• This record comes from PubMed

Poly(3-hydroxybutyrate) (PHB) and Polycaprolactone (PCL) Based Blends for Tissue Engineering and Bone Medical Applications Processed by FDM 3D Printing

. 2023 May 22 ; 15 (10) : . [epub] 20230522

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
FCH-S-23-8208 Brno University of Technology by the Specific University Research Grant
ITMS2014 +: 313011V358 Operational Program Integrated Infrastructure for the project "Center for Medical Bioadditive Research and Production (CEMBAM) co-financed by the European Regional Development Fund

In the presented work, poly(3-hydroxybutyrate)-PHB-based composite blends for bone medical applications and tissue engineering are prepared and characterized. PHB used for the work was in two cases commercial and, in one case, was extracted by the chloroform-free route. PHB was then blended with poly(lactic acid) (PLA) or polycaprolactone (PCL) and plasticized by oligomeric adipate ester (Syncroflex, SN). Tricalcium phosphate (TCP) particles were used as a bioactive filler. Prepared polymer blends were processed into the form of 3D printing filaments. The samples for all the tests performed were prepared by FDM 3D printing or compression molding. Differential scanning calorimetry was conducted to evaluate the thermal properties, followed by optimization of printing temperature by temperature tower test and determination of warping coefficient. Tensile test, three-point flexural test, and compression test were performed to study the mechanical properties of materials. Optical contact angle measurement was conducted to determine the surface properties of these blends and their influence on cell adhesion. Cytotoxicity measurement of prepared blends was conducted to find out whether the prepared materials were non-cytotoxic. The best temperatures for 3D printing were 195/190, 195/175, and 195/165 °C for PHB-soap/PLA-SN, PHB/PCL-SN, and PHB/PCL-SN-TCP, respectively. Their mechanical properties (strengths ~40 MPa, moduli ~2.5 GPa) were comparable with human trabecular bone. The calculated surface energies of all blends were ~40 mN/m. Unfortunately, only two out of three materials were proven to be non-cytotoxic (both PHB/PCL blends).

See more in PubMed

Kramschuster A., Turng L.-S. 17—Fabrication of Tissue Engineering Scaffolds. In: Ebnesajjad S., editor. Handbook of Biopolymers and Biodegradable Plastics. William Andrew Publishing; Boston, MA, USA: 2013. pp. 427–446. Plastics Design Library. DOI

Surisaeng J., Kanabenja W., Passornraprasit N., Aumnate C., Potiyaraj’ P. Polyhydroxybutyrate/Polylactic Acid Blends: An Alternative Feedstock for 3D Printed Bone Scaffold Model. J. Phys. Conf. Ser. 2022;2175:12021. doi: 10.1088/1742-6596/2175/1/012021. DOI

Amin S., Achenbach S.J., Atkinson E.J., Khosla S., Melton L.J. Trends in Fracture Incidence: A Population-Based Study over 20 Years. J. Bone Miner. Res. 2014;29:581–589. doi: 10.1002/jbmr.2072. PubMed DOI PMC

Johnell O., Kanis J.A. An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporos. Int. 2006;17:1726–1733. doi: 10.1007/s00198-006-0172-4. PubMed DOI

Gregor A., Filová E., Novák M., Kronek J., Chlup H., Buzgo M., Blahnova V., Lukášová V., Bartoš M., Nečas A., et al. Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer. J. Biol. Eng. 2017;11:31. doi: 10.1186/s13036-017-0074-3. PubMed DOI PMC

Esposito Corcione C., Gervaso F., Scalera F., Montagna F., Sannino A., Maffezzoli A. The Feasibility of Printing Polylactic Acid–Nanohydroxyapatite Composites Using a Low-Cost Fused Deposition Modeling 3D Printer. J. Appl. Polym. Sci. 2017;134:44656. doi: 10.1002/app.44656. DOI

Ecker J.V., Burzic I., Haider A., Hild S., Rennhofer H. Improving the Impact Strength of PLA and Its Blends with PHA in Fused Layer Modelling. Polym. Test. 2019;78:105929. doi: 10.1016/j.polymertesting.2019.105929. DOI

Shunmugasundaram M., Baig Maughal A.A., Kumar M.A. A Review of Bio-Degradable Materials for Fused Deposition Modeling Machine. Mater. Today Proc. 2020;27:1596–1600. doi: 10.1016/j.matpr.2020.03.267. DOI

Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of Scaffolds Prepared by Fused Deposition Modeling of Poly(Hydroxyalkanoates) Int. J. Biol. Macromol. 2020;161:364–376. doi: 10.1016/j.ijbiomac.2020.06.022. PubMed DOI

Savenkova L., Gercberga Z., Nikolaeva V., Dzene A., Bibers I., Kalnin M. Mechanical Properties and Biodegradation Characteristics of PHB-Based Films. Process Biochem. 2000;35:573–579. doi: 10.1016/S0032-9592(99)00107-7. DOI

Lenz R.W., Marchessault R.H. Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI

Kaygusuz B., Özerinç S. Improving the Ductility of Polylactic Acid Parts Produced by Fused Deposition Modeling through Polyhydroxyalkanoate Additions. J. Appl. Polym. Sci. 2019;136:48154. doi: 10.1002/app.48154. DOI

Ebnesajjad E., editor. Handbook of Biopolymers and Biodegradable Plastics. 1st ed. Elsevier; Amsterdam, The Netherlands: 2012. [(accessed on 7 February 2022)]. Available online: https://www.elsevier.com/books/handbook-of-biopolymers-and-biodegradable-plastics/ebnesajjad/978-1-4557-2834-3.

Dubinenko G., Zinoviev A., Bolbasov E., Kozelskaya A., Shesterikov E., Novikov V., Tverdokhlebov S. Highly Filled Poly(l-Lactic Acid)/Hydroxyapatite Composite for 3D Printing of Personalized Bone Tissue Engineering Scaffolds. J. Appl. Polym. Sci. 2021;138:49662. doi: 10.1002/app.49662. DOI

Wurm M.C., Möst T., Bergauer B., Rietzel D., Neukam F.W., Cifuentes S.C., von Wilmowsky C. In-Vitro Evaluation of Polylactic Acid (PLA) Manufactured by Fused Deposition Modeling. J. Biol. Eng. 2017;11:29. doi: 10.1186/s13036-017-0073-4. PubMed DOI PMC

Moghaddaszadeh A., Seddiqi H., Najmoddin N., Ravasjani S.A., Klein-Nulend J. Biomimetic 3D-Printed PCL Scaffold Containing a High Concentration Carbonated-Nanohydroxyapatite with Immobilized-Collagen for Bone Tissue Engineering: Enhanced Bioactivity and Physicomechanical Characteristics. Biomed. Mater. 2021;16:65029. doi: 10.1088/1748-605X/ac3147. PubMed DOI

Konopnicki S., Sharaf B., Resnick C., Patenaude A., Pogal-Sussman T., Hwang K.-G., Abukawa H., Troulis M.J. Tissue-Engineered Bone With 3-Dimensionally Printed β-Tricalcium Phosphate and Polycaprolactone Scaffolds and Early Implantation: An In Vivo Pilot Study in a Porcine Mandible Model. J. Oral Maxillofac. Surg. 2015;73:1016.e1–1016.e11. doi: 10.1016/j.joms.2015.01.021. PubMed DOI

Zeng J.-H., Liu S.-W., Xiong L., Qiu P., Ding L.-H., Xiong S.-L., Li J.-T., Liao X.-G., Tang Z.-M. Scaffolds for the Repair of Bone Defects in Clinical Studies: A Systematic Review. J. Orthop. Surg. 2018;13:33. doi: 10.1186/s13018-018-0724-2. PubMed DOI PMC

Qu H., Fu H., Han Z., Sun Y. Biomaterials for Bone Tissue Engineering Scaffolds: A Review. RSC Adv. 2019;9:26252–26262. doi: 10.1039/C9RA05214C. PubMed DOI PMC

Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018;6:90–99. PubMed PMC

Findrik Balogová A., Trebuňová M., Ižaríková G., Kaščák Ľ., Mitrík L., Klímová J., Feranc J., Modrák M., Hudák R., Živčák J. In Vitro Degradation of Specimens Produced from PLA/PHB by Additive Manufacturing in Simulated Conditions. Polymers. 2021;13:1542. doi: 10.3390/polym13101542. PubMed DOI PMC

Wang F., Tankus E.B., Santarella F., Rohr N., Sharma N., Märtin S., Michalscheck M., Maintz M., Cao S., Thieringer F.M. Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering. Polymers. 2022;14:669. doi: 10.3390/polym14040669. PubMed DOI PMC

Jiao Z., Luo B., Xiang S., Ma H., Yu Y., Yang W. 3D Printing of HA / PCL Composite Tissue Engineering Scaffolds. Adv. Ind. Eng. Polym. Res. 2019;2:196–202. doi: 10.1016/j.aiepr.2019.09.003. DOI

Siddiqui N., Asawa S., Birru B., Baadhe R., Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol. Biotechnol. 2018;60:506–532. doi: 10.1007/s12033-018-0084-5. PubMed DOI

Arif Z.U., Khalid M.Y., Noroozi R., Sadeghianmaryan A., Jalalvand M., Hossain M. Recent Advances in 3D-Printed Polylactide and Polycaprolactone-Based Biomaterials for Tissue Engineering Applications. Int. J. Biol. Macromol. 2022;218:930–968. doi: 10.1016/j.ijbiomac.2022.07.140. PubMed DOI

Dwivedi R., Kumar S., Pandey R., Mahajan A., Nandana D., Katti D.S., Mehrotra D. Polycaprolactone as Biomaterial for Bone Scaffolds: Review of Literature. J. Oral Biol. Craniofacial Res. 2020;10:381–388. doi: 10.1016/j.jobcr.2019.10.003. PubMed DOI PMC

Hou Y., Wang W., Bartolo P. Investigation of Polycaprolactone for Bone Tissue Engineering Scaffolds: In Vitro Degradation and Biological Studies. Mater. Des. 2022;216:110582. doi: 10.1016/j.matdes.2022.110582. DOI

Yang X., Wang Y., Zhou Y., Chen J., Wan Q. The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering. Polymers. 2021;13:2754. doi: 10.3390/polym13162754. PubMed DOI PMC

Seyedsalehi A., Daneshmandi L., Barajaa M., Riordan J., Laurencin C.T. Fabrication and Characterization of Mechanically Competent 3D Printed Polycaprolactone-Reduced Graphene Oxide Scaffolds. Sci. Rep. 2020;10:22210. doi: 10.1038/s41598-020-78977-w. PubMed DOI PMC

Hutmacher D.W., Schantz T., Zein I., Ng K.W., Teoh S.H., Tan K.C. Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling. J. Biomed. Mater. Res. 2001;55:203–216. doi: 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7. PubMed DOI

Zimmerling A., Yazdanpanah Z., Cooper D.M.L., Johnston J.D., Chen X. 3D Printing PCL/NHA Bone Scaffolds: Exploring the Influence of Material Synthesis Techniques. Biomater. Res. 2021;25:3. doi: 10.1186/s40824-021-00204-y. PubMed DOI PMC

Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC

Riester O., Borgolte M., Csuk R., Deigner H.-P. Challenges in Bone Tissue Regeneration: Stem Cell Therapy, Biofunctionality and Antimicrobial Properties of Novel Materials and Its Evolution. Int. J. Mol. Sci. 2021;22:192. doi: 10.3390/ijms22010192. PubMed DOI PMC

Ikada Y. Challenges in Tissue Engineering. J. R. Soc. Interface. 2006;3:589–601. doi: 10.1098/rsif.2006.0124. PubMed DOI PMC

Orciani M., Fini M., Di Primio R., Mattioli-Belmonte M. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Front. Bioeng. Biotechnol. 2017;5:17. doi: 10.3389/fbioe.2017.00017. PubMed DOI PMC

Krobot Š. Poly(3-Hydroxybutyrate) Based Materials for 3D Printing in Medical Applications. Vysoké Učení Technické v Brně, Fakulta Chemická, Ústav Chemie Materiálů; Brno, Czech Republic: 2023. Materiály Na Bázi P3HB pro 3D Tisk Medicínských Aplikací.

Melčová V., Svoradová K., Menčík P., Kontárová S., Rampichová M., Hedvičáková V., Sovková V., Přikryl R., Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-Hydroxybutyrate)/Poly(d,l-Lactide) Blends. Polymers. 2020;12:2806. doi: 10.3390/polym12122806. PubMed DOI PMC

Pospisilova A., Novackova I., Prikryl R. Isolation of Poly(3-Hydroxybutyrate) from Bacterial Biomass Using Soap Made of Waste Cooking Oil. Bioresour. Technol. 2021;326:124683. doi: 10.1016/j.biortech.2021.124683. PubMed DOI

Kontárová S., Přikryl R., Melčová V., Menčík P., Horálek M., Figalla S., Plavec R., Feranc J., Sadílek J., Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials. 2020;13:4736. doi: 10.3390/ma13214736. PubMed DOI PMC

Menčík P., Přikryl R., Stehnová I., Melčová V., Kontárová S., Figalla S., Alexy P., Bočkaj J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-Hydroxybutyrate)/Poly(Lactic Acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials. 2018;11:1893. doi: 10.3390/ma11101893. PubMed DOI PMC

Morgan E.F., Unnikrisnan G.U., Hussein A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018;20:119–143. doi: 10.1146/annurev-bioeng-062117-121139. PubMed DOI PMC

Żenkiewicz M. Methods for the Calculation of Surface Free Energy of Solids. J. Achiev. Mater. Manuf. Eng. 2007;24:137–145.

Schakenraad J.M., Busscher H.J., Wildevuur C.R.H., Arends J. The Influence of Substratum Surface Free Energy on Growth and Spreading of Human Fibroblasts in the Presence and Absence of Serum Proteins. J. Biomed. Mater. Res. 1986;20:773–784. doi: 10.1002/jbm.820200609. PubMed DOI

van der Valk P., van Pelt A.W.J., Busscher H.J., de Jong H.P., Wildevuur C.R.H., Arends J. Interaction of Fibroblasts and Polymer Surfaces: Relationship between Surface Free Energy and Fibroblast Spreading. J. Biomed. Mater. Res. 1983;17:807–817. doi: 10.1002/jbm.820170508. PubMed DOI

Zubairi S.I., Bismarck A., Mantalaris A. The Effect of Surface Heterogeneity on Wettability of Porous Three Dimensional (3-D) Scaffolds of Poly(3-Hydroxybutyric Acid) (PHB) and Poly(3-Hydroxybutyric-Co-3-Hydroxyvaleric Acid) (PHBV) J. Teknol. 2015;75:305–312. doi: 10.11113/jt.v75.3960. DOI

Mehrabi Mazidi M., Edalat A., Berahman R., Hosseini F. Highly-Toughened Polylactide- (PLA-) Based Ternary Blends with Significantly Enhanced Glass Transition and Melt Strength: Tailoring the Interfacial Interactions, Phase Morphology, and Performance. Macromolecules. 2018;51:4298–4314. doi: 10.1021/acs.macromol.8b00557. DOI

Lins L., Bugatti V., Livi S., Gorrasi G. Ionic Liquid as Surfactant Agent of Hydrotalcite: Influence on the Final Properties of Polycaprolactone Matrix. Polymers. 2018;10:44. doi: 10.3390/polym10010044. PubMed DOI PMC

Abdelwahab M.A., Flynn A., Chiou B.-S., Imam S., Orts W., Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. [(accessed on 8 May 2023)];Polym. Degrad. Stab. 2012 97:1822–1828. doi: 10.1016/j.polymdegradstab.2012.05.036. Available online: https://www.sciencedirect.com/science/article/pii/S0141391012002108. DOI

Wang S., Daelemans L., Fiorio R., Gou M., D’hooge D.R., De Clerck K., Cardon L. Improving Mechanical Properties for Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) by Annealing and Blending with Poly(3-Hydroxybutyrate) Polymers. 2019;11:1529. doi: 10.3390/polym11091529. PubMed DOI PMC

Laoutid F., Lenoir H., Molins Santaeularia A., Toncheva A., Schouw T., Dubois P. Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(ε-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications. Materials. 2022;15:8233. doi: 10.3390/ma15228233. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...