PubMed DOI PMC
Simpson E. H. (1949). Measurement of diversity. Nature 163, 688. 10.1038/163688a0 DOI
Siziba V. I., Wingfield M. J., Sadiković D., Mullett M. S., Piškur B., Barnes I. (2016). Development of microsatellite markers for the pine needle blight pathogen, Dothistroma pini . For. Pathol. 46, 497–506. 10.1111/efp.12282 DOI
Smith J. M., Smith N. H., O'rourke M., Spratt B. G. (1993). How clonal are bacteria? Proc. Natl. Acad. Sci. U. S. A. 90, 4384–4388. 10.1073/pnas.90.10.4384 PubMed DOI PMC
Stoddart J. A., Taylor J. F. (1988). Genotypic diversity: Estimation and prediction in samples. Genetics 118, 705–711. 10.1093/genetics/118.4.705 PubMed DOI PMC
Szpiech Z. A., Jakobsson M., Rosenberg N. A. (2008). ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24, 2498–2504. 10.1093/bioinformatics/btn478 PubMed DOI PMC
Van Der Nest A., Wingfield M. J., Janoušek J., Barnes I. (2019a). Lecanosticta acicola: A growing threat to expanding global pine forests and plantations. Mol. Plant Pathol. 20, 1327–1364. 10.1111/mpp.12853 PubMed DOI PMC
Van Der Nest A., Wingfield M. J., Ortiz P. C., Barnes I. (2019b). Biodiversity of Lecanosticta pine-needle blight pathogens suggests a Mesoamerican Centre of origin. IMA Fungus 10, 2. Article 2 (2019). 10.1186/s43008-019-0004-8 PubMed DOI PMC
Vuillemin P. (1896). Les Hypostomacées, nouvelle famille de champignons parasites. Bull. Soc. Sci. Nancy 1896, 15–52.
Wartalska P., Oszako T., Bakier S., Belbahri L., Malewski T., Hsiang T., et al. (2021). Dothistroma septosporum not detected in Pinus sylvestris seed trees from investigated stands in southern Poland. Forests 12, 1323. 10.3390/f12101323 DOI
Welsh C., Lewis K., Woods A. (2009). The outbreak history of Dothistroma needle blight: An emerging forest disease in northwestern British columbia, Canada. Can. J. For. Res. 39, 2505–2519. 10.1139/x09-159 DOI
White T. J., Bruns T., Lee S., Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. a guide methods Appl. 18, 315–322.