Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000787
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32784986
PubMed Central
PMC7461130
DOI
10.3390/ijms21165719
PII: ijms21165719
Knihovny.cz E-zdroje
- Klíčová slova
- biological evaluation, bone tissue engineering, hyaluronic acid, hydroxyapatite, polyvinyl alcohol, scaffold,
- MeSH
- biokompatibilní materiály metabolismus farmakologie MeSH
- buněčná adheze účinky léků MeSH
- hydrogely chemie MeSH
- hydroxyapatit metabolismus farmakologie MeSH
- kyselina hyaluronová metabolismus farmakologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- osteoblasty metabolismus MeSH
- polyvinylalkohol metabolismus farmakologie MeSH
- proliferace buněk účinky léků MeSH
- testování materiálů metody MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- hydrogely MeSH
- hydroxyapatit MeSH
- kyselina hyaluronová MeSH
- polyvinyl alcohol hydrogel MeSH Prohlížeč
- polyvinylalkohol MeSH
This study aimed to develop polyvinyl alcohol (PVA) -based scaffold enriched with hyaluronic acid (HA) and hydroxyapatite (HAp) using physical crosslinking by freezing-thawing method. We accomplished biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic test. The results showed that all types of scaffolds should be safe for use in the human body. The culturing of human osteoblast-like cells MG-63 and their proliferation showed better adhesion of cells due to the presence of HA and confirmed better proliferation depending on the amount of HAp. This paper gives the optimal composition of the scaffold and the optimal amount of the particular components of the scaffold. Based on our results we concluded that the best PVA/HA/HAp combination is in the ratio 3:1:2.
Zobrazit více v PubMed
Chocholata P., Kulda V., Babuska V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC
Van Houdt C.I.A., Cardoso D.A., Van Oirschot B.A.J.A., Ulrich D.J.O., Jansen J.A., Leeuwenburgh S.C.G., van den Beucken J.J.J.P. Porous titanium scaffolds with injectable hyaluronic acid-DBM gel for bone substitution in a rat critical-sized calvarial defect model. J. Tissue Eng. Regen. Med. 2016;11:2537–2548. doi: 10.1002/term.2151. PubMed DOI
Chaudhari A.A., Vig K., Baganizi D.R., Sahu R., Dixit S., Dennis V.A., Singh S.R., Pillai S. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int. J. Mol. Sci. 2016;17:1974. doi: 10.3390/ijms17121974. PubMed DOI PMC
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/s1369-7021(11)70058-x. DOI
Nikbakht M., Karbasi S., Sorkhabadi S.M.R. Biological evaluation of the effects of Hyaluronic acid on Poly (3-hydroxybutyrate) based Electrospun Nanocomposite scaffolds for cartilage tissue engineering application. Mater. Technol. 2019;35:141–151. doi: 10.1080/10667857.2019.1659535. DOI
Kumar A., Han S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. 2016;66:159–182. doi: 10.1080/00914037.2016.1190930. DOI
Oyen M.L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 2014;59:44–59. doi: 10.1179/1743280413Y.0000000022. DOI
Kanca Y., Milner P., Dini D., Amis A.A. Tribological properties of PVA/PVP blend hydrogels against articular cartilage. J. Mech. Behav. Biomed. Mater. 2018;78:36–45. doi: 10.1016/j.jmbbm.2017.10.027. PubMed DOI
Kim T.H., An D.B., Oh S.H., Kang M.K., Song H.H., Lee J.H. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials. 2015;40:51–60. doi: 10.1016/j.biomaterials.2014.11.017. PubMed DOI
Liu Y., Geever L., Kennedy J.E., Higginbotham C.L., Cahill P.A., McGuinness G. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J. Mech. Behav. Biomed. Mater. 2010;3:203–209. doi: 10.1016/j.jmbbm.2009.07.001. PubMed DOI
Oh S.H., An D.B., Kim T.H., Lee J.H. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior. Acta Biomater. 2016;35:23–31. doi: 10.1016/j.actbio.2016.02.016. PubMed DOI
Jiang S., Liu S., Feng W. PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 2011;4:1228–1233. doi: 10.1016/j.jmbbm.2011.04.005. PubMed DOI
Vrana N.E., Liu Y., McGuinness G., Cahill P.A. Characterization of Poly(vinyl alcohol)/Chitosan Hydrogels as Vascular Tissue Engineering Scaffolds. Macromol. Symp. 2008;269:106–110. doi: 10.1002/masy.200850913. DOI
Kattimani V.S., Kondaka S., Lingamaneni K.P. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone Tissue Regen. Insights. 2016;7:9. doi: 10.4137/BTRI.S36138. DOI
Hu Y., Chen J., Fan T., Zhang Y., Zhao Y., Shi X., Zhang Q. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids Surf. B Biointerfaces. 2017;157:93–100. doi: 10.1016/j.colsurfb.2017.05.059. PubMed DOI
Obata H., Yamazaki Y., Matsunaga T., Sato T. Synthesis and evaluation of hyaluronic acid hydrogels modified with various crosslinkers as biodegradable polymers. J. Appl. Polym. Sci. 2017;134:45453. doi: 10.1002/app.45453. DOI
Haroun A.A., Gamal-Eldeen A.M., Harding D.R.K. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin–montmorillonite/cellulose scaffold for tissue engineering. J. Mater. Sci. Mater. Electron. 2009;20:2527–2540. doi: 10.1007/s10856-009-3818-x. PubMed DOI
Kaur T., Thirugnanam A., Pramanik K. Tailoring the in vitro characteristics of poly (vinyl alcohol)-nanohydroxyapatite composite scaffolds for bone tissue engineering. J. Polym. Eng. 2016;36:771–784. doi: 10.1515/polyeng-2015-0252. DOI
Pal K., Pal S. Development of Porous Hydroxyapatite Scaffolds. Mater. Manuf. Process. 2006;21:325–328. doi: 10.1080/10426910500464826. DOI
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Zadpoor A.A. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater. Sci. Eng. C. 2014;35:134–143. doi: 10.1016/j.msec.2013.10.026. PubMed DOI
Kumar V., Batra U., Kadam A., Mulik P. Development of Hydroxyapatite Bio-Scaffold. IOSR J. Mech. C Eng. 2009;6:33–37.
Staehlke S., Rebl H., Nebe B. Phenotypic stability of the human MG-63 osteoblastic cell line at different passages. Cell Biol. Int. 2018;43:22–32. doi: 10.1002/cbin.11073. PubMed DOI
Babuska V., Dobrá J.K., Dluhos L., Dvorakova J., Moztarzadeh J., Hrušák D., Kulda V. Repeated Exposure of Nanostructured Titanium to Osteoblasts with Respect to Peri-Implantitis. Materials. 2020;13:697. doi: 10.3390/ma13030697. PubMed DOI PMC
Zhao F., Yin Y., Lu W.W., Leong J.C., Zhang W., Zhang J., Zhang M., Yao K. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials. 2002;23:3227–3234. doi: 10.1016/S0142-9612(02)00077-7. PubMed DOI
Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin
Human cells with osteogenic potential in bone tissue research
In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels