Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG)
Charles University
SVV 260 651
Charles University
PubMed
37998990
PubMed Central
PMC10670940
DOI
10.3390/gels9110900
PII: gels9110900
Knihovny.cz E-zdroje
- Klíčová slova
- biocompatibility, cell viability, gelatin, polycaprolactone, tissue engineering,
- Publikační typ
- časopisecké články MeSH
This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.
Zobrazit více v PubMed
Kulkarni N., Shinde S.D., Jadhav G.S., Adsare D.R., Rao K., Kachhia M., Maingle M., Patil S.P., Arya N., Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug. Chem. 2021;32:448–465. doi: 10.1021/acs.bioconjchem.1c00014. PubMed DOI
Li F., Su Y., Pi G., Ma P.X., Lei B. Biodegradable, Biomimetic Elastomeric, Photoluminescent, and Broad-Spectrum Antibacterial Polycitrate-Polypeptide-Based Membrane toward Multifunctional Biomedical Implants. ACS Biomater. Sci. Eng. 2018;4:3027–3035. doi: 10.1021/acsbiomaterials.8b00660. PubMed DOI
Sharma C., Bhardwaj N.K. Fabrication of Natural-Origin Antibacterial Nanocellulose Films Using Bio-Extracts for Potential Use in Biomedical Industry. Int. J. Biol. Macromol. 2020;145:914–925. doi: 10.1016/j.ijbiomac.2019.09.182. PubMed DOI
He X., Huang Z., Liu W., Liu Y., Qian H., Lei T., Hua L., Hu Y., Zhang Y., Lei P. Electrospun Polycaprolactone/Hydroxyapatite/ZnO Films as Potential Biomaterials for Application in Bone-Tendon Interface Repair. Colloids Surf. B Biointerfaces. 2021;204:111825. doi: 10.1016/j.colsurfb.2021.111825. PubMed DOI
Xu Y., Zhang F., Zhai W., Cheng S., Li J., Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers. 2022;14:566. doi: 10.3390/polym14030566. PubMed DOI PMC
Babuska V., Kasi P.B., Chocholata P., Wiesnerova L., Dvorakova J., Vrzakova R., Nekleionova A., Landsmann L., Kulda V. Nanomaterials in Bone Regeneration. Appl. Sci. 2022;12:6793. doi: 10.3390/app12136793. DOI
Lu J., Chen Y., Ding M., Fan X., Hu J., Chen Y., Li J., Li Z., Liu W. A 4arm-PEG Macromolecule Crosslinked Chitosan Hydrogels as Antibacterial Wound Dressing. Carbohydr. Polym. 2022;277:118871. doi: 10.1016/j.carbpol.2021.118871. PubMed DOI
Li H., Si S., Yang K., Mao Z., Sun Y., Cao X., Yu H., Zhang J., Ding C., Liang H., et al. Hexafluoroisopropanol Based Silk Fibroin Coatings on AZ31 Biometals with Enhanced Adhesion, Corrosion Resistance and Biocompatibility. Prog. Org. Coat. 2023;184:107881. doi: 10.1016/j.porgcoat.2023.107881. DOI
Dewle A., Rakshasmare P., Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS Appl. Bio Mater. 2021;4:1238–1251. doi: 10.1021/acsabm.0c01084. PubMed DOI
Asadpour S., Yeganeh H., Ai J., Kargozar S., Rashtbar M., Seifalian A., Ghanbari H. Polyurethane-Polycaprolactone Blend Patches: Scaffold Characterization and Cardiomyoblast Adhesion, Proliferation, and Function. ACS Biomater. Sci. Eng. 2018;4:4299–4310. doi: 10.1021/acsbiomaterials.8b00848. PubMed DOI
Dodero A., Alloisio M., Castellano M., Vicini S. Multilayer Alginate–Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS Appl. Mater. Interfaces. 2020;12:31162–31171. doi: 10.1021/acsami.0c07352. PubMed DOI PMC
Kobayashi S., Uyama H., Kadokawa J. Enzymatic Polymerization towards Green Polymer Chemistry. In: He L., Tundo P., Zhang Z., editors. Green Chemistry and Sustainable Technology. 1st ed. Volume 2019. Springer; Singapore: 2019. DOI
Huang Y., Dan N., Dan W., Zhao W. Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS Omega. 2019;4:22292–22301. doi: 10.1021/acsomega.9b02217. PubMed DOI PMC
Khil M.-S., Bhattarai S.R., Kim H.-Y., Kim S.-Z., Lee K.-H. Novel Fabricated Matrix via Electrospinning for Tissue Engineering. J. Biomed. Mater. Res. 2005;72B:117–124. doi: 10.1002/jbm.b.30122. PubMed DOI
Rampichová M., Chvojka J., Buzgo M., Prosecká E., Mikeš P., Vysloužilová L., Tvrdík D., Kochová P., Gregor T., Lukáš D., et al. Elastic Three-Dimensional Poly (ε-Caprolactone) Nanofibre Scaffold Enhances Migration, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Prolif. 2013;46:23–37. doi: 10.1111/cpr.12001. PubMed DOI PMC
Sogut E., Seydim A.C. Development of Chitosan and Polycaprolactone Based Active Bilayer Films Enhanced with Nanocellulose and Grape Seed Extract. Carbohydr. Polym. 2018;195:180–188. doi: 10.1016/j.carbpol.2018.04.071. PubMed DOI
Tayebi T., Baradaran-Rafii A., Hajifathali A., Rahimpour A., Zali H., Shaabani A., Niknejad H. Biofabrication of Chitosan/Chitosan Nanoparticles/Polycaprolactone Transparent Membrane for Corneal Endothelial Tissue Engineering. Sci. Rep. 2021;11:7060. doi: 10.1038/s41598-021-86340-w. PubMed DOI PMC
Campos A., Teodoro K.B.R., Teixeira E.M., Corrêa A.C., Marconcini J.M., Wood D.F., Williams T.G., Mattoso L.H.C. Properties of Thermoplastic Starch and TPS/Polycaprolactone Blend Reinforced with Sisal Whiskers Using Extrusion Processing. Polym. Eng. Sci. 2013;53:800–808. doi: 10.1002/pen.23324. DOI
Kong J., Yu Y., Pei X., Han C., Tan Y., Dong L. Polycaprolactone Nanocomposite Reinforced by Bioresource Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2017;102:1304–1311. doi: 10.1016/j.ijbiomac.2017.05.019. PubMed DOI
Talebi A., Labbaf S., Karimzadeh F. A Conductive Film of Chitosan-Polycaprolcatone-Polypyrrole with Potential in Heart Patch Application. Polym. Test. 2019;75:254–261. doi: 10.1016/j.polymertesting.2019.02.029. DOI
Agarwal Y., Rajinikanth P.S., Ranjan S., Tiwari U., Balasubramnaiam J., Pandey P., Arya D.K., Anand S., Deepak P. Curcumin Loaded Polycaprolactone-/Polyvinyl Alcohol-Silk Fibroin Based Electrospun Nanofibrous Mat for Rapid Healing of Diabetic Wound: An In-Vitro and In-Vivo Studies. Int. J. Biol. Macromol. 2021;176:376–386. doi: 10.1016/j.ijbiomac.2021.02.025. PubMed DOI
Zhang L., Dong Y., Zhang N., Shi J., Zhang X., Qi C., Midgley A.C., Wang S. Potentials of Sandwich-like Chitosan/Polycaprolactone/Gelatin Scaffolds for Guided Tissue Regeneration Membrane. Mater. Sci. Eng. C. 2020;109:110618. doi: 10.1016/j.msec.2019.110618. PubMed DOI
Gomes S., Rodrigues G., Martins G., Henriques C., Silva J.C. Evaluation of Nanofibrous Scaffolds Obtained from Blends of Chitosan, Gelatin and Polycaprolactone for Skin Tissue Engineering. Int. J. Biol. Macromol. 2017;102:1174–1185. doi: 10.1016/j.ijbiomac.2017.05.004. PubMed DOI
Gunatillake P., Adhikari R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cell. Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI
Marin E., Briceño M., Torres A., Caballero-George C. New Curcumin-Loaded Chitosan Nanocapsules: In Vivo Evaluation. Planta Med. 2017;83:877–883. doi: 10.1055/s-0043-104633. PubMed DOI
Ouyang H.W., Goh J.C.H., Mo X.M., Teoh S.H., Lee E.H. Characterization of Anterior Cruciate Ligament Cells and Bone Marrow Stromal Cells on Various Biodegradable Polymeric Films. Mater. Sci. Eng. C. 2002;20:63–69. doi: 10.1016/S0928-4931(02)00014-0. DOI
Lu X., Miao L., Gao W., Chen Z., McHugh K.J., Sun Y., Tochka Z., Tomasic S., Sadtler K., Hyacinthe A., et al. Engineered PLGA Microparticles for Long-Term, Pulsatile Release of STING Agonist for Cancer Immunotherapy. Sci. Transl. Med. 2020;12:eaaz6606. doi: 10.1126/scitranslmed.aaz6606. PubMed DOI PMC
Koerner J., Horvath D., Herrmann V.L., MacKerracher A., Gander B., Yagita H., Rohayem J., Groettrup M. PLGA-Particle Vaccine Carrying TLR3/RIG-I Ligand Riboxxim Synergizes with Immune Checkpoint Blockade for Effective Anti-Cancer Immunotherapy. Nat. Commun. 2021;12:2935. doi: 10.1038/s41467-021-23244-3. PubMed DOI PMC
East B., Plencner M., Kralovic M., Rampichova M., Sovkova V., Vocetkova K., Otahal M., Tonar Z., Kolinko Y., Amler E., et al. A Polypropylene Mesh Modified with Poly-ε-Caprolactone Nanofibers in Hernia Repair: Large Animal Experiment. Int. J. Nanomed. 2018;13:3129–3143. doi: 10.2147/IJN.S159480. PubMed DOI PMC
Franco R.A., Nguyen T.H., Lee B.-T. Preparation and Characterization of Electrospun PCL/PLGA Membranes and Chitosan/Gelatin Hydrogels for Skin Bioengineering Applications. J. Mater. Sci. Mater. Med. 2011;22:2207–2218. doi: 10.1007/s10856-011-4402-8. PubMed DOI
Kim J.Y., Cho D.-W. Blended PCL/PLGA Scaffold Fabrication Using Multi-Head Deposition System. Microelectron. Eng. 2009;86:1447–1450. doi: 10.1016/j.mee.2008.11.026. DOI
Jayaraman P., Gandhimathi C., Venugopal J.R., Becker D.L., Ramakrishna S., Srinivasan D.K. Controlled Release of Drugs in Electrosprayed Nanoparticles for Bone Tissue Engineering. Adv. Drug Deliv. Rev. 2015;94:77–95. doi: 10.1016/j.addr.2015.09.007. PubMed DOI
Singh Y.P., Dasgupta S. Gelatin-Based Electrospun and Lyophilized Scaffolds with Nano Scale Feature for Bone Tissue Engineering Application: Review. J. Biomater. Sci. Polym. Ed. 2022;33:1704–1758. doi: 10.1080/09205063.2022.2068943. PubMed DOI
León-López A., Morales-Peñaloza A., Martínez-Juárez V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules. 2019;24:4031. doi: 10.3390/molecules24224031. PubMed DOI PMC
Atma Y. Amino Acid and Proximate Composition of Fish Bone Gelatin from Different Warm-Water Species: A Comparative Study. IOP Conf. Ser. Earth Environ. Sci. 2017;58:012008. doi: 10.1088/1755-1315/58/1/012008. DOI
Alfaro A.d.T., Balbinot E., Weber C.I., Tonial I.B., Machado-Lunkes A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2015;7:33–44. doi: 10.1007/s12393-014-9096-5. DOI
Raspa A., Marchini A., Pugliese R., Mauri M., Maleki M., Vasita R., Gelain F. A Biocompatibility Study of New Nanofibrous Scaffolds for Nervous System Regeneration. Nanoscale. 2016;8:253–265. doi: 10.1039/C5NR03698D. PubMed DOI
Kim T.-H., Yun Y.-P., Park Y.-E., Lee S.-H., Yong W., Kundu J., Jung J.W., Shim J.-H., Cho D.-W., Kim S.E., et al. In Vitro and in Vivo Evaluation of Bone Formation Using Solid Freeform Fabrication-Based Bone Morphogenic Protein-2 Releasing PCL/PLGA Scaffolds. Biomed. Mater. 2014;9:025008. doi: 10.1088/1748-6041/9/2/025008. PubMed DOI
Wang Y., Zhai W., Li J., Liu H., Li C., Li J. Friction Behavior of Biodegradable Electrospun Polyester Nanofibrous Membranes. Tribol. Int. 2023;188:108891. doi: 10.1016/j.triboint.2023.108891. DOI
Zong C., Wang M., Yang F., Chen G., Chen J., Tang Z., Liu Q., Gao C., Ma L., Wang J. A Novel Therapy Strategy for Bile Duct Repair Using Tissue Engineering Technique: PCL/PLGA Bilayered Scaffold with hMSCs: Effect of Scaffold with MSC on Bile Duct Repair. J. Tissue Eng. Regen. Med. 2017;11:966–976. doi: 10.1002/term.1996. PubMed DOI
Avena-Bustillos R.J., Olsen C.W., Olson D.A., Chiou B., Yee E., Bechtel P.J., McHugh T.H. Water Vapor Permeability of Mammalian and Fish Gelatin Films. J. Food Sci. 2006;71:E202–E207. doi: 10.1111/j.1750-3841.2006.00016.x. PubMed DOI
Chiou B.-S., Avena-Bustillos R.J., Bechtel P.J., Jafri H., Narayan R., Imam S.H., Glenn G.M., Orts W.J. Cold Water Fish Gelatin Films: Effects of Cross-Linking on Thermal, Mechanical, Barrier, and Biodegradation Properties. Eur. Polym. J. 2008;44:3748–3753. doi: 10.1016/j.eurpolymj.2008.08.011. DOI
Bigi A. Drawn Gelatin Films with Improved Mechanical Properties. Biomaterials. 1998;19:2335–2340. doi: 10.1016/S0142-9612(98)00149-5. PubMed DOI
Palacios J., Albano C., González G., Castillo R.V., Karam A., Covis M. Characterization and Thermal Degradation of Poly(d,l-Lactide-Co-Glycolide) Composites with Nanofillers. Polym. Eng. Sci. 2013;53:1414–1429. doi: 10.1002/pen.23396. DOI
Dai C.-A., Chen Y.-F., Liu M.-W. Thermal Properties Measurements of Renatured Gelatin Using Conventional and Temperature Modulated Differential Scanning Calorimetry. J. Appl. Polym. Sci. 2006;99:1795–1801. doi: 10.1002/app.22711. DOI
Cen R., Wang L., He Y., Yue C., Tan Y., Li L., Lei X. Dermal Fibroblast Migration and Proliferation Upon Wounding or Lipopolysaccharide Exposure Is Mediated by Stathmin. Front. Pharmacol. 2022;12:781282. doi: 10.3389/fphar.2021.781282. PubMed DOI PMC
Fu W., Liu Z., Feng B., Hu R., He X., Wang H., Yin M., Huang H., Zhang H., Wang W. Electrospun Gelatin/PCL and Collagen/PLCL Scaffolds for Vascular Tissue Engineering. Int. J. Nanomed. 2014:2335. doi: 10.2147/IJN.S61375. PubMed DOI PMC
Ajmal G., Bonde G.V., Mittal P., Pandey V.K., Yadav N., Mishra B. PLGA/Gelatin-Based Electrospun Nanofiber Scaffold Encapsulating Antibacterial and Antioxidant Molecules for Accelerated Tissue Regeneration. Mater. Today Commun. 2023;35:105633. doi: 10.1016/j.mtcomm.2023.105633. DOI
Chocholata P., Kulda V., Dvorakova J., Supova M., Zaloudkova M., Babuska V. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Int. J. Mol. Sci. 2021;22:9335. doi: 10.3390/ijms22179335. PubMed DOI PMC
Sun M., Chi G., Li P., Lv S., Xu J., Xu Z., Xia Y., Tan Y., Xu J., Li L., et al. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018;15:257–268. doi: 10.7150/ijms.21620. PubMed DOI PMC
Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.-H., Ramakrishna S. Electrospun Poly(ε-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials. 2008;29:4532–4539. doi: 10.1016/j.biomaterials.2008.08.007. PubMed DOI
Guler Z., Silva J.C., Sezai Sarac A. RGD Functionalized Poly( ε -Caprolactone)/Poly(m-Anthranilic Acid) Electrospun Nanofibers as High-Performing Scaffolds for Bone Tissue Engineering RGD Functionalized PCL/P3ANA Nanofibers. Int. J. Polym. Mater. Polym. Biomater. 2017;66:139–148. doi: 10.1080/00914037.2016.1190929. DOI
Hassan A.A., Radwan H.A., Abdelaal S.A., Al-Radadi N.S., Ahmed M.K., Shoueir K.R., Hady M.A. Polycaprolactone Based Electrospun Matrices Loaded with Ag/Hydroxyapatite as Wound Dressings: Morphology, Cell Adhesion, and Antibacterial Activity. Int. J. Pharm. 2021;593:120143. doi: 10.1016/j.ijpharm.2020.120143. PubMed DOI
Li D., Sun H., Jiang L., Zhang K., Liu W., Zhu Y., Fangteng J., Shi C., Zhao L., Sun H., et al. Enhanced Biocompatibility of PLGA Nanofibers with Gelatin/Nano-Hydroxyapatite Bone Biomimetics Incorporation. ACS Appl. Mater. Interfaces. 2014;6:9402–9410. doi: 10.1021/am5017792. PubMed DOI
Zhang Y., Ouyang H., Lim C.T., Ramakrishna S., Huang Z.-M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. 2005;72B:156–165. doi: 10.1002/jbm.b.30128. PubMed DOI
Aldemir Dikici B., Dikici S., Reilly G.C., MacNeil S., Claeyssens F. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials. 2019;12:2643. doi: 10.3390/ma12162643. PubMed DOI PMC
Núñez-Flores R., Giménez B., Fernández-Martín F., López-Caballero M.E., Montero M.P., Gómez-Guillén M.C. Role of Lignosulphonate in Properties of Fish Gelatin Films. Food Hydrocoll. 2012;27:60–71. doi: 10.1016/j.foodhyd.2011.08.015. DOI
Shah S.A., Sohail M., Khan S., Minhas M.U., De Matas M., Sikstone V., Hussain Z., Abbasi M., Kousar M. Biopolymer-Based Biomaterials for Accelerated Diabetic Wound Healing: A Critical Review. Int. J. Biol. Macromol. 2019;139:975–993. doi: 10.1016/j.ijbiomac.2019.08.007. PubMed DOI
Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T. Solutions Able to Reproducein Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3. J. Biomed. Mater. Res. 1990;24:721–734. doi: 10.1002/jbm.820240607. PubMed DOI
Chocholata P., Kulda V., Dvorakova J., Kolaja Dobra J., Babuska V. Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int. J. Mol. Sci. 2020;21:5719. doi: 10.3390/ijms21165719. PubMed DOI PMC