Fabrication of Scaffolds for Bone-Tissue Regeneration

. 2019 Feb 14 ; 12 (4) : . [epub] 20190214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30769821

Grantová podpora
National Sustainability Program I (NPU I) Nr. LO1503 Ministerstvo Školství, Mládeže a Tělovýchovy

The present article describes the state of the art in the rapidly developing field of bone tissue engineering, where many disciplines, such as material science, mechanical engineering, clinical medicine and genetics, are interconnected. The main objective is to restore and improve the function of bone tissue by scaffolds, providing a suitable environment for tissue regeneration and repair. Strategies and materials used in oral regenerative therapies correspond to techniques generally used in bone tissue engineering. Researchers are focusing on developing and improving new materials to imitate the native biological neighborhood as authentically as possible. The most promising is a combination of cells and matrices (scaffolds) that can be fabricated from different kinds of materials. This review summarizes currently available materials and manufacturing technologies of scaffolds for bone-tissue regeneration.

Zobrazit více v PubMed

Berthiaume F., Maguire T.J., Yarmush M.L. Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annu. Rev. Chem. Biomol. Eng. 2011;2:403–430. doi: 10.1146/annurev-chembioeng-061010-114257. PubMed DOI

Chaudhari A., Vig K., Baganizi D., Sahu R., Dixit S., Dennis V., Singh S., Pillai S. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016;17:1974. doi: 10.3390/ijms17121974. PubMed DOI PMC

O’brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.

Dlaska C.E., Andersson G., Brittberg M., Suedkamp N.P., Raschke M.J., Schuetz M.A. Clinical translation in tissue engineering—The surgeon’s view. Curr. Mol. Biol. Rep. 2015;1:61–70. doi: 10.1007/s40610-015-0013-3. DOI

Langer R., Vacanti J.P. Tissue engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529. PubMed DOI

Stratton S., Shelke N.B., Hoshino K., Rudraiah S., Kumbar S.G. Bioactive polymeric scaffolds for tissue engineering. Bioact. Mater. 2016;1:93–108. doi: 10.1016/j.bioactmat.2016.11.001. PubMed DOI PMC

Yu J., Xia H., Ni Q.Q. A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering. J. Mater. Sci. 2018;53:4734–4744. doi: 10.1007/s10853-017-1807-x. DOI

Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S. polymeric scaffolds in tissue engineering application: A review. Int. J. Polym. Sci. 2011;2011:1–19. doi: 10.1155/2011/290602. DOI

Kattimani V.S., Kondaka S., Lingamaneni K.P. Hydroxyapatite–-Past, present, and future in bone regeneration. Bone Tissue Regen. Insights. 2016;7:9–19. doi: 10.4137/BTRI.S36138. DOI

Stevens M.M. Biomaterials for bone tissue engineering. Mater. Today. 2008;11:18–25. doi: 10.1016/S1369-7021(08)70086-5. DOI

Rahman S., Nagrath M., Ponnusamy S., Arany P. Nanoscale and macroscale scaffolds with controlled-release polymeric systems for dental craniomaxillofacial tissue engineering. Materials. 2018;11:1478. doi: 10.3390/ma11081478. PubMed DOI PMC

Huang G.T.-J. Dental pulp and dentin tissue engineering and regeneration–advancement and challenge. Front. Biosci. 2011;3:788. doi: 10.2741/e286. PubMed DOI PMC

Bakhtiar H., Mazidi S A., Mohammadi Asl S., Ellini M.R., Moshiri A., Nekoofar M.H., Dummer P.M.H. The role of stem cell therapy in regeneration of dentine-pulp complex: A systematic review. Prog. Biomater. 2018;7:249–268. doi: 10.1007/s40204-018-0100-7. PubMed DOI PMC

Kaneko T., Gu B., Sone P.P., Zaw S.Y.M., Murano H., Zaw Z.C.T., Okiji T. Dental pulp tissue engineering using mesenchymal stem cells: A review with a protocol. Stem Cell Rev. Rep. 2018;14:668–676. doi: 10.1007/s12015-018-9826-9. PubMed DOI

Bottino M.C., Pankajakshan D., Nör J.E. Advanced scaffolds for dental pulp and periodontal regeneration. Dent. Clin. North Am. 2017;61:689–711. doi: 10.1016/j.cden.2017.06.009. PubMed DOI PMC

Pilipchuk S.P., Plonka A.B., Monje A., Taut A.D., Lanis A., Kang B., Giannobile W.V. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent. Mater. 2015;31:317–338. doi: 10.1016/j.dental.2015.01.006. PubMed DOI PMC

Reena R., Nico H., Dieter W. Current concepts of bone regeneration in implant dentistry. J. Surg. 2015;10:283–285.

Wang X., Xu S., Zhou S., Xu W., Leary M., Choong P., Qian M., Brandt M., Xie Y.M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127–141. doi: 10.1016/j.biomaterials.2016.01.012. PubMed DOI

Rho J.Y., Kuhn-Spearing L., Zioupos P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998;20:92–102. doi: 10.1016/S1350-4533(98)00007-1. PubMed DOI

Bose S., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater. Today. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. DOI

Alford A.I., Kozloff K.M., Hankenson K.D. Extracellular matrix networks in bone remodeling. Int. J. Biochem. Cell Biol. 2015;65:20–31. doi: 10.1016/j.biocel.2015.05.008. PubMed DOI

Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007. PubMed DOI PMC

Roberts T.T., Rosenbaum A.J. Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8:114–124. doi: 10.4161/org.23306. PubMed DOI PMC

Khan S.N., Cammisa F.P., Jr., Sandhu H.S., Diwan A.D., Girardi F.P., Lane J.M. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 2005;13:77–86. doi: 10.5435/00124635-200501000-00010. PubMed DOI

Albrektsson T., Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 2001;10:S96–S101. PubMed PMC

Ge Z., Jin Z., Cao T. Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed. Mater. 2008;3:022001. doi: 10.1088/1748-6041/3/2/022001. PubMed DOI

Chen Q.Z., Thompson I.D., Boccaccini A.R. 45S5 Bioglass®-derived glass–Ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–2425. doi: 10.1016/j.biomaterials.2005.11.025. PubMed DOI

Varaprasad K., Raghavendra G.M., Jayaramudu T., Yallapu M.M., Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C. 2017;79:958–971. doi: 10.1016/j.msec.2017.05.096. PubMed DOI

Ullah F., Othman M.B.H., Javed F., Ahmad Z., Akil H.M. Classification, processing and application of hydrogels: A review. Mater. Sci. Eng. C. 2015;57:414–433. doi: 10.1016/j.msec.2015.07.053. PubMed DOI

Tan H., Chu C.R., Payne K.A., Marra K.G. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2499–2506. doi: 10.1016/j.biomaterials.2008.12.080. PubMed DOI PMC

Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012;64:18–23. doi: 10.1016/j.addr.2012.09.010. PubMed DOI

Hench L.L., Polak J.M. Third-generation biomedical materials. Science. 2002;295:1014–1017. doi: 10.1126/science.1067404. PubMed DOI

Gunatillake P.A., Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI

Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. doi: 10.1016/j.biomaterials.2006.01.039. PubMed DOI

Dorati R., DeTrizio A., Modena T., Conti B., Benazzo F., Gastaldi G., Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017;10:96. doi: 10.3390/ph10040096. PubMed DOI PMC

Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI

Sasikumar S., Ravy L. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. Int. J. Nanomed. 2015;10:129–136. doi: 10.2147/IJN.S79986. PubMed DOI PMC

Gotman I. Characteristics of Metals Used in Implants. J. Endourol. 1997;11:383–389. doi: 10.1089/end.1997.11.383. PubMed DOI

Babuska V., Moztarzadeh O., Kubikova T., Moztarzadeh A., Hrusak D., Tonar Z. Evaluating the osseointegration of nanostructured titanium implants in animal models: Current experimental methods and perspectives (Review) Biointerphases. 2016;11:030801. doi: 10.1116/1.4958793. PubMed DOI

AzoMaterials. [(accessed on 12 March 2018)]; Available online: https://www.azom.com/article.aspx?ArticleID=14935.

Babuska V., Dobra J., Kulda V., Kripnerova M., Moztarzadeh A., Bolek L., Lahoda J., Hrusak D. Comparison of fibroblast and osteoblast response to cultivation on titanium implants with different grain sizes. J. Nanomater. 2015;2015:1–9. doi: 10.1155/2015/920893. DOI

Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018;3:278–314. doi: 10.1016/j.bioactmat.2017.10.001. PubMed DOI PMC

Liu J., Ruan J., Chang L., Yang H., Ruan W. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater. Sci. Eng. C. 2017;78:503–512. doi: 10.1016/j.msec.2017.04.088. PubMed DOI

Miguez-Pacheco V., Hench L.L., Boccaccini A.R. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi: 10.1016/j.actbio.2014.11.004. PubMed DOI

Jell G., Stevens M.M. Gene activation by bioactive glasses. J. Mater. Sci. Mater. Med. 2006;17:997–1002. doi: 10.1007/s10856-006-0435-9. PubMed DOI

Hu J., Zhu Y., Tong H., Shen X., Chen L., Ran J. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue. Int. J. Biol. Macromol. 2016;82:134–143. doi: 10.1016/j.ijbiomac.2015.09.077. PubMed DOI

Asti A., Gioglio L. Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs. 2014;37:187–205. PubMed

Kartikasari N., Yuliati A., Listiana I., Setijanto D., Suardita K., Ariani D., Sosiawan A. Characteristic of bovine hydroxyapatite-gelatin-chitosan scaffolds as biomaterial candidate for bone tissue engineering; Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES); Kuala Lumpur, Malaysia. 5–7 December 2016; pp. 623–626.

Gentile P., Nandagiri V.K., Daly J., Chiono V., Mattu C., Tonda-Turo C., Ciardelli G., Ramtoola Z. Localised controlled release of simvastatin from porous chitosan–gelatin scaffolds engrafted with simvastatin loaded PLGA-microparticles for bone tissue engineering application. Mater. Sci. Eng. C. 2016;59:249–257. doi: 10.1016/j.msec.2015.10.014. PubMed DOI

Lien S.-M., Ko L.-Y., Huang T.-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–679. doi: 10.1016/j.actbio.2008.09.020. PubMed DOI

Wu X., Liu Y., Li X., Wen P., Zhang Y., Long Y., Wang X., Guo Y., Xing F., Gao J. Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomater. 2010;6:1167–1177. doi: 10.1016/j.actbio.2009.08.041. PubMed DOI

Saravanan S., Leena R.S., Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2016;93:1354–1365. doi: 10.1016/j.ijbiomac.2016.01.112. PubMed DOI

Rajan Unnithan A., Ramachandra Kurup Sasikala A., Park C.H., Kim C.S. A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin. J. Ind. Eng. Chem. 2017;46:182–191. doi: 10.1016/j.jiec.2016.10.029. DOI

LogithKumar R., KeshavNarayan A., Dhivya S., Chawla A., Saravanan S., Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016;151:172–188. doi: 10.1016/j.carbpol.2016.05.049. PubMed DOI

Balagangadharan K., Dhivya S., Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int. J. Biol. Macromol. 2017;104:1372–1382. doi: 10.1016/j.ijbiomac.2016.12.046. PubMed DOI

Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. PubMed DOI

Swetha M., Sahithi K., Moorthi A., Srinivasan N., Ramasamy K., Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 2010;47:1–4. doi: 10.1016/j.ijbiomac.2010.03.015. PubMed DOI

Deng Y., Ren J., Chen G., Li G., Wu X., Wang G., Gu G., Li J. Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-02962-z. PubMed DOI PMC

Gwon K., Kim E., Tae G. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Acta Biomater. 2017;49:284–295. doi: 10.1016/j.actbio.2016.12.001. PubMed DOI

Nimmo C.M., Owen S.C., Shoichet M.S. Diels−Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules. 2011;12:824–830. doi: 10.1021/bm101446k. PubMed DOI

Collins M.N., Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydr. Polym. 2013;92:1262–1279. doi: 10.1016/j.carbpol.2012.10.028. PubMed DOI

Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Pawar S.N., Edgar K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials. 2012;33:3279–3305. doi: 10.1016/j.biomaterials.2012.01.007. PubMed DOI

Gómez-Mascaraque L.G., Méndez J.A., Fernández-Gutiérrez M., Vázquez B., San Román J. Oxidized dextrins as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan. Acta Biomater. 2014;10:798–811. doi: 10.1016/j.actbio.2013.10.003. PubMed DOI

Zarrintaj P., Manouchehri S., Ahmadi Z., Saeb M.R., Urbanska A.M., Kaplan D.L., Mozafari M. Agarose-based biomaterials for tissue engineering. Carbohydr. Polym. 2018;187:66–84. doi: 10.1016/j.carbpol.2018.01.060. PubMed DOI

Marras-Marquez T., Peña J., Veiga-Ochoa M.D. Agarose drug delivery systems upgraded by surfactants inclusion: Critical role of the pore architecture. Carbohydr. Polym. 2014;103:359–368. doi: 10.1016/j.carbpol.2013.12.026. PubMed DOI

Barrangou L.M., Daubert C.R., Allen Foegeding E. Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloids. 2006;20:184–195. doi: 10.1016/j.foodhyd.2005.02.019. DOI

Zhang L.-M., Wu C.-X., Huang J.-Y., Peng X.-H., Chen P., Tang S.-Q. Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr. Polym. 2012;88:1445–1452. doi: 10.1016/j.carbpol.2012.02.050. DOI

Khanarian N.T., Haney N.M., Burga R.A., Lu H.H. A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials. 2012;33:5247–5258. doi: 10.1016/j.biomaterials.2012.03.076. PubMed DOI PMC

Watanabe J., Kashii M., Hirao M., Oka K., Sugamoto K., Yoshikawa H., Akashi M. Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration. J. Biomed. Mater. Res. A. 2007;83A:845–852. doi: 10.1002/jbm.a.31435. PubMed DOI

Zhang R., Ma P.X. Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. 1999;44:446–455. doi: 10.1002/(SICI)1097-4636(19990315)44:4<446::AID-JBM11>3.0.CO;2-F. PubMed DOI

Yu N.Y.C., Schindeler A., Little D.G., Ruys A.J. Biodegradable poly(α-hydroxy acid) polymer scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2010;93:285–295. doi: 10.1002/jbm.b.31588. PubMed DOI

Grossen P., Witzigmann D., Sieber S., Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J. Control. Release. 2017;260:46–60. doi: 10.1016/j.jconrel.2017.05.028. PubMed DOI

Dash T.K., Konkimalla V.B. Poly-epsilon-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release. 2012;158:15–33. doi: 10.1016/j.jconrel.2011.09.064. PubMed DOI

Wu F., Liu C., O’Neill B., Wei J., Ngothai Y. Fabrication and properties of porous scaffold of magnesium phosphate/polycaprolactone biocomposite for bone tissue engineering. Appl. Surf. Sci. 2012;258:7589–7595. doi: 10.1016/j.apsusc.2012.04.094. DOI

Williams J.M., Adewunmi A., Schek R.M., Flanagan C.L., Krebsbach P.H., Feinberg S.E., Hollister S.J., Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–4827. doi: 10.1016/j.biomaterials.2004.11.057. PubMed DOI

Gabriel L.P., dos Santos M.E.M., Jardini A.L., Bastos G.N.T., Dias C.G.B.T., Webster T.J., Maciel Filho R. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomed. Nanotechnol. Biol. Med. 2017;13:201–208. doi: 10.1016/j.nano.2016.09.008. PubMed DOI

Ryszkowska J.L., Auguścik M., Sheikh A., Boccaccini A.R. Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Compos. Sci. Technol. 2010;70:1894–1908. doi: 10.1016/j.compscitech.2010.05.011. DOI

Vacanti J.P., Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–S34. doi: 10.1016/S0140-6736(99)90247-7. PubMed DOI

Jiang W., Cipriano A.F., Tian Q., Zhang C., Lopez M., Sallee A., Lin A., Cortez Alcaraz M.C., Wu Y., Zheng Y., et al. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater. 2018;72:407–423. doi: 10.1016/j.actbio.2018.03.049. PubMed DOI

Liu X., Ma P.X. Polymeric scaffolds for bone tissue engineering. Ann. Biomed. Eng. 2004;32:477–486. doi: 10.1023/B:ABME.0000017544.36001.8e. PubMed DOI

Mikos A.G., Temenoff J.S. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron. J. Biotechnol. 2000;3:23–24. doi: 10.2225/vol3-issue2-fulltext-5. DOI

Suh S.W., Shin J.Y., Kim J., Kim J., Beak C.H., Kim D.-I., Kim H., Jeon S.S., Choo I.-W. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 2002;48:460–464. doi: 10.1097/00002480-200209000-00003. PubMed DOI

Ji C., Annabi N., Khademhosseini A., Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater. 2011;7:1653–1664. doi: 10.1016/j.actbio.2010.11.043. PubMed DOI

Nam Y.S., Yoon J.J., Park T.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J. Biomed. Mater. Res. 2000;53:1–7. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R. PubMed DOI

Liang H.Q., Wu Q.Y., Wan L.S., Huang X.J., Xu Z.K. Polar polymer membranes via thermally induced phase separation using a universal crystallizable diluent. J. Membr. Sci. 2013;446:482–491. doi: 10.1016/j.memsci.2013.07.008. DOI

Jung J.T., Kim J.F., Wang H.H., di Nicolo E., Drioli E., Lee Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS) J. Membr. Sci. 2016;514:250–263. doi: 10.1016/j.memsci.2016.04.069. DOI

Yuan B., Zhou S., Chen X. Rapid prototyping technology and its application in bone tissue engineering. J. Zhejiang Univ.-Sci. B. 2017;18:303–315. doi: 10.1631/jzus.B1600118. PubMed DOI PMC

Leong K.F., Cheah C.M., Chua C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24:2363–2378. doi: 10.1016/S0142-9612(03)00030-9. PubMed DOI

Lee J.W., Kim J.Y., Cho D.-W. Solid free-form fabrication technology and its application to bone tissue engineering. Int. J. Stem Cells. 2010;3:85. doi: 10.15283/ijsc.2010.3.2.85. PubMed DOI PMC

Stevens B., Yang Y., Mohandas A., Stucker B., Nguyen K.T. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J. Biomed. Mater. Res. B Appl. Biomater. 2008;85B:573–582. doi: 10.1002/jbm.b.30962. PubMed DOI

Shi X., Su K., Varshney R.R., Wang Y., Wang D.-A. Sintered microsphere scaffolds for controlled release and tissue engineering. Pharm. Res. 2011;28:1224–1228. doi: 10.1007/s11095-010-0359-4. PubMed DOI

Wang Y., Shi X., Ren L., Wang C., Wang D.-A. Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications. Mater. Sci. Eng. C. 2009;29:2502–2507. doi: 10.1016/j.msec.2009.07.018. DOI

Jeon J.H., Bhamidipati M., Sridharan B., Scurto A.M., Berkland C.J., Detamore M.S. Tailoring of processing parameters for sintering microsphere-based scaffolds with dense-phase carbon dioxide. J. Biomed. Mater. Res. B Appl. Biomater. 2013;101B:330–337. doi: 10.1002/jbm.b.32843. PubMed DOI PMC

Alizadeh M., Abbasi F., Khoshfetrat A.B., Ghaleh H. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:3958–3967. doi: 10.1016/j.msec.2013.05.039. PubMed DOI

Fu S.Z., Wang X.H., Guo G., Shi S.A., Liang H., Luo F., Wei Y.Q., Qian Z.Y. Preparation and characterization of nano-hydroxyapatite/poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) composite fibers for tissue engineering. J. Phys. Chem. C. 2010;114:18372–18378. doi: 10.1021/jp106488t. DOI

Agarwal S., Wendorff J.H., Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49:5603–5621. doi: 10.1016/j.polymer.2008.09.014. DOI

Venugopal J., Vadgama P., Kumar T.S.S., Ramakrishna S. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology. 2007;18:055101. doi: 10.1088/0957-4484/18/5/055101. DOI

An J., Teoh J.E.M., Suntornnond R., Chua C.K. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1:261–268. doi: 10.15302/J-ENG-2015061. DOI

Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., Dokmeci M.R. Bioinks for 3D bioprinting: An overview. Biomater. Sci. 2018;6:915–946. doi: 10.1039/C7BM00765E. PubMed DOI PMC

Hospodiuk M., Dey M., Sosnoski D., Ozbolat I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017;35:217–239. doi: 10.1016/j.biotechadv.2016.12.006. PubMed DOI

Wen Y., Xun S., Haoye M., Baichuan S., Peng C., Xuejian L., Kaihong Z., Xuan Y., Jiang P., Shibi L. 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomater. Sci. 2017;5:1690–1698. doi: 10.1039/C7BM00315C. PubMed DOI

Shaunak S., S Dhinsa B., S Khan W. The role of 3D modelling and printing in orthopaedic tissue engineering: A review of the current literature. Curr. Stem Cell Res. Ther. 2017;12:225–232. doi: 10.2174/1574888X11666160429122238. PubMed DOI

Zhu W., Ma X., Gou M., Mei D., Zhang K., Chen S. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016;40:103–112. doi: 10.1016/j.copbio.2016.03.014. PubMed DOI

Mandrycky C., Wang Z., Kim K., Kim D.-H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 2016;34:422–434. doi: 10.1016/j.biotechadv.2015.12.011. PubMed DOI PMC

Jia W., Gungor-Ozkerim P.S., Zhang Y.S., Yue K., Zhu K., Liu W., Pi Q., Byambaa B., Dokmeci M.R., Shin S.R., et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58–68. doi: 10.1016/j.biomaterials.2016.07.038. PubMed DOI PMC

Zhu W., Qu X., Zhu J., Ma X., Patel S., Liu J., Wang P., Lai C.S.E., Gou M., Xu Y., et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106–115. doi: 10.1016/j.biomaterials.2017.01.042. PubMed DOI PMC

Sun J., Vijayavenkataraman S., Liu H. An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials. 2017;10:29. doi: 10.3390/ma10010029. PubMed DOI PMC

Vijayavenkataraman S., Zhang S., Lu W.F., Fuh J.Y.H. Electrohydrodynamic-jetting (EHD-jet) 3D-printed functionally graded scaffolds for tissue engineering applications. J. Mater. Res. 2018;33:1999–2011. doi: 10.1557/jmr.2018.159. DOI

Tang D., Tare R.S., Yang L.-Y., Williams D.F., Ou K.-L., Oreffo R.O.C. Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–382. doi: 10.1016/j.biomaterials.2016.01.024. PubMed DOI

Grayson W.L., Bhumiratana S., Cannizzaro C., Chao P.-H.G., Lennon D.P., Caplan A.I., Vunjak-Novakovic G. Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng. Part A. 2008;14:1809–1820. doi: 10.1089/ten.tea.2007.0255. PubMed DOI PMC

Egger D., Spitz S., Fischer M., Handschuh S., Glösmann M., Friemert B., Egerbacher M., Kasper C. Application of a parallelizable perfusion bioreactor for physiologic 3D cell culture. Cells Tissues Organs. 2017;203:316–326. doi: 10.1159/000457792. PubMed DOI

Martin I., Wendt D., Heberer M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004;22:80–86. doi: 10.1016/j.tibtech.2003.12.001. PubMed DOI

Zhao J., Griffin M., Cai J., Li S., Bulter P.E.M., Kalaskar D.M. Bioreactors for tissue engineering: An update. Biochem. Eng. J. 2016;109:268–281. doi: 10.1016/j.bej.2016.01.018. DOI

Beşkardeş I.G., Aydın G., Bektaş Ş., Cengiz A., Gümüşderelioğlu M. A systematic study for optimal cell seeding and culture conditions in a perfusion mode bone-tissue bioreactor. Biochem. Eng. J. 2018;132:100–111. doi: 10.1016/j.bej.2018.01.006. DOI

Stiehler M., Bünger C., Baatrup A., Lind M., Kassem M., Mygind T. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. Part A. 2008 doi: 10.1002/jbm.a.31967. PubMed DOI

Mygind T., Stiehler M., Baatrup A., Li H., Zou X., Flyvbjerg A., Kassem M., Bünger C. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28:1036–1047. doi: 10.1016/j.biomaterials.2006.10.003. PubMed DOI

Sikavitsas V.I., Bancroft G.N., Mikos A.G. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. Part A. 2002;62:136–148. doi: 10.1002/jbm.10150. PubMed DOI

Goldstein A.S., Juarez T.M., Helmke C.D., Gustin M.C., Mikos A.G. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials. 2001;22:1279–1288. doi: 10.1016/S0142-9612(00)00280-5. PubMed DOI

Yeatts A.B., Fisher J.P. Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone. 2011;48:171–181. doi: 10.1016/j.bone.2010.09.138. PubMed DOI

Ciuffi S., Zonefrati R., Brandi M.L. Adipose stem cells for bone tissue repair. Clin. Cases Miner. Bone Metab. 2017;14:217. doi: 10.11138/ccmbm/2017.14.1.217. PubMed DOI PMC

Gimble J.M., Katz A.J., Bunnell B.A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 2007;100:1249–1260. doi: 10.1161/01.RES.0000265074.83288.09. PubMed DOI PMC

Gao S., Zhao P., Lin C., Sun Y., Wang Y., Zhou Z., Yang D., Wang X., Xu H., Zhou F., et al. Differentiation of human adipose-derived stem cells into neuron-like cells which are compatible with photocurable three-dimensional scaffolds. Tissue Eng. Part A. 2014;20:1271–1284. doi: 10.1089/ten.tea.2012.0773. PubMed DOI PMC

Skubis A., Sikora B., Zmarzły N., Wojdas E., Mazurek U. Adipose-derived stem cells: A review of osteogenesis differentiation. Folia Biol. Oecol. 2016;12:38–47. doi: 10.1515/fobio-2016-0004. DOI

Bunnell B., Flaat M., Gagliardi C., Patel B., Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods. 2008;45:115–120. doi: 10.1016/j.ymeth.2008.03.006. PubMed DOI PMC

Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559. PubMed DOI

Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells - current trends and future prospective. Biosci. Rep. 2015;35:1–18. doi: 10.1042/BSR20150025. PubMed DOI PMC

Egusa H., Sonoyama W., Nishimura M., Atsuta I., Akiyama K. Stem cells in dentistry—Part II: Clinical applications. J. Prosthodont. Res. 2012;56:229–248. doi: 10.1016/j.jpor.2012.10.001. PubMed DOI

Abou Neel E.A., Chrzanowski W., Salih V.M., Kim H.-W., Knowles J.C. Tissue engineering in dentistry. Dentistry J. 2014;42:915–928. doi: 10.1016/j.jdent.2014.05.008. PubMed DOI

Prasadh S., Suresh S., Wong R. Osteogenic potential of graphene in bone tissue engineering scaffolds. Materials. 2018;11:1430. doi: 10.3390/ma11081430. PubMed DOI PMC

Spagnuolo G., Codispoti B., Marrelli M., Rengo C., Rengo S., Tatullo M. Commitment of oral-derived stem cells in dental and maxillofacial applications. Dentistry J. 2018;6:72. doi: 10.3390/dj6040072. PubMed DOI PMC

Holzwarth J.M., Ma P.X. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32:9622–9629. doi: 10.1016/j.biomaterials.2011.09.009. PubMed DOI PMC

Ozbolat I.T., Peng W., Ozbolat V. Application areas of 3D bioprinting. Drug Discov. Today. 2016;21:1257–1271. doi: 10.1016/j.drudis.2016.04.006. PubMed DOI

Jahangirian H., Ghasemian Lemraski E., Rafiee-Moghaddam R., Webster T. A review of using green chemistry methods for biomaterials in tissue engineering. Int. J. Nanomed. 2018;13:5953–5969. doi: 10.2147/IJN.S163399. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace