Molecular dynamics of DNA quadruplex molecules containing inosine, 6-thioguanine and 6-thiopurine

. 2001 Jan ; 80 (1) : 455-68.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid11159416
Odkazy

PubMed 11159416
PubMed Central PMC1301247
DOI 10.1016/s0006-3495(01)76028-6
PII: S0006-3495(01)76028-6
Knihovny.cz E-zdroje

The ability of the four-stranded guanine (G)-DNA motif to incorporate nonstandard guanine analogue bases 6-oxopurine (inosine, I), 6-thioguanine (tG), and 6-thiopurine (tI) has been investigated using large-scale molecular dynamics simulations. The simulations suggest that a G-DNA stem can incorporate inosines without any marked effect on its structure and dynamics. The all-inosine quadruplex stem d(IIII)(4) shows identical dynamical properties as d(GGGG)(4) on the nanosecond time scale, with both molecular assemblies being stabilized by monovalent cations residing in the channel of the stem. However, simulations carried out in the absence of these cations show dramatic differences in the behavior of d(GGGG)(4) and d(IIII)(4). Whereas vacant d(GGGG)(4) shows large fluctuations but does not disintegrate, vacant d(IIII)(4) is completely disrupted within the first nanosecond. This is a consequence of the lack of the H-bonds involving the N2 amino group that is not present in inosine. This indicates that formation of the inosine quadruplex could involve entirely different intermediate structures than formation of the guanosine quadruplex, and early association of cations in this process appears to be inevitable. In the simulations, the incorporation of 6-thioguanine and 6-thiopurine sharply destabilizes four-stranded G-DNA structures, in close agreement with experimental data. The main reason is the size of the thiogroup leading to considerable steric conflicts and expelling the cations out of the channel of the quadruplex stem. The G-DNA stem can accommodate a single thioguanine base with minor perturbations. Incorporation of a thioguanine quartet layer is associated with a large destabilization of the G-DNA stem whereas the all-thioguanine quadruplex immediately collapses.

Zobrazit více v PubMed

Nature. 1988 Apr 28;332(6167):777-8 PubMed

J Mol Biol. 1996 Jan 26;255(3):476-83 PubMed

J Mol Biol. 1999 Jan 8;285(1):233-43 PubMed

J Mol Biol. 2000 Apr 7;297(4):907-22 PubMed

Nature. 1989 Dec 14;342(6251):825-9 PubMed

Biochemistry. 1999 Jun 1;38(22):6981-6 PubMed

J Biomol Struct Dyn. 1999 Feb;16(4):845-62 PubMed

Biochem J. 1974 Aug;141(2):537-43 PubMed

Proc Natl Acad Sci U S A. 1981 May;78(5):3015-9 PubMed

Biophys J. 1998 Aug;75(2):968-81 PubMed

Cell. 1989 Dec 1;59(5):871-80 PubMed

J Mol Biol. 1999 Jan 29;285(4):1623-32 PubMed

J Mol Biol. 1995 Dec 8;254(4):638-56 PubMed

Chem Rev. 1999 Nov 10;99(11):3247-76 PubMed

Biophys J. 1998 Jul;75(1):134-49 PubMed

Nucleic Acids Res. 1992 Jan 11;20(1):49-53 PubMed

Biochemistry. 1995 Feb 14;34(6):2042-8 PubMed

Cell. 1987 Dec 24;51(6):899-908 PubMed

Nucleic Acids Res. 1999 Jul 15;27(14):2860-7 PubMed

Nature. 1992 Mar 12;356(6365):126-31 PubMed

Biochemistry. 1991 Sep 3;30(35):8648-53 PubMed

Biopolymers. 1994 Sep;34(9):1187-211 PubMed

J Biomol NMR. 1999 Feb;13(2):119-31 PubMed

Nucleic Acids Res. 1999 Aug 1;27(15):3018-28 PubMed

Biophys J. 1999 Oct;77(4):1769-81 PubMed

J Mol Biol. 1998 Sep 25;282(3):619-36 PubMed

Nucleic Acids Res. 1994 Dec 11;22(24):5447-55 PubMed

J Biomol Struct Dyn. 1998 Oct;16(2):265-80 PubMed

Biochemistry. 1997 Dec 9;36(49):15428-50 PubMed

J Biomol Struct Dyn. 1998 Dec;16(3):487-509 PubMed

Structure. 1995 Oct 15;3(10):997-1008 PubMed

Science. 1994 Jul 22;265(5171):520-4 PubMed

Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393-7 PubMed

J Med Chem. 1999 Nov 4;42(22):4538-46 PubMed

J Biomol Struct Dyn. 1999 Aug;17(1):61-77 PubMed

J Mol Biol. 1998 Aug 28;281(4):675-87 PubMed

Biochemistry. 1995 Jan 24;34(3):765-72 PubMed

Nature. 1988 Jul 28;334(6180):364-6 PubMed

J Mol Biol. 1994 Oct 28;243(3):458-71 PubMed

Nucleic Acids Res. 1995 Jun 11;23(11):1936-41 PubMed

Anticancer Drug Des. 1999 Aug;14(4):327-39 PubMed

Proc Natl Acad Sci U S A. 1982 Apr;79(8):2495-9 PubMed

Nature. 1992 Mar 12;356(6365):164-8 PubMed

J Mol Biol. 1997 Oct 17;273(1):171-82 PubMed

Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622-6 PubMed

J Mol Biol. 1998 Sep 25;282(3):637-52 PubMed

Biochemistry. 1995 Dec 19;34(50):16269-78 PubMed

Nucleic Acids Res. 1987 Nov 11;15(21):8877-98 PubMed

Biophys J. 1995 Sep;69(3):1046-67 PubMed

Curr Opin Struct Biol. 1996 Jun;6(3):289-98 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace