Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11159416
PubMed Central
PMC1301247
DOI
10.1016/s0006-3495(01)76028-6
PII: S0006-3495(01)76028-6
Knihovny.cz E-zdroje
- MeSH
- biofyzika MeSH
- biofyzikální jevy MeSH
- DNA chemie MeSH
- inosin chemie MeSH
- iontové kanály chemie MeSH
- konformace nukleové kyseliny * MeSH
- merkaptopurin chemie MeSH
- molekulární modely MeSH
- sodík chemie MeSH
- termodynamika MeSH
- thioguanin chemie MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- inosin MeSH
- iontové kanály MeSH
- merkaptopurin MeSH
- sodík MeSH
- thioguanin MeSH
The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.
Zobrazit více v PubMed
Nature. 1988 Apr 28;332(6167):777-8 PubMed
J Mol Biol. 1996 Jan 26;255(3):476-83 PubMed
J Mol Biol. 1999 Jan 8;285(1):233-43 PubMed
J Mol Biol. 2000 Apr 7;297(4):907-22 PubMed
Nature. 1989 Dec 14;342(6251):825-9 PubMed
Biochemistry. 1999 Jun 1;38(22):6981-6 PubMed
J Biomol Struct Dyn. 1999 Feb;16(4):845-62 PubMed
Biochem J. 1974 Aug;141(2):537-43 PubMed
Proc Natl Acad Sci U S A. 1981 May;78(5):3015-9 PubMed
Biophys J. 1998 Aug;75(2):968-81 PubMed
Cell. 1989 Dec 1;59(5):871-80 PubMed
J Mol Biol. 1999 Jan 29;285(4):1623-32 PubMed
J Mol Biol. 1995 Dec 8;254(4):638-56 PubMed
Chem Rev. 1999 Nov 10;99(11):3247-76 PubMed
Biophys J. 1998 Jul;75(1):134-49 PubMed
Nucleic Acids Res. 1992 Jan 11;20(1):49-53 PubMed
Biochemistry. 1995 Feb 14;34(6):2042-8 PubMed
Cell. 1987 Dec 24;51(6):899-908 PubMed
Nucleic Acids Res. 1999 Jul 15;27(14):2860-7 PubMed
Nature. 1992 Mar 12;356(6365):126-31 PubMed
Biochemistry. 1991 Sep 3;30(35):8648-53 PubMed
Biopolymers. 1994 Sep;34(9):1187-211 PubMed
J Biomol NMR. 1999 Feb;13(2):119-31 PubMed
Nucleic Acids Res. 1999 Aug 1;27(15):3018-28 PubMed
Biophys J. 1999 Oct;77(4):1769-81 PubMed
J Mol Biol. 1998 Sep 25;282(3):619-36 PubMed
Nucleic Acids Res. 1994 Dec 11;22(24):5447-55 PubMed
J Biomol Struct Dyn. 1998 Oct;16(2):265-80 PubMed
Biochemistry. 1997 Dec 9;36(49):15428-50 PubMed
J Biomol Struct Dyn. 1998 Dec;16(3):487-509 PubMed
Structure. 1995 Oct 15;3(10):997-1008 PubMed
Science. 1994 Jul 22;265(5171):520-4 PubMed
Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393-7 PubMed
J Med Chem. 1999 Nov 4;42(22):4538-46 PubMed
J Biomol Struct Dyn. 1999 Aug;17(1):61-77 PubMed
J Mol Biol. 1998 Aug 28;281(4):675-87 PubMed
Biochemistry. 1995 Jan 24;34(3):765-72 PubMed
Nature. 1988 Jul 28;334(6180):364-6 PubMed
J Mol Biol. 1994 Oct 28;243(3):458-71 PubMed
Nucleic Acids Res. 1995 Jun 11;23(11):1936-41 PubMed
Anticancer Drug Des. 1999 Aug;14(4):327-39 PubMed
Proc Natl Acad Sci U S A. 1982 Apr;79(8):2495-9 PubMed
Nature. 1992 Mar 12;356(6365):164-8 PubMed
J Mol Biol. 1997 Oct 17;273(1):171-82 PubMed
Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622-6 PubMed
J Mol Biol. 1998 Sep 25;282(3):637-52 PubMed
Biochemistry. 1995 Dec 19;34(50):16269-78 PubMed
Nucleic Acids Res. 1987 Nov 11;15(21):8877-98 PubMed
Biophys J. 1995 Sep;69(3):1046-67 PubMed
Curr Opin Struct Biol. 1996 Jun;6(3):289-98 PubMed
Molecular dynamics simulations and their application to four-stranded DNA
Molecular dynamics simulations of Guanine quadruplex loops: advances and force field limitations