Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing

. 2020 Oct 23 ; 13 (21) : . [epub] 20201023

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33114009

Grantová podpora
FV20480 Ministerstvo Průmyslu a Obchodu
LO1211 Ministerstvo Školství, Mládeže a Tělovýchovy
FCH-S-19-6100 Ministerstvo Školství, Mládeže a Tělovýchovy
APVV-17-304 Agentúra na Podporu Výskumu a Vývoja

This paper investigates the effect of plasticizer structure on especially the printability and mechanical and thermal properties of poly(3-hydroxybutyrate)-poly(lactic acid)-plasticizer biodegradable blends. Three plasticizers, acetyl tris(2-ethylhexyl) citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate), were first checked whether they were miscible with poly(3-hydroxybutyrate)-poly(lactic acid) (PHB-PLA) blends using a kneading machine. PHB-PLA-plasticizer blends of 60-25-15 (wt.%) were then prepared using a corotating meshing twin-screw extruder, and a single screw extruder was used for filament preparation for further three-dimensional (3D) fused deposition modeling (FDM) printing. These innovative eco-friendly PHB-PLA-plasticizer blends were created with a majority of PHB, and therefore, poor mechanical properties and thermal properties of neat PHB-PLA blends were improved by adding appropriate plasticizer. The plasticizer also influences the printability of blends, which was investigated, based on our new specific printability tests developed for the optimization of printing conditions (especially printing temperature). Three-dimensional printed test samples were used for heat deflection temperature measurements and Charpy and tensile-impact tests. Plasticizer migration was also investigated. The macrostructure of 3D printed samples was observed using an optical microscope to check the printing quality and printing conditions. Tensile tests of 3D printed samples (dogbones), as well as extruded filaments, showed that measured elongation at break raised, from 21% for non-plasticized PHB-PLA reference blends to 84% for some plasticized blends in the form of filaments and from 10% (reference) to 32% for plasticized blends in the form of printed dogbones. Measurements of thermal properties (using modulated differential scanning calorimetry and oscillation rheometry) also confirmed the plasticizing effect on blends. The thermal and mechanical properties of PHB-PLA blends were improved by the addition of appropriate plasticizer. In contrast, the printability of the PHB-PLA reference seems to be slightly better than the printability of the plasticized blends.

Zobrazit více v PubMed

Byun Y., Kim Y.T. Bioplastics for Food Packaging: Chemistry and Physics. In: Han Y.H., editor. Innovations in Food Packaging. 2nd ed. Academic Press; Cambridge, MA, USA: 2014. pp. 353–368. DOI

Koller M. Advances in Polyhydroxyalkanoate (PHA) Production. Bioengineering. 2017;4:88. doi: 10.3390/bioengineering4040088. PubMed DOI PMC

Abdelwahab M.H., Flynn A., Chiou B.-S., Imam S., Orts W., Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym. Degrad. Stab. 2012;97:1822–1828. doi: 10.1016/j.polymdegradstab.2012.05.036. DOI

D’Anna A., Arrigo R., Frache A. PLA/PHB Blends: Biocompatibilizer Effects. Polymers. 2019;11:1416. doi: 10.3390/polym11091416. PubMed DOI PMC

Frone A.N., Batalu D., Chiulan I., Oprea M., Gabor A.R., Nicolae C.-A., Raditoiu V., Trusca R., Panaitescu D.M. Morpho-Structural, Thermal and Mechanical Properties of PLA/PHA/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing. Nanomaterials. 2020;10:51. doi: 10.3390/nano10010051. PubMed DOI PMC

García-Campo M.J., Boronat T., Quiles-Carrillo L., Balart R., Montanes N. Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters. Polymers. 2018;10:3. doi: 10.3390/polym10010003. PubMed DOI PMC

European Bioplastics. [(accessed on 20 March 2020)]; Available online: http://docs.european-bioplastics.org/publications/EUBP_Facts_and_figures.pdf.

Urtuvia V., Villegas P., González M., Seeger M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol. 2014;70:208–213. doi: 10.1016/j.ijbiomac.2014.06.001. PubMed DOI

Khanna S., Srivastava A.K. Recent Advances in Microbial Polyhydroxyalkanoates. Process. Biochem. 2005;40:607–619. doi: 10.1016/j.procbio.2004.01.053. DOI

Marova I., Obruca S., Prikryl R. Process for Preparing Polyhydroxyalkanoates (PHA) on Oil Substrate. Application No. PCT/CZ2013/000100. International Patent. 2013 Aug 23

Nafigate Corporation. [(accessed on 22 October 2020)]; Available online: https://www.nafigate.com/biotechnology.

Chiulan I., Frone A.N., Brandabur C., Panaitescu D.M. Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering. 2018;5:2. doi: 10.3390/bioengineering5010002. PubMed DOI PMC

Zhang M., Thomas N.L. Blending Polylactic Acid with Polyhydroxybutyrate: The Effect on Thermal, Mechanical, and Biodegradation Properties. Adv. Polym. Tech. 2011;30:67–79. doi: 10.1002/adv.20235. DOI

Xiao L., Wang B., Yang G., Gauthier M. Biomedical Science, Engineering and Technology. InTech; London, UK: 2012. Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications; pp. 247–282. DOI

Nguyen V.K., Nguyen T.T., Pham Thi T.H., Pham T.T. Effects of Pulp Fiber and Epoxidized Tung Oil Content on the Properties of Biocomposites Based on Polylactic Acid. J. Compos. Sci. 2020;4:56. doi: 10.3390/jcs4020056. DOI

Correa-Pacheco Z.N., Black-Solís J.D., Ortega-Gudiño P., Sabino-Gutiérrez M.A., Benítez-Jiménez J.J., Barajas-Cervantes A., Bautista-Baños S., Hurtado-Colmenares L.B. Preparation and Characterization of Bio-Based PLA/PBAT and Cinnamon Essential Oil Polymer Fibers and Life-Cycle Assessment from Hydrolytic Degradation. Polymers. 2020;12:38. doi: 10.3390/polym12010038. PubMed DOI PMC

Garlotta D. A Literature Review of Poly(Lactic Acid) J. Polym. Environ. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI

Ma C., Jiang L., Wang Y., Gang F., Xu N., Li T., Liu Z., Chi Y., Wang X., Zhao L., et al. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials. 2019;12:2491. doi: 10.3390/ma12152491. PubMed DOI PMC

Wasti S., Adhikari S. Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Front. Chem. 2020;8:315. doi: 10.3389/fchem.2020.00315. PubMed DOI PMC

Puppi D., Pecorini G., Chiellini F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering. 2019;6:108. doi: 10.3390/bioengineering6040108. PubMed DOI PMC

ColorFabb. [(accessed on 30 March 2020)]; Available online: https://colorfabb.com/

Kong D. Master’s Thesis. RMIT University; Melbourne, Australia: 2017. Development of Polylactic Acid-Polyhydroxybutyrate Blends for Packaging Applications.

Sanatgar R.H., Campagne C., Nierstrasz V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Appl. Surf. Sci. 2017;403:551–563. doi: 10.1016/j.apsusc.2017.01.112. DOI

Salentijn G.I.J., Oomen P.E., Grajewski M., Verpoorte E. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. Anal. Chem. 2017;89:7053–7061. doi: 10.1021/acs.analchem.7b00828. PubMed DOI PMC

Wasantha L.M., Gunaratne K., Shanks R.A. Miscibility, Melting, and Crystallization Behavior of Poly(hydroxybutyrate) and Poly(d,l-lactic acid) Blends. Polym. Eng. Sci. 2008;48:1683–1692. doi: 10.1002/pen.21051. DOI

Arrieta M.P., Samper M.D., López J., Jiménez A. Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. J. Polym. Environ. 2014;22:460–470. doi: 10.1007/s10924-014-0654-y. DOI

Da Silva M.A., Vieira M.G.A., Maçumoto A.C.G., Beppu M.M. Polyvinylchloride (PVC) and natural rubber films plasticized with a natural polymeric plasticizer obtained through polyesterification of rice fatty acid. Polym. Test. 2011;30:478–484. doi: 10.1016/j.polymertesting.2011.03.008. DOI

Wypych G. Handbook of Plasticizers. 3rd ed. ChemTec Publishing; Toronto, ON, Canada: 2017.

Białecka-Florjańczyk E., Florjańczyk Z. Solubility of Plasticizers, Polymers and Environmental Pollution. In: Letcher T.M., editor. Thermodynamics, Solubility and Environmental Issues. 1st ed. Elsevier; Amsterdam, The Netherlands: 2007. pp. 397–408.

Menčík P., Přikryl R., Stehnová I., Melčová V., Kontárová S., Figalla S., Alexy P., Bočkaj J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials. 2018;11:1893. doi: 10.3390/ma11101893. PubMed DOI PMC

Cadogan D.F., Howick C.J. Ullmann’s Polymers and Plastic: Products and Processes. Volume 1. Wiley VCH; Weinheim, Germany: 2016. Plasticizers; pp. 581–600.

Marcilla A., García S., García-Quesada J.C. Study of the migration of PVC plasticizers. J. Anal. Appl. Pyrolysis. 2004;71:457–463. doi: 10.1016/S0165-2370(03)00131-1. DOI

Marcilla A., García S., García-Quesada J.C. Migrability of PVC plasticizers. Polym. Test. 2008;27:221–233. doi: 10.1016/j.polymertesting.2007.10.007. DOI

Ambrogi V., Brostow W., Carfagna C., Pannico M., Persico P. Plasticizer migration from cross-linked flexible PVC: Effects on tribology and hardness. Polym. Eng. Sci. 2001;52:211–217. doi: 10.1002/pen.22070. DOI

Sun X.S. Plastics Derived from Starch and Poly(Lactic Acids) In: Wool R.P., editor. Bio-Based Polymers and Composites. 1st ed. Elsevier; Burlington, MA, USA: 2005. pp. 369–410.

Godwin A.D. Plasticizers. In: Kutz M., editor. Applied Plastics Engineering Handbook. 1st ed. Elsevier; Waltham, MA, USA: 2011. pp. 487–501.

Vieira M.G.A., Da Silva M.A., Dos Santos L.O., Beppu M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011;47:254–263. doi: 10.1016/j.eurpolymj.2010.12.011. DOI

Armentato I., Fortunati E., Burgos N., Dominici F., Luzi F., Fiori S., Jimenéz A., Yoon K., Ahn J., Kang S., et al. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polym. Lett. 2015;9:583–596. doi: 10.3144/expresspolymlett.2015.55. DOI

Rogovina S., Zhorina L., Gatin A., Prut E., Kuznetsova O., Yakhina A., Olkhov A., Samoylov N., Grishin M., Iordanskii A., et al. Biodegradable Polylactide–Poly(3-Hydroxybutyrate) Compositions Obtained via Blending under Shear Deformations and Electrospinning: Characterization and Environmental Application. Polymers. 2020;12:1088. doi: 10.3390/polym12051088. PubMed DOI PMC

Diederichs E.V., Picard M.C., Chang B.P., Misra M., Mielewski D.F., Mohanty A.K. Strategy To Improve Printability of Renewable Resource-Based Engineering Plastic Tailored for FDM Applications. ACS Omega. 2019;4:20297–20307. doi: 10.1021/acsomega.9b02795. PubMed DOI PMC

Wang S., Capoen L., D’hooge D.R., Cardon L. Can the melt flow index be used to predict the success of fused deposition modelling of commercial poly(lactic acid) filaments into 3D printed materials? Plast. Rubber Compos. 2018;47:9–16. doi: 10.1080/14658011.2017.1397308. DOI

Biomer: Biodegradable Polymers. [(accessed on 30 March 2020)]; Available online: http://www.biomer.de/IndexE.html.

NatureWorks. [(accessed on 30 March 2020)]; Available online: https://www.natureworksllc.com/

Jungbunzlauer Specialties. [(accessed on 30 March 2020)]; Available online: https://www.jungbunzlauer.com/en/products/specialties.html.

Merck. [(accessed on 30 March 2020)]; Available online: https://www.merckmillipore.com/CZ/cs/product/Polyethylene-glycol-600,MDA_CHEM-807486.

Horalek M. Master’s Thesis. Brno University of Technology; Brno, Czech Republic: 2019. Biocomposites based on Polyhydroxybutyrate for 3D Printing.

#3D Benchy: Measure and Calibrate. [(accessed on 21 January 2020)]; Available online: http://www.3dbenchy.com/dimensions/

Standard Test Method for Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry (DSC) ASTM; New York, NY, USA: 1999. ASTM D 3147-99.

Mikusova M., Mihalik M., Alexy P., Tomanova K., Plavec R., Bockaj J., Vanovcanova Z. Method for testing of Processing Stability of biodegradable Polyesters based on Oscillation Rheometry. Kautsch. Gummi Kunstst. 2014;67:51–54.

Plastics—Determination of Temperature of Deflection under Load—Part 2: Plastics and Ebonite. CEN; Brussels, Belgium: 2013. ISO 75-2:2013.

Determination of Tensile Properties—Part 1: General Principles. 2nd ed. CEN; Brussels, Belgium: 2012. ISO 527-1:2012.

Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. CEN; Brussels, Belgium: 2000. ISO 179-1:2000.

Plastics—Determination of Tensile-Impact Strength. CEN; Brussels, Belgium: 2004. ISO 8256:2004.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...