IL-2/anti-IL-2 mAb immunocomplexes: A renascence of IL-2 in cancer immunotherapy?
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu přehledy, časopisecké články, práce podpořená grantem
PubMed
27141363
PubMed Central
PMC4839359
DOI
10.1080/2162402x.2015.1102829
PII: 1102829
Knihovny.cz E-zdroje
- Klíčová slova
- Anti-IL-2 mAb, IL-2, cancer immunotherapy, immunocomplexes, selective stimulatory activity,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The in vivo biological activity of IL-2 can be dramatically increased by complexing with anti-IL-2 mAb. Moreover, IL-2/anti-IL-2 mAb immunocomplexes selectively stimulate different subsets of immune cells, depending on the clone of anti-IL-2 mAb that is used. Thus, IL-2/S4B6 mAb complexes strongly stimulate CD122high populations, namely NK and memory CD8+ T cells. They also intermediately stimulate Treg cells. Conversely, IL-2/JES6.1 mAb immunocomplexes have no stimulatory activity for CD122high populations. However, they potently and highly selectively stimulate CD25+ cells (i.e., Treg and activated T cells). IL-2/S4B6 mAb immunocomplexes have also been shown to possess antitumor activity in various mouse tumor models.
Zobrazit více v PubMed
Nowell PC. Phytohemagglutinin: an initiator of mitosis in cultures of normal human leukocytes. Cancer Res 1960; 20:462-6; PMID:14427849 PubMed
Kasakura S, Lowenstein L. A factor stimulating DNA synthesis derived from the medium of leukocyte cultures. Nature 1965; 208:794-5; PMID:5868897; http://dx.doi.org/10.1038/208794a0 PubMed DOI
Gordon J, MacLean LD. A lymphocyte-stimulating factor produced in vitro. Nature 1965; 208:795-6; PMID:4223737; http://dx.doi.org/10.1038/208795a0 PubMed DOI
Gillis S, Smith KA. Long term culture of tumour-specific cytotoxic T cells. Nature 1977; 268:154-6; PMID:145543; http://dx.doi.org/10.1038/268154a0 PubMed DOI
Gillis S, Ferm MM, Ou W, Smith KA. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol 1978; 120:2027-32; PMID:307029 PubMed
Gery I, Gershon RK, Waksman BH. Potentiation of the T-lymphocyte response to mitogens. I. The responding cell. J Exp Med 1972; 136:128-42; PMID:5033417; http://dx.doi.org/10.1084/jem.136.1.128 PubMed DOI PMC
Smith KA, Gilbride KJ, Favata MF. Lymphocyte activating factor promotes T-cell growth factor production by cloned murine lymphoma cells. Nature 1980; 287:853-5; PMID:6776414; http://dx.doi.org/10.1038/287853a0 PubMed DOI
Smith KA, Lachman LB, Oppenheim JJ, Favata MF. The functional relationship of the interleukins. J Exp Med 1980; 151:1551-6; PMID:6770028; http://dx.doi.org/10.1084/jem.151.6.1551 PubMed DOI PMC
Smith KA. Interleukin-2: inception, impact, and implications. Science 1988; 240:1169-76; PMID:3131876; http://dx.doi.org/10.1126/science.3131876 PubMed DOI
Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012; 12:180-90; PMID:22343569; http://dx.doi.org/10.1126/science.1122927 PubMed DOI
Gillis S. Interleukin 2: biology and biochemistry. J Clin Immunol 1983; 3:1-13; PMID:6338024; http://dx.doi.org/10.1007/BF00919133 PubMed DOI
Herberman RB. Natural killer cells. Annu Rev Med 1986; 37:347-52; PMID:3518610; http://dx.doi.org/10.1146/annurev.me.37.020186.002023 PubMed DOI
Choi YS. Differentiation and apoptosis of human germinal center B-lymphocytes. Immunol Res 1997; 16:161-74; PMID:9212362; http://dx.doi.org/10.1007/BF02786360 PubMed DOI
Oppenheim MH, Lotze MT. Interleukin-2: solid-tumor therapy. Oncology 1994; 51:154-69; PMID:8196899; http://dx.doi.org/10.1159/000227330 PubMed DOI
Somersalo K. Migratory functions of natural killer cells. Nat Immun 1996; 15:117-33; PMID:9162262 PubMed
Johnson JG, Jenkins MK. Co-stimulatory functions of antigen-presenting cells. J Invest Dermatol 1992; 99:62S-5S; PMID:1358981; http://dx.doi.org/10.1111/1523-1747.ep12669010 PubMed DOI
Rothenberg EV, Ward SB. A dynamic assembly of diverse transcription factors integrates activation and cell-type information for interleukin 2 gene regulation. Proc Natl Acad Sci U S A 1996; 93:9358-65; PMID:8790334; http://dx.doi.org/10.1073/pnas.93.18.9358 PubMed DOI PMC
Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 1992; 71:1065-8; PMID:1335362; http://dx.doi.org/10.1016/S0092-8674(05)80055-8 PubMed DOI
Stauber DJ, Debler EW, Horton PA, Smith KA, Wilson IA. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc Natl Acad Sci U S A 2006; 103:2788-93; PMID:16477002; http://dx.doi.org/10.1073/pnas.0511161103 PubMed DOI PMC
Wang HM, Smith KA. The interleukin 2 receptor. Functional consequences of its bimolecular structure. J Exp Med 1987; 166:1055-69; PMID:3116143; http://dx.doi.org/10.1084/jem.166.4.1055 PubMed DOI PMC
Nelson BH, Willerford DM. Biology of the interleukin-2 receptor. Adv Immunol 1998; 70:1-81; PMID:9755337; http://dx.doi.org/10.1016/S0065-2776(08)60386-7 PubMed DOI
Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8:591-9; PMID:9620680; http://dx.doi.org/10.1016/S1074-7613(00)80564-6 PubMed DOI
Brisslert M, Bokarewa M, Larsson P, Wing K, Collins LV, Tarkowski A. Phenotypic and functional characterization of human CD25+ B cells. Immunology 2006; 117:548-57; PMID:16556269; http://dx.doi.org/10.1111/j.1365-2567.2006.02331.x PubMed DOI PMC
Espinoza-Delgado I, Ortaldo JR, Winkler-Pickett R, Sugamura K, Varesio L, Longo DL. Expression and role of p75 interleukin 2 receptor on human monocytes. J Exp Med 1990; 171:1821-6; PMID:2110244; http://dx.doi.org/10.1084/jem.171.5.1821 PubMed DOI PMC
Kronin V, Vremec D, Shortman K. Does the IL-2 receptor alpha chain induced on dendritic cells have a biological function? Int Immunol 1998; 10:237-40; PMID:9533452; http://dx.doi.org/10.1093/intimm/10.2.237 PubMed DOI
Hodge S, Hodge G, Flower R, Han P. Surface and intracellular interleukin-2 receptor expression on various resting and activated populations involved in cell-mediated immunity in human peripheral blood. Scand J Immunol 2000; 51:67-72; PMID:10632978; http://dx.doi.org/10.1046/j.1365-3083.2000.00644.x PubMed DOI
Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005; 6:1142-51; PMID:16227984; http://dx.doi.org/10.1038/ni1263 PubMed DOI
Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 2004; 4:665-74; PMID:15343366; http://dx.doi.org/10.1038/nri1435 PubMed DOI
Comes A, Rosso O, Orengo AM, Di Carlo E, Sorrentino C, Meazza R, Piazza T, Valzasina B, Nanni P, Colombo MP et al.. CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J Immunol 2006; 176:1750-8; PMID:16424205; http://dx.doi.org/10.4049/jimmunol.176.3.1750 PubMed DOI
Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. CD4+CD25+ T cells regulate virus-specific primary and memory CD8+ T cell responses. J Exp Med 2003; 198:889-901; PMID:12975455; http://dx.doi.org/10.1084/jem.20030171 PubMed DOI PMC
Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med 2005; 202:885-91; PMID:16186187; http://dx.doi.org/10.1084/jem.20050940 PubMed DOI PMC
Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531-62; PMID:15032588; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141122 PubMed DOI
Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014; 192:5451-8; PMID:24907378; http://dx.doi.org/10.4049/jimmunol.1490019 PubMed DOI PMC
Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT et al.. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313:1485-92; PMID:3903508; http://dx.doi.org/10.1056/NEJM198512053132327 PubMed DOI
Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT et al.. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316:889-97; PMID:3493432; http://dx.doi.org/10.1056/NEJM198704093161501 PubMed DOI
Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 1994; 271:907-13; PMID:8120958; http://dx.doi.org/10.1001/jama.1994.03510360033032 PubMed DOI
Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang JC, Fisher B, Aebersold P, Packard BS, Yu MY, Rosenberg SA. In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 1989; 81:1709-17; PMID:2810387; http://dx.doi.org/10.1093/jnci/81.22.1709 PubMed DOI
Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 1994; 86:1159-66; PMID:8028037; http://dx.doi.org/10.1093/jnci/86.15.1159 PubMed DOI
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA et al.. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 1988; 319:1676-80; PMID:3264384; http://dx.doi.org/10.1056/NEJM198812223192527 PubMed DOI
Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 1987; 138:989-95; PMID:3100623 PubMed
Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM et al.. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298:850-4; PMID:12242449; http://dx.doi.org/10.1126/science.1076514 PubMed DOI PMC
Cooper DA, Emery S. Latent reservoirs of HIV infection: flushing with IL-2? Nat Med 1999; 5:611-2; PMID:10371491; http://dx.doi.org/10.1038/9454 PubMed DOI
Sereti I, Anthony KB, Martinez-Wilson H, Lempicki R, Adelsberger J, Metcalf JA, Hallahan CW, Follmann D, Davey RT, Kovacs JA et al.. IL-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood 2004; 104:775-80; PMID:15090457; http://dx.doi.org/10.1182/blood-2003-12-4355 PubMed DOI
Group I-ES, Committee SS, Abrams D, Levy Y, Losso MH, Babiker A, Collins G, Cooper DA, Darbyshire J, Emery S et al.. Interleukin-2 therapy in patients with HIV infection. N Engl J Med 2009; 361:1548-59; PMID:19828532; http://dx.doi.org/10.1056/NEJMoa0903175 PubMed DOI PMC
Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P, Squiban P. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14567-71; PMID:15333750; http://dx.doi.org/10.1073/pnas.0404845101 PubMed DOI PMC
Parker SE, Khatibi S, Margalith M, Anderson D, Yankauckas M, Gromkowski SH, Latimer T, Lew D, Marquet M, Manthorpe M et al.. Plasmid DNA gene therapy: studies with the human interleukin-2 gene in tumor cells in vitro and in the murine B16 melanoma model in vivo. Cancer Gene Ther 1996; 3:175-85; PMID:8725882 PubMed
Melder RJ, Osborn BL, Riccobene T, Kanakaraj P, Wei P, Chen G, Stolow D, Halpern WG, Migone TS, Wang Q et al.. Pharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother 2005; 54:535-47; PMID:15592670; http://dx.doi.org/10.1007/s00262-004-0624-7 PubMed DOI PMC
Klimka A, Yu N, Shami EY. Construction of proteolysis resistant human interleukin-2 by fusion to its protective single chain antibody. Cytokine 2003; 22:134-41; PMID:12842761; http://dx.doi.org/10.1016/S1043-4666(03)00136-4 PubMed DOI
Barouch DH, Truitt DM, Letvin NL. Expression kinetics of the interleukin-2/immunoglobulin (IL-2/Ig) plasmid cytokine adjuvant. Vaccine 2004; 22:3092-7; PMID:15297060; http://dx.doi.org/10.1016/j.vaccine.2004.01.065 PubMed DOI
Katre NV, Knauf MJ, Laird WJ. Chemical modification of recombinant interleukin 2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model. Proc Natl Acad Sci U S A 1987; 84:1487-91; PMID:3494243; http://dx.doi.org/10.1073/pnas.84.6.1487 PubMed DOI PMC
Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006; 311:1924-7; PMID:16484453; http://dx.doi.org/10.1126/science.1122927 PubMed DOI
Ku CC, Murakami M, Sakamoto A, Kappler J, Marrack P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 2000; 288:675-8; PMID:10784451; http://dx.doi.org/10.1126/science.288.5466.675 PubMed DOI
Murakami M, Sakamoto A, Bender J, Kappler J, Marrack P. CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc Natl Acad Sci U S A 2002; 99:8832-7; PMID:12084927; http://dx.doi.org/10.1073/pnas.132254399 PubMed DOI PMC
Kamimura D, Ueda N, Sawa Y, Hachida S, Atsumi T, Nakagawa T, Sawa S, Jin GH, Suzuki H, Ishihara K et al.. Evidence of a novel IL-2/15R β-targeted cytokine involved in homeostatic proliferation of memory CD8+ T cells. J Immunol 2004; 173:6041-9; PMID:15528339; http://dx.doi.org/10.4049/jimmunol.173.10.6041 PubMed DOI
Tomala J, Chmelova H, Mrkvan T, Rihova B, Kovar M. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy. J Immunol 2009; 183:4904-12; PMID:19801515; http://dx.doi.org/10.4049/jimmunol.0900284 PubMed DOI
Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, Surh CD, Grey ST, Sprent J. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 2009; 206:751-60; PMID:19332874; http://dx.doi.org/10.1084/jem.20082824 PubMed DOI PMC
Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR. Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol 1993; 151:1235-44; PMID:8393043 PubMed
Jones AT, Ziltener HJ. Enhancement of the biologic effects of interleukin-3 in vivo by anti-interleukin-3 antibodies. Blood 1993; 82:1133-41; PMID:8353280 PubMed
Heremans H, Dillen C, Put W, Van Damme J, Billiau A. Protective effect of anti-interleukin (IL)-6 antibody against endotoxin, associated with paradoxically increased IL-6 levels. Eur J Immunol 1992; 22:2395-401; PMID:1381315; http://dx.doi.org/10.1002/eji.1830220932 PubMed DOI
Martens E, Dillen C, Put W, Heremans H, van Damme J, Billiau A. Increased circulating interleukin-6 (IL-6) activity in endotoxin-challenged mice pretreated with anti-IL-6 antibody is due to IL-6 accumulated in antigen-antibody complexes. Eur J Immunol 1993; 23:2026-9; PMID:8344369; http://dx.doi.org/10.1002/eji.1830230846 PubMed DOI
Boyman O, Ramsey C, Kim DM, Sprent J, Surh CD. IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T Cell expansion without lymphopenia. J Immunol 2008; 180:7265-75; PMID:18490726; http://dx.doi.org/10.4049/jimmunol.180.11.7265 PubMed DOI
Rubinstein MP, Salem ML, Doedens AL, Moore CJ, Chiuzan C, Rivell GL, Cole DJ, Goldrath AW. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses. J Hematol Oncol 2013; 6:75; PMID:24279871; http://dx.doi.org/10.1186/1756-8722-6-75 PubMed DOI PMC
Zabeau L, Van der Heyden J, Broekaert D, Verhee A, Vandekerckhove J, Wu SJ, Chaiken I, Heinrich P, Behrmann I, Tavernier J. Neutralizing monoclonal antibodies can potentiate IL-5 signaling. Eur J Immunol 2001; 31:1087-97; PMID:11298333; http://dx.doi.org/10.1002/1521-4141(200104)31:4%3c1087::AID-IMMU1087%3e3.0.CO;2-Q PubMed DOI
Rosenblum MG, Unger BW, Gutterman JU, Hersh EM, David GS, Frincke JM. Modification of human leukocyte interferon pharmacology with a monoclonal antibody. Cancer Res 1985; 45:2421-4; PMID:3986783 PubMed
Hamilton SE, Schenkel JM, Akue AD, Jameson SC. IL-2 complex treatment can protect naive mice from bacterial and viral infection. J Immunol 2010; 185:6584-90; PMID:21037095; http://dx.doi.org/10.4049/jimmunol.1001215 PubMed DOI PMC
Kamimura D, Sawa Y, Sato M, Agung E, Hirano T, Murakami M. IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol 2006; 177:306-14; PMID:16785526; http://dx.doi.org/10.4049/jimmunol.177.1.306 PubMed DOI
Rojas G, Cabrera Infante Y, Pupo A, Carmenate T. Fine epitope specificity of antibodies against interleukin-2 explains their paradoxical immunomodulatory effects. MAbs 2014; 6:273-85; PMID:24253188; http://dx.doi.org/10.4161/mabs.27224 PubMed DOI PMC
Tomala J, Chmelova H, Strohalm J, Ulbrich K, Sirova M, Rihova B, Kovar M. Antitumor activity of IL-2/anti-IL-2 mAb immunocomplexes exerts synergism with that of N-(2-hydroxypropyl)methacrylamide copolymer-bound doxorubicin conjugate due to its low immunosuppressive activity. Int J Cancer 2011; 129:2002-12; PMID:21165950; http://dx.doi.org/10.1002/ijc.25859 PubMed DOI
Liu R, Zhou Q, La Cava A, Campagnolo DI, Van Kaer L, Shi FD. Expansion of regulatory T cells via IL-2/anti-IL-2 mAb complexes suppresses experimental myasthenia. Eur J Immunol 2010; 40:1577-89; PMID:20352624; http://dx.doi.org/10.1002/eji.200939792 PubMed DOI PMC
Kamimura D, Bevan MJ. Naive CD8+ T cells differentiate into protective memory-like cells after IL-2 anti IL-2 complex treatment in vivo. J Exp Med 2007; 204:1803-12; PMID:17664293; http://dx.doi.org/10.1084/jem.20070543 PubMed DOI PMC
Verdeil G, Marquardt K, Surh CD, Sherman LA. Adjuvants targeting innate and adaptive immunity synergize to enhance tumor immunotherapy. Proc Natl Acad Sci U S A 2008; 105:16683-8; PMID:18936481; http://dx.doi.org/10.1073/pnas.0805054105 PubMed DOI PMC
Schwartzentruber DJ. Biologic therapy with interleukin-2: clinical applications Principles of administration and management of side effects. Philadelphia:Lippincott Williams & Wilkins, 1995.
Schwartz RN, Stover L, Dutcher J. Managing toxicities of high-dose interleukin-2. Oncology (Williston Park) 2002; 16:11-20; PMID:12469935 PubMed
West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987; 316:898-905; PMID:3493433; http://dx.doi.org/10.1056/NEJM198704093161502 PubMed DOI
Krieg C, Letourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 2010; 107:11906-11; PMID:20547866; http://dx.doi.org/10.1073/pnas.1002569107 PubMed DOI PMC
Epstein AL, Mizokami MM, Li J, Hu P, Khawli LA. Identification of a protein fragment of interleukin 2 responsible for vasopermeability. J Natl Cancer Inst 2003; 95:741-9; PMID:12759392; http://dx.doi.org/10.1093/jnci/95.10.741 PubMed DOI
Letourneau S, van Leeuwen EM, Krieg C, Martin C, Pantaleo G, Sprent J, Surh CD, Boyman O. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc Natl Acad Sci U S A 2010; 107:2171-6; PMID:20133862; http://dx.doi.org/10.1073/pnas.0909384107 PubMed DOI PMC
Phelan JD, Orekov T, Finkelman FD. Cutting edge: mechanism of enhancement of in vivo cytokine effects by anti-cytokine monoclonal antibodies. J Immunol 2008; 180:44-8; PMID:18097002; http://dx.doi.org/10.4049/jimmunol.180.1.44 PubMed DOI
Rojas G, Pupo A, Leon K, Avellanet J, Carmenate T, Sidhu S. Deciphering the molecular bases of the biological effects of antibodies against Interleukin-2: a versatile platform for fine epitope mapping. Immunobiology 2013; 218:105-13; PMID:22459271; http://dx.doi.org/10.1016/j.imbio.2012.02.009 PubMed DOI
Tomala J, Kovarova J, Kabesova M, Votavova P, Chmelova H, Dvorakova B, Rihova B, Kovar M. Chimera of IL-2 linked to light chain of anti-IL-2 mAb mimics IL-2/anti-IL-2 mAb complexes both structurally and functionally. ACS Chem Biol 2013; 8:871-6; PMID:23419043; http://dx.doi.org/10.1021/cb3007242 PubMed DOI
Spangler JB, Tomala J, Luca VC, Jude KM, Dong S, Ring AM, Votavova P, Pepper M, Kovar M, Garcia KC. Antibodies to Interleukin-2 Elicit Selective T Cell Subset Potentiation through Distinct Conformational Mechanisms. Immunity 2015; 42:815-25; PMID:25992858; http://dx.doi.org/10.1016/j.immuni.2015.04.015 PubMed DOI PMC
Carmenate T, Pacios A, Enamorado M, Moreno E, Garcia-Martinez K, Fuente D, León K. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol 2013; 190:6230-8; PMID:23677467; http://dx.doi.org/10.4049/jimmunol.1201895 PubMed DOI
Levin AM, Bates DL, Ring AM, Krieg C, Lin JT, Su L, Moraga I, Raeber ME, Bowman GR, Novick P et al.. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 2012; 484:529-33; PMID:22446627; http://dx.doi.org/10.1038/nature10975 PubMed DOI PMC
Molloy MJ, Zhang W, Usherwood EJ. Cutting edge: IL-2 immune complexes as a therapy for persistent virus infection. J Immunol 2009; 182:4512-5; PMID:19342623; http://dx.doi.org/10.4049/jimmunol.0804175 PubMed DOI PMC
IL-2-driven CD8+ T cell phenotypes: implications for immunotherapy