FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09306S
Grantová Agentura České Republiky
FV20480
Ministerstvo Průmyslu a Obchodu
FCH-S-20-6340
Vysoké Učení Technické v Brně
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33260879
PubMed Central
PMC7761374
DOI
10.3390/polym12122806
PII: polym12122806
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, bone scaffolds, fused deposition modeling, poly(3-hydroxybutyrate), polylactide, regenerative medicine, tissue engineering, tricalcium phosphate,
- Publikační typ
- časopisecké články MeSH
Tissue engineering is a current trend in the regenerative medicine putting pressure on scientists to develop highly functional materials and methods for scaffolds' preparation. In this paper, the calibrated filaments for Fused Deposition Modeling (FDM) based on plasticized poly(3-hydroxybutyrate)/poly(d,l-lactide) 70/30 blend modified with tricalcium phosphate bioceramics were prepared. Two different plasticizers, Citroflex (n-Butyryl tri-n-hexyl citrate) and Syncroflex (oligomeric adipate ester), both used in the amount of 12 wt%, were compared. The printing parameters for these materials were optimized and the printability was evaluated by recently published warping test. The samples were studied with respect to their thermal and mechanical properties, followed by biological in vitro tests including proliferation, viability, and osteogenic differentiation of human mesenchymal stem cells. According to the results from differential scanning calorimetry and tensile measurements, the Citroflex-based plasticizer showed very good softening effect at the expense of worse printability and unsatisfactory performance during biological testing. On the other hand, the samples with Syncroflex demonstrated lower warping tendency compared to commercial polylactide filament with the warping coefficient one third lower. Moreover, the Syncroflex-based samples exhibited the non-cytotoxicity and promising biocompatibility.
Zobrazit více v PubMed
Amin S., Achenbach S.J., Atkinson E.J., Khosla S., Melton L.J. Trends in Fracture Incidence: A Population-Based Study Over 20 Years. J. Bone Miner. Res. 2014;29:581–589. doi: 10.1002/jbmr.2072. PubMed DOI PMC
Johnell O., Kanis J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int. 2006;17:1726–1733. doi: 10.1007/s00198-006-0172-4. PubMed DOI
Brown J.L., Kumbar S.G., Laurencin C.T. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2013. Bone tissue engineering; pp. 1194–1214.
Laurencin C.T., Ambrosio A.M.A., Borden M.D., Cooper J.A. Tissue Engineering: Orthopedic Applications. Annu. Rev. Biomed. Eng. 1999;1:19–46. doi: 10.1146/annurev.bioeng.1.1.19. PubMed DOI
Fattahian H., Mansouri K., Mansouri N. Biomaterials, Substitutes, And Tissue Engineering in Bone Repair. Comp. Clin. Path. 2019;28:879–891. doi: 10.1007/s00580-017-2507-2. DOI
Qu H., Fu H., Han Z., Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019;9:26252–26262. doi: 10.1039/C9RA05214C. PubMed DOI PMC
Hollister S.J. Scaffold Design and Manufacturing: From Concept to Clinic. Adv. Mater. 2009;21:3330–3342. doi: 10.1002/adma.200802977. PubMed DOI
Chocholata P., Kulda V., Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC
Sloviková A., Vojtová L., Jančář J. Preparation and modification of collagen-based scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Švachová V., Vojtová L., Pavliňák D., Vojtek L., Sedláková V., Hyršl P., Alberti M., Jaroš J., Hampl A., Jančář J. Novel electrospun gelatin/oxycellulose nanofibers as a suitable platform for lung disease modeling. Mater. Sci. Eng. C. 2016;67:493–501. doi: 10.1016/j.msec.2016.05.059. PubMed DOI
Balletti C., Ballarin M., Guerra F. 3D printing: State of the art and future perspectives. J. Cult. Herit. 2017;26:172–182. doi: 10.1016/j.culher.2017.02.010. DOI
Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Pereira T.F., Oliveira M., Maia I.A., Da Silva J.V.L., Costa M., Thiré R.M.D.S.M. 3D Printing of Poly(3-Hydroxybutyrate) Porous Structures Using Selective Laser Sintering. Macromol. Symp. 2012;319:64–73. doi: 10.1002/masy.201100237. DOI
Lee S., Zhou W.Y., Wang M., Cheung W.L., Ip W.Y. Selective Laser Sintering of Poly(L-Lactide) Porous Scaffolds for Bone Tissue Engineering. J. Biomim. Biomater. Tissue Eng. 2008;1:81–89. doi: 10.4028/www.scientific.net/JBBTE.1.81. DOI
Saska S., Pires L.C., Cominotte M.A., Mendes L.S., de Oliveira M.F., Maia I.A., da Silva JV L., Ribeiro SJ L., Cirelli J.A. Three-Dimensional Printing and in Vitro Evaluation of Poly(3-Hydroxybutyrate) Scaffolds Functionalized with Osteogenic Growth Peptide for Tissue Engineering. Mater. Sci. Eng. C. 2018;89:265–273. doi: 10.1016/j.msec.2018.04.016. PubMed DOI
Boparai K.S., Singh R., Singh H. Development of rapid tooling using fused deposition modeling: A review. Rapid Prototyp. J. 2016;22:281–299. doi: 10.1108/RPJ-04-2014-0048. DOI
Carrell J., Gruss G., Gomez E. Four-dimensional printing using fused-deposition modeling: A review. Rapid Prototyp. J. 2020;26:855–869. doi: 10.1108/RPJ-12-2018-0305. DOI
Dhinakaran V., Kumar K.M., Ram P.B., Ravichandran M., Vinayagamoorthy M. A review on recent advancements in fused deposition modeling. Mater. Today Proc. 2020;27:752–756. doi: 10.1016/j.matpr.2019.12.036. DOI
Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074. PubMed DOI PMC
Mohan N., Senthil P., Vinodh S., Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017;12:47–59. doi: 10.1080/17452759.2016.1274490. DOI
Chiulan I., Frone A.N., Brandabur C., Panaitescu D.M. Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering. 2018;5:2. doi: 10.3390/bioengineering5010002. PubMed DOI PMC
Shunmugasundaram M., Maughal A.A.B., Ajay Kumar M. A review of bio-degradable materials for fused deposition modeling machine. Mater. Today Proc. 2020;27:1596–1600. doi: 10.1016/j.matpr.2020.03.267. DOI
Wurm M.C., Möst T., Bergauer B., Rietzel D., Neukam F.W., Cifuentes S.C., Von Wilmowsky C. In-vitro evaluation of Polylactic acid (PLA) manufactured by fused deposition modeling. J. Biol. Eng. 2017;11:1–9. doi: 10.1186/s13036-017-0073-4. PubMed DOI PMC
Lim J., You M., Li J., Li Z. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater. Sci. Eng. C. 2017;79:917–929. doi: 10.1016/j.msec.2017.05.132. PubMed DOI
Butt F.I., Muhammad N., Hamid A., Moniruzzaman M., Sharif F. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications—Review. Int. J. Biol. Macromol. 2018;120:1294–1305. doi: 10.1016/j.ijbiomac.2018.09.002. PubMed DOI
Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates) Int. J. Biol. Macromol. 2020;161:364–376. doi: 10.1016/j.ijbiomac.2020.06.022. PubMed DOI
Gonzalez Ausejo J., Rydz J., Musioł M., Sikorska W., Sobota M., Włodarczyk J., Adamus G., Janeczek H., Kwiecień I., Hercog A., et al. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym. Degrad. Stab. 2018;152:191–207. doi: 10.1016/j.polymdegradstab.2018.04.024. DOI
Esposito Corcione C., Scalera F., Gervaso F., Montagna F., Sannino A., Maffezzoli A. One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J. Therm. Anal. Calorim. 2018;134:575–582. doi: 10.1007/s10973-018-7155-5. DOI
Xuan Y., Tang H., Wu B., Ding X., Lu Z., Li W., Xu Z. A specific groove design for individualized healing in a canine partial sternal defect model by a polycaprolactone/hydroxyapatite scaffold coated with bone marrow stromal cells. J. Biomed. Mater. Res. Part A. 2014;102:3401–3408. doi: 10.1002/jbm.a.35012. PubMed DOI
Konopnicki S., Sharaf B., Resnick C., Patenaude A., Pogal-Sussman T., Hwang K.-G., Abukawa H., Troulis M.J. Tissue-Engineered Bone With 3-Dimensionally Printed β-Tricalcium Phosphate and Polycaprolactone Scaffolds and Early Implantation: An In Vivo Pilot Study in a Porcine Mandible Model. J. Oral Maxillofac. Surg. 2015;73:1016.e1–1016.e11. doi: 10.1016/j.joms.2015.01.021. PubMed DOI
Dávila J.L., Freitas M.S., Inforçatti Neto P., Silveira Z.C., Silva JV L., d’Ávila M.A. Fabrication of PCL/Β-TCP Scaffolds By 3D Mini-Screw Extrusion Printing. J. Appl. Polym. Sci. 2016;133:133. doi: 10.1002/app.43031. DOI
Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9:8037–8045. doi: 10.1016/j.actbio.2013.06.014. PubMed DOI
Kontárová S., Přikryl R., Melčová V., Menčík P., Horálek M., Figalla S., Plavec R., Feranc J., Sadílek J., Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials. 2020;13:4736. doi: 10.3390/ma13214736. PubMed DOI PMC
Menčík P., Přikryl R., Stehnová I., Melčová V., Kontárová S., Figalla S., Alexy P., Bočkaj J. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials. 2018;11:1893. doi: 10.3390/ma11101893. PubMed DOI PMC