Gradient Magnetic Field Accelerates Division of E. coli Nissle 1917
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36672251
PubMed Central
PMC9857180
DOI
10.3390/cells12020315
PII: cells12020315
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial division, biomagnetic effects, intracellular forces, magnetic field, mitosis,
- MeSH
- buněčné dělení MeSH
- buněčný cyklus MeSH
- Escherichia coli * metabolismus MeSH
- magnetické pole * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cell-cycle progression is regulated by numerous intricate endogenous mechanisms, among which intracellular forces and protein motors are central players. Although it seems unlikely that it is possible to speed up this molecular machinery by applying tiny external forces to the cell, we show that magnetic forcing of magnetosensitive bacteria reduces the duration of the mitotic phase. In such bacteria, the coupling of the cell cycle to the splitting of chains of biogenic magnetic nanoparticles (BMNs) provides a biological realization of such forcing. Using a static gradient magnetic field of a special spatial configuration, in probiotic bacteria E. coli Nissle 1917, we shortened the duration of the mitotic phase and thereby accelerated cell division. Thus, focused magnetic gradient forces exerted on the BMN chains allowed us to intervene in the processes of division and growth of bacteria. The proposed magnetic-based cell division regulation strategy can improve the efficiency of microbial cell factories and medical applications of magnetosensitive bacteria.
Zobrazit více v PubMed
Wang J.D., Levin P.A. Metabolism. Cell Growth and the Bacterial Cell Cycle. Nat. Rev. Microbiol. 2009;7:822. doi: 10.1038/nrmicro2202. PubMed DOI PMC
Schaechter M., MaalOe O., Kjeldgaard N.O. Dependency on Medium and Temperature of Cell Size and Chemical Composition during Balanced Growth of Salmonella Typhimurium. J. Gen. Microbiol. 1958;19:592. doi: 10.1099/00221287-19-3-592. PubMed DOI
Ayala M.R., Syrovets T., Hafner S., Zablotskii V., Dejneka A., Simmet T. Spatiotemporal Magnetic Fields Enhance Cytosolic Ca2+ Levels and Induce Actin Polymerization via Activation of Voltage-Gated Sodium Channels in Skeletal Muscle Cells. Biomaterials. 2018;163:174. doi: 10.1016/j.biomaterials.2018.02.031. PubMed DOI
Zablotskii V., Lunov O., Novotná B., Churpita O., Trošan P., Holáň V., Syková E., Dejneka A., Kubinová Š. Down-Regulation of Adipogenesis of Mesenchymal Stem Cells by Oscillating High-Gradient Magnetic Fields and Mechanical Vibration. Appl. Phys. Lett. 2014;105:103702. doi: 10.1063/1.4895459. DOI
Zablotskii V., Polyakova T., Dejneka A. Cells in the Non-Uniform Magnetic World: How Cells Respond to High-Gradient Magnetic Fields. BioEssays. 2018;40:1800017. doi: 10.1002/bies.201800017. PubMed DOI
Wosik J., Chen W., Qin K., Ghobrial R.M., Kubiak J.Z., Kloc M. Magnetic Field Changes Macrophage Phenotype. Biophys. J. 2018;114:2001. doi: 10.1016/j.bpj.2018.03.002. PubMed DOI PMC
Zablotskii V., Polyakova T., Lunov O., Dejneka A. How a High-Gradient Magnetic Field Could Affect Cell Life. Sci. Rep. 2016;6:37407. doi: 10.1038/srep37407. PubMed DOI PMC
Strahl H., Hamoen L.W. Membrane Potential Is Important for Bacterial Cell Division. Proc. Natl. Acad. Sci. USA. 2010;107:12281. doi: 10.1073/pnas.1005485107. PubMed DOI PMC
Colin A., Micali G., Faure L., Lagomarsino M.C., van Teeffelen S. Two Different Cell-Cycle Processes Determine the Timing of Cell Division in Escherichia Coli. Elife. 2021;10:e67495. doi: 10.7554/eLife.67495. PubMed DOI PMC
CBrangwynne P., Koenderink G.H., MacKintosh F.C., Weitz D.A. Nonequilibrium Microtubule Fluctuations in a Model Cytoskeleton. Phys. Rev. Lett. 2008;100:118104. doi: 10.1103/PhysRevLett.100.118104. PubMed DOI
Zablotskii V., Lunov O., Kubinova S., Polyakova T., Sykova E., Dejneka A. Effects of High-Gradient Magnetic Fields on Living Cell Machinery. J. Phys. D Appl. Phys. 2016;49:493003. doi: 10.1088/0022-3727/49/49/493003. DOI
KCylke C., Banerjee S. Accelerating Growth and Stochastic Shape Dynamics in Rod-like Bacteria. BioRxiv. 2022 doi: 10.1101/2022.05.21.492931. DOI
Biswas K., Brenner N. Cell-Division Time Statistics from Stochastic Exponential Threshold-Crossing. BioRxiv. 2022:10.1101/20. doi: 10.1101/2022.08.21.504683. DOI
Zhang L., Hou Y., Li Z., Ji X., Wang Z., Wang H., Tian X., Yu F., Yang Z., Pi L., et al. 27 T Ultra-High Static Magnetic Field Changes Orientation and Morphology of Mitotic Spindles in Human Cells. Elife. 2017;6:e22911. doi: 10.7554/eLife.22911. PubMed DOI PMC
Tseng P., Judy J.W., Di Carlo D. Magnetic Nanoparticle–Mediated Massively Parallel Mechanical Modulation of Single-Cell Behavior. Nat. Methods. 2012;9:1113. doi: 10.1038/nmeth.2210. PubMed DOI PMC
Mendelson N.H. Bacterial Growth and Division: Genes, Structures, Forces, and Clocks. Microbiol. Rev. 1982;46:341–375. doi: 10.1128/mr.46.3.341-375.1982. PubMed DOI PMC
Blakemore R. Magnetotactic Bacteria. Science. 1975;190:377. doi: 10.1126/science.170679. PubMed DOI
Kobayashi A., Yamamoto N., Kirschvink J. Studies of Inorganic Crystals in Biological Tissue: Magnetic in Human Tumor. J. Jpn. Soc. Powder Powder Metall. 1997;44:294. doi: 10.2497/jjspm.44.294. DOI
Gorobets O., Gorobets S., Koralewski M. Physiological Origin of Biogenic Magnetic Nanoparticles in Health and Disease: From Bacteria to Humans. Int. J. Nanomed. 2017;12:4371. doi: 10.2147/IJN.S130565. PubMed DOI PMC
Kirschvink J.L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: An Update and Recommendations for Future Study. Bioelectromagnetics. 1989;10:239–259. doi: 10.1002/bem.2250100304. PubMed DOI
Kirschvink J.L., Gould J.L. Biogenic Magnetite as a Basis for Magnetic Field Detection in Animals. Biosystems. 1981;13:181–201. doi: 10.1016/0303-2647(81)90060-5. PubMed DOI
Kirschvink J. Magnetite-Based Magnetoreception. Curr. Opin. Neurobiol. 2001;11:462. doi: 10.1016/S0959-4388(00)00235-X. PubMed DOI
JKirschvink L., Douglas S.J., Bruce J.M. Magnetite Biomineralization and Magnetoreception in Organisms a New Biomagnetism. Plenum Press; New York, NY, USA: 1985.
Bauer G.B., Fuller M., Perry A., Dunn J.R., Zoeger J. Magnetoreception and Biomineralization of Magnetite in Cetaceans. Springer; Boston, MA, USA: 1985.
Gorobets S.V., Yu G.O., Demianenko I.V., Nikolaenko R.N. Self-Organization of Magnetite Nanoparticles in Providing Saccharomyces Cerevisiae Yeasts with Magnetic Properties. J. Magn. Magn. Mater. 2013;337:53–57. doi: 10.1016/j.jmmm.2013.01.004. DOI
Gorobets S.V., Gorobets O.Y., Chyzh Y.M., Sivenok D.V. Magnetic Dipole Interaction of Endogenous Magnetic Nanoparticles with Magnetoliposomes for Targeted Drug Delivery. Biophysics. 2013;58:379. doi: 10.1134/S000635091303007X. PubMed DOI
Bazylinski D.A., Frankel R.B. Magnetosome Formation in Prokaryotes. Nat. Rev. Microbiol. 2004;2:217. doi: 10.1038/nrmicro842. PubMed DOI
Arakaki A., Nakazawa H., Nemoto M., Mori T., Matsunaga T. Formation of Magnetite by Bacteria and Its Application. J. R. Soc. Interface. 2008;5:977–999. doi: 10.1098/rsif.2008.0170. PubMed DOI PMC
Taoka A., Asada R., Wu L.-F., Fukumori Y. Polymerization of the Actin-Like Protein MamK, Which Is Associated with Magnetosomes. J. Bacteriol. 2007;189:8737. doi: 10.1128/JB.00899-07. PubMed DOI PMC
Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New Magnet-Sensitive Structures in Bacterial and Archaeal Cells. Biol. Cell. 2002;94:29. doi: 10.1016/S0248-4900(02)01179-6. PubMed DOI
Kirschvink J.L., Kobayashi-Kirschvink A., Diaz-Ricci J.C., Kirschvink S.J. Magnetite in Human Tissues: A Mechanism for the Biological Effects of Weak ELF Magnetic Fields. Bioelectromagnetics. 1992;13:101–113. doi: 10.1002/bem.2250130710. PubMed DOI
Staniland S.S., Moisescu C., Benning L.G. Cell Division in Magnetotactic Bacteria Splits Magnetosome Chain in Half. J. Basic Microbiol. 2010;50:392. doi: 10.1002/jobm.200900408. PubMed DOI
Schubbe S., Wurdemann C., Peplies J., Heyen U., Wawer C., Gluckner F.O., Schuler D. Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillum Gryphiswaldense. Appl. Environ. Microbiol. 2006;72:5757. doi: 10.1128/AEM.00201-06. PubMed DOI PMC
Lohße A., Ullrich S., Katzmann E., Borg S., Wanner G., Richter M., Voigt B., Schweder T., Schu D. Functional Analysis of the Magnetosome Island in Magnetospirillum Gryphiswaldense: The MamAB Operon Is Sufficient for Magnetite Biomineralization. PLoS ONE. 2011;6:e25561. doi: 10.1371/journal.pone.0025561. PubMed DOI PMC
Gorobets S.V., Medviediev O.V., Gorobets O.Y., Ivanchenko A. Biogenic Magnetic Nanoparticles in Human Organs and Tissues. Prog. Biophys. Mol. Biol. 2018;135:49. doi: 10.1016/j.pbiomolbio.2018.01.010. PubMed DOI
Gorobets O.Y., Gorobets S.V., Sorokina L.V. Biomineralization and Synthesis of Biogenic Magnetic Nanoparticles and Magnetosensitive Inclusions in Microorganisms and Fungi. Funct. Mater. 2014;21:373. doi: 10.15407/fm21.04.427. DOI
Gorobets O.Y., Gorobets S.V., Gorobets Y.I. Dekker Encyclopedia of Nanoscience and Nanotechnology. 3rd ed. CRC Press; New York, NY, USA: 2014. Biogenic Magnetic Nanoparticles. Biomineralization in Prokaryotes and Eukaryotes; pp. 300–308.
Medviediev O., Gorobets O.Y., Gorobets S.V., Yadrykhins’Ky V.S. The Prediction of Biogenic Magnetic Nanoparticles Biomineralization in Human Tissues and Organs. J. Phys. Conf. Ser. 2017;903:012002. doi: 10.1088/1742-6596/903/1/012002. DOI
Van de Walle A., Sangnier A.P., Abou-Hassan A., Curcio A., Hémadi M., Menguy N., Lalatonne Y., Luciani N., Wilhelm C. Biosynthesis of Magnetic Nanoparticles from Nano-Degradation Products Revealed in Human Stem Cells. Proc. Natl. Acad. Sci. USA. 2019;116:4044. doi: 10.1073/pnas.1816792116. PubMed DOI PMC
Schüler D. Magnetoreception and Magnetosomes in Bacteria. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2007.
Elkady A.S., Iskakova L., Zubarev A. On the Self-Assembly of Net-like Nanostructures in Ferrofluids. Phys. A Stat. Mech. Appl. 2015;428:257–265. doi: 10.1016/j.physa.2015.01.053. DOI
Gorobets S.V., Legenkii Y.A., Melnichuk I.A. Break-up of Ni Microparticle Clusters in a Magnetic Field. J. Magn. Magn. Mater. 2000;222:159. doi: 10.1016/S0304-8853(00)00522-9. DOI
Baryakhtar F.G., Gorobets Y.I., Kosachevski L.Y., Ilchishyn O.V., Hizhenkov P.K. Hexagonal Lattice of Cylindrical Magnetic Domains in Thin Films of a Ferrofluid. Magn. Gidrodin. 1981;3:120–123.
Gorobets S., Gorobets O., Magerman A., Gorobets Y., Sharay I. Biogenic Magnetic Nanoparticles in Plants. arXiv. 20191901.07212
Zhou Y., Han Y. Engineered Bacteria as Drug Delivery Vehicles: Principles and Prospects. Eng. Microbiol. 2022;2:100034. doi: 10.1016/j.engmic.2022.100034. DOI
Akolpoglu M.B., Alapan Y., Dogan N.O., Baltaci S.F., Yasa O., Tural G.A., Sitti M. Magnetically Steerable Bacterial Microrobots Moving in 3D Biological Matrices for Stimuli-Responsive Cargo Delivery. Sci. Adv. 2022;8:eabo6163. doi: 10.1126/sciadv.abo6163. PubMed DOI PMC
Aubry M., Wang W.-A., Guyodo Y., Delacou E., Guigner J.-M., Espeli O., Lebreton A., Guyot F., Gueroui Z. Engineering E. Coli for Magnetic Control and the Spatial Localization of Functions. ACS Synth. Biol. 2020;9:3030. doi: 10.1021/acssynbio.0c00286. PubMed DOI
Stritzker J., Weibel S., Hill P., Oelschlaeger T., Goebel W., Szalay A. Tumor-Specific Colonization, Tissue Distribution, and Gene Induction by Probiotic Escherichia Coli Nissle 1917 in Live Mice. Int. J. Med. Microbiol. 2007;297:151. doi: 10.1016/j.ijmm.2007.01.008. PubMed DOI
Zhang Y., Zhang Y., Xia L., Zhang X., Ding X., Yan F., Wu F. Escherichia Coli Nissle 1917 Targets and Restrains Mouse B16 Melanoma and 4T1 Breast Tumors through Expression of Azurin Protein. Appl. Environ. Microbiol. 2012;78:7603. doi: 10.1128/AEM.01390-12. PubMed DOI PMC
Westphal K., Leschner S., Jablonska J., Loessner H., Weiss S. Containment of Tumor-Colonizing Bacteria by Host Neutrophils. Cancer Res. 2008;68:2952. doi: 10.1158/0008-5472.CAN-07-2984. PubMed DOI
Sturm A., Rilling K., Baumgart D.C., Gargas K., Abou-Ghazale T., Raupach B., Eckert J., Schumann R.R., Enders C., Sonnenborn U., et al. Escherichia Coli Nissle 1917 Distinctively Modulates T-Cell Cycling and Expansion via Toll-Like Receptor 2 Signaling. Infect. Immun. 2005;73:1452. doi: 10.1128/IAI.73.3.1452-1465.2005. PubMed DOI PMC
Arribas B., Rodríguez-Cabezas M., Camuesco D., Comalada M., Bailón E., Utrilla P., Nieto A., Concha A., Zarzuelo A., Gálvez J. A Probiotic Strain of Escherichia Coli, Nissle 1917, given Orally Exerts Local and Systemic Anti-Inflammatory Effects in Lipopolysaccharide-Induced Sepsis in Mice. Br. J. Pharmacol. 2009;157:1024. doi: 10.1111/j.1476-5381.2009.00270.x. PubMed DOI PMC
Zhang Y., Ji W., He L., Chen Y., Ding X., Sun Y., Hu S., Yang H., Huang W., Zhang Y., et al. Coli Nissle 1917-Derived Minicells for Targeted Delivery of Chemotherapeutic Drug to Hypoxic Regions for Cancer Therapy. Theranostics. 2018;8:1690. doi: 10.7150/thno.21575. PubMed DOI PMC
Gwyddion: Scanning Probe Microscopy Data Visualisation and Analysis. [(accessed on 30 October 2022)]. Available online: https://sourceforge.net/projects/gwyddion/
NT_MDT, MFM General Concept. [(accessed on 30 October 2022)]. Available online: https://www.ntmdt-si.com/resources/spm-theory/theoretical-background-of-spm/2-scanning-force-microscopy--(sfm)/27-magnetic-force-microscopy-quantitative-results-treatment/271-mfm-general-concept.
Stover N.A., Cavalcanti A.R.O. Using NCBI BLAST. Curr. Protoc. Essent. Lab. Tech. 2014;8:11.1.1–11.1.35. doi: 10.1002/9780470089941.et1101s08. DOI
Hubert A., Schäfer R. Magnetic Domains: The Analysis of Magnetic Microstructures. Springer; New York, NY, USA: 1998.
Zablotskii V., Pastor J.M., Larumbe S., Pe J.I., Recarte V., Go C., Ha U., Schu W., Zborowski M. High-Field Gradient Permanent Micromagnets for Targeted Drug Delivery with Magnetic Nanoparticles. Volume 1311. American Institute of Physics; College Park, MD, USA: 2010. pp. 152–157.
Samofalov V.N., Belozorov D.P., Ravlik A.G. Strong Stray Fields in Systems of Giant Magnetic Anisotropy Magnets. Physics-Uspekhi. 2013;56:269. doi: 10.3367/UFNe.0183.201303e.0287. DOI
Nadkarni R., Barkley S., Fradin C. A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields. PLoS ONE. 2013;8:e82064. doi: 10.1371/journal.pone.0082064. PubMed DOI PMC
Callaway E. How Bacteria Break a Magnet. Nature. 2011 doi: 10.1038/nature.2011.9659. DOI
Katzmann E., Müller F.D., Lang C., Messerer M., Winklhofer M., Plitzko J.M., Schüler D. Magnetosome Chains Are Recruited to Cellular Division Sites and Split by Asymmetric Septation. Mol. Microbiol. 2011;82:1316. doi: 10.1111/j.1365-2958.2011.07874.x. PubMed DOI
Sabass B., Koch M.D., Liu G., Stone H.A., Shaevitz J.W. Force Generation by Groups of Migrating Bacteria. Proc. Natl. Acad. Sci. USA. 2017;114:7266. doi: 10.1073/pnas.1621469114. PubMed DOI PMC
Dewachter L., Verstraeten N., Fauvart M., Michiels J. An Integrative View of Cell Cycle Control in Escherichia Coli. FEMS Microbiol. Rev. 2018;42:116. doi: 10.1093/femsre/fuy005. PubMed DOI
Michelsen O., de Mattos M.J.T., Jensen P.R., Hansen F.G. Precise Determinations of C and D Periods by Flow Cytometry in Escherichia Coli K-12 and B/R. Microbiology. 2003;149:1001. doi: 10.1099/mic.0.26058-0. PubMed DOI
Zwietering M.H., Jongenburger I., Rombouts F.M., van ’t Riet K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990;56:1875. doi: 10.1128/aem.56.6.1875-1881.1990. PubMed DOI PMC
You Z., Pearce D.J.G., Sengupta A., Giomi L. Geometry and Mechanics of Microdomains in Growing Bacterial Colonies. Phys. Rev. X. 2018;8:031065. doi: 10.1103/PhysRevX.8.031065. DOI
Panlilio M., Grilli J., Tallarico G., Iuliani I., Sclavi B., Cicuta P., Lagomarsino M.C. Threshold Accumulation of a Constitutive Protein Explains E. Coli Cell-Division Behavior in Nutrient Upshifts. Proc. Natl. Acad. Sci. USA. 2021;118:e2016391118. doi: 10.1073/pnas.2016391118. PubMed DOI PMC
Milo R., Phillips R. Bionumbers. [(accessed on 30 October 2022)]. Available online: http://bionumbers.hms.harvard.edu/
Wallden M., Fange D., Lundius E.G., Baltekin Ö., Elf J. The Synchronization of Replication and Division Cycles in Individual E. Coli Cells. Cell. 2016;166:729. doi: 10.1016/j.cell.2016.06.052. PubMed DOI
Kuchel P.W., Chapman B.E., Bubb W.A., Hansen P.E., Durrant C.J., Hertzberg M.P. Magnetic susceptibility: Solutions, emulsions, and cells. Concepts Magn. Reson. Educ. J. 2003;18:56–71. doi: 10.1002/cmr.a.10066. DOI
Biedermann A.R., Pettke T., Koch C.B., Hirt A.M. Magnetic anisotropy in clinopyroxene and orthopyroxene single crystals. Am. Mineral. 1968;53:406–415. doi: 10.1002/2014JB011678. DOI
Liu P.Y., Chin L.K., Ser W., Ayi T.C., Yap P.H., Bourouina T., Leprince-Wang Y. Real-time Measurement of Single Bacterium’s Refractive Index Using Optofluidic Immersion Refractometry. Procedia Eng. 2014;87:356–359. doi: 10.1016/j.proeng.2014.11.743. DOI
Semsey S., Andersson A.M.C., Krishna S., Jensen M.H., Massé E., Sneppen K. Genetic regulation of fluxes: Iron homeostasis of Escherichia coli. Nucleic. Acids. Res. 2006;34:4960–4967. doi: 10.1093/nar/gkl627. PubMed DOI PMC
Fasnacht M., Polacek N. Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology. Front. Mol. Biosci. 2021;8:671037. doi: 10.3389/fmolb.2021.671037. PubMed DOI PMC
Nies D.H. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid. 1992;27:17–28. doi: 10.1016/0147-619X(92)90003-S. PubMed DOI
Hill P.J., Stritzker J., Scadeng M., Geissinger U., Haddad D., Basse-Lüsebrink T.C., Gbureck U., Jakob P., Szalay A.A. Magnetic resonance imaging of tumors colonized with bacterial ferritin-expressing Escherichia coli. PLoS ONE. 2011;6:e25409. doi: 10.1371/journal.pone.0025409. PubMed DOI PMC
García-Prieto A., Alonso J., Muñoz D., Marcano L., de Cerio A.A.D., Fernández de Luis R., Orue I., Mathon O., Muela A., Fdez-Gubieda M.L. On the Mineral Core of Ferritin-like Proteins: Structural and Magnetic Characterization. Nanoscale. 2016;8:1088. doi: 10.1039/C5NR04446D. PubMed DOI