Optimizing PCL/PLGA Scaffold Biocompatibility Using Gelatin from Bovine, Porcine, and Fish Origin

. 2023 Nov 14 ; 9 (11) : . [epub] 20231114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37998990

Grantová podpora
Cooperatio Program, Medical Diagnostics and Basic Medical Sciences (DIAG) Charles University
SVV 260 651 Charles University

This research introduces a novel approach by incorporating various types of gelatins, including bovine, porcine, and fish skin, into polycaprolactone and poly (lactic-co-glycolic acid) using a solvent casting method. The films are evaluated for morphology, mechanical properties, thermal stability, biodegradability, hemocompatibility, cell adhesion, proliferation, and cytotoxicity. The results show that the incorporation of gelatins into the films alters their mechanical properties, with a decrease in tensile strength but an increase in elongation at break. This indicates that the films become more flexible with the addition of gelatin. Gelatin incorporation has a limited effect on the thermal stability of the films. The composites with the gelatin show higher biodegradability with the highest weight loss in the case of fish gelatin. The films exhibit high hemocompatibility with minimal hemolysis observed. The gelatin has a dynamic effect on cell behavior and promotes long-term cell proliferation. In addition, all composite films reveal exceptionally low levels of cytotoxicity. The combination of the evaluated parameters shows the appropriate level of biocompatibility for gelatin-based samples. These findings provide valuable insights for future studies involving gelatin incorporation in tissue engineering applications.

Zobrazit více v PubMed

Kulkarni N., Shinde S.D., Jadhav G.S., Adsare D.R., Rao K., Kachhia M., Maingle M., Patil S.P., Arya N., Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug. Chem. 2021;32:448–465. doi: 10.1021/acs.bioconjchem.1c00014. PubMed DOI

Li F., Su Y., Pi G., Ma P.X., Lei B. Biodegradable, Biomimetic Elastomeric, Photoluminescent, and Broad-Spectrum Antibacterial Polycitrate-Polypeptide-Based Membrane toward Multifunctional Biomedical Implants. ACS Biomater. Sci. Eng. 2018;4:3027–3035. doi: 10.1021/acsbiomaterials.8b00660. PubMed DOI

Sharma C., Bhardwaj N.K. Fabrication of Natural-Origin Antibacterial Nanocellulose Films Using Bio-Extracts for Potential Use in Biomedical Industry. Int. J. Biol. Macromol. 2020;145:914–925. doi: 10.1016/j.ijbiomac.2019.09.182. PubMed DOI

He X., Huang Z., Liu W., Liu Y., Qian H., Lei T., Hua L., Hu Y., Zhang Y., Lei P. Electrospun Polycaprolactone/Hydroxyapatite/ZnO Films as Potential Biomaterials for Application in Bone-Tendon Interface Repair. Colloids Surf. B Biointerfaces. 2021;204:111825. doi: 10.1016/j.colsurfb.2021.111825. PubMed DOI

Xu Y., Zhang F., Zhai W., Cheng S., Li J., Wang Y. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers. 2022;14:566. doi: 10.3390/polym14030566. PubMed DOI PMC

Babuska V., Kasi P.B., Chocholata P., Wiesnerova L., Dvorakova J., Vrzakova R., Nekleionova A., Landsmann L., Kulda V. Nanomaterials in Bone Regeneration. Appl. Sci. 2022;12:6793. doi: 10.3390/app12136793. DOI

Lu J., Chen Y., Ding M., Fan X., Hu J., Chen Y., Li J., Li Z., Liu W. A 4arm-PEG Macromolecule Crosslinked Chitosan Hydrogels as Antibacterial Wound Dressing. Carbohydr. Polym. 2022;277:118871. doi: 10.1016/j.carbpol.2021.118871. PubMed DOI

Li H., Si S., Yang K., Mao Z., Sun Y., Cao X., Yu H., Zhang J., Ding C., Liang H., et al. Hexafluoroisopropanol Based Silk Fibroin Coatings on AZ31 Biometals with Enhanced Adhesion, Corrosion Resistance and Biocompatibility. Prog. Org. Coat. 2023;184:107881. doi: 10.1016/j.porgcoat.2023.107881. DOI

Dewle A., Rakshasmare P., Srivastava A. A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration. ACS Appl. Bio Mater. 2021;4:1238–1251. doi: 10.1021/acsabm.0c01084. PubMed DOI

Asadpour S., Yeganeh H., Ai J., Kargozar S., Rashtbar M., Seifalian A., Ghanbari H. Polyurethane-Polycaprolactone Blend Patches: Scaffold Characterization and Cardiomyoblast Adhesion, Proliferation, and Function. ACS Biomater. Sci. Eng. 2018;4:4299–4310. doi: 10.1021/acsbiomaterials.8b00848. PubMed DOI

Dodero A., Alloisio M., Castellano M., Vicini S. Multilayer Alginate–Polycaprolactone Electrospun Membranes as Skin Wound Patches with Drug Delivery Abilities. ACS Appl. Mater. Interfaces. 2020;12:31162–31171. doi: 10.1021/acsami.0c07352. PubMed DOI PMC

Kobayashi S., Uyama H., Kadokawa J. Enzymatic Polymerization towards Green Polymer Chemistry. In: He L., Tundo P., Zhang Z., editors. Green Chemistry and Sustainable Technology. 1st ed. Volume 2019. Springer; Singapore: 2019. DOI

Huang Y., Dan N., Dan W., Zhao W. Reinforcement of Polycaprolactone/Chitosan with Nanoclay and Controlled Release of Curcumin for Wound Dressing. ACS Omega. 2019;4:22292–22301. doi: 10.1021/acsomega.9b02217. PubMed DOI PMC

Khil M.-S., Bhattarai S.R., Kim H.-Y., Kim S.-Z., Lee K.-H. Novel Fabricated Matrix via Electrospinning for Tissue Engineering. J. Biomed. Mater. Res. 2005;72B:117–124. doi: 10.1002/jbm.b.30122. PubMed DOI

Rampichová M., Chvojka J., Buzgo M., Prosecká E., Mikeš P., Vysloužilová L., Tvrdík D., Kochová P., Gregor T., Lukáš D., et al. Elastic Three-Dimensional Poly (ε-Caprolactone) Nanofibre Scaffold Enhances Migration, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Prolif. 2013;46:23–37. doi: 10.1111/cpr.12001. PubMed DOI PMC

Sogut E., Seydim A.C. Development of Chitosan and Polycaprolactone Based Active Bilayer Films Enhanced with Nanocellulose and Grape Seed Extract. Carbohydr. Polym. 2018;195:180–188. doi: 10.1016/j.carbpol.2018.04.071. PubMed DOI

Tayebi T., Baradaran-Rafii A., Hajifathali A., Rahimpour A., Zali H., Shaabani A., Niknejad H. Biofabrication of Chitosan/Chitosan Nanoparticles/Polycaprolactone Transparent Membrane for Corneal Endothelial Tissue Engineering. Sci. Rep. 2021;11:7060. doi: 10.1038/s41598-021-86340-w. PubMed DOI PMC

Campos A., Teodoro K.B.R., Teixeira E.M., Corrêa A.C., Marconcini J.M., Wood D.F., Williams T.G., Mattoso L.H.C. Properties of Thermoplastic Starch and TPS/Polycaprolactone Blend Reinforced with Sisal Whiskers Using Extrusion Processing. Polym. Eng. Sci. 2013;53:800–808. doi: 10.1002/pen.23324. DOI

Kong J., Yu Y., Pei X., Han C., Tan Y., Dong L. Polycaprolactone Nanocomposite Reinforced by Bioresource Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2017;102:1304–1311. doi: 10.1016/j.ijbiomac.2017.05.019. PubMed DOI

Talebi A., Labbaf S., Karimzadeh F. A Conductive Film of Chitosan-Polycaprolcatone-Polypyrrole with Potential in Heart Patch Application. Polym. Test. 2019;75:254–261. doi: 10.1016/j.polymertesting.2019.02.029. DOI

Agarwal Y., Rajinikanth P.S., Ranjan S., Tiwari U., Balasubramnaiam J., Pandey P., Arya D.K., Anand S., Deepak P. Curcumin Loaded Polycaprolactone-/Polyvinyl Alcohol-Silk Fibroin Based Electrospun Nanofibrous Mat for Rapid Healing of Diabetic Wound: An In-Vitro and In-Vivo Studies. Int. J. Biol. Macromol. 2021;176:376–386. doi: 10.1016/j.ijbiomac.2021.02.025. PubMed DOI

Zhang L., Dong Y., Zhang N., Shi J., Zhang X., Qi C., Midgley A.C., Wang S. Potentials of Sandwich-like Chitosan/Polycaprolactone/Gelatin Scaffolds for Guided Tissue Regeneration Membrane. Mater. Sci. Eng. C. 2020;109:110618. doi: 10.1016/j.msec.2019.110618. PubMed DOI

Gomes S., Rodrigues G., Martins G., Henriques C., Silva J.C. Evaluation of Nanofibrous Scaffolds Obtained from Blends of Chitosan, Gelatin and Polycaprolactone for Skin Tissue Engineering. Int. J. Biol. Macromol. 2017;102:1174–1185. doi: 10.1016/j.ijbiomac.2017.05.004. PubMed DOI

Gunatillake P., Adhikari R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cell. Mater. 2003;5:1–16. doi: 10.22203/eCM.v005a01. PubMed DOI

Marin E., Briceño M., Torres A., Caballero-George C. New Curcumin-Loaded Chitosan Nanocapsules: In Vivo Evaluation. Planta Med. 2017;83:877–883. doi: 10.1055/s-0043-104633. PubMed DOI

Ouyang H.W., Goh J.C.H., Mo X.M., Teoh S.H., Lee E.H. Characterization of Anterior Cruciate Ligament Cells and Bone Marrow Stromal Cells on Various Biodegradable Polymeric Films. Mater. Sci. Eng. C. 2002;20:63–69. doi: 10.1016/S0928-4931(02)00014-0. DOI

Lu X., Miao L., Gao W., Chen Z., McHugh K.J., Sun Y., Tochka Z., Tomasic S., Sadtler K., Hyacinthe A., et al. Engineered PLGA Microparticles for Long-Term, Pulsatile Release of STING Agonist for Cancer Immunotherapy. Sci. Transl. Med. 2020;12:eaaz6606. doi: 10.1126/scitranslmed.aaz6606. PubMed DOI PMC

Koerner J., Horvath D., Herrmann V.L., MacKerracher A., Gander B., Yagita H., Rohayem J., Groettrup M. PLGA-Particle Vaccine Carrying TLR3/RIG-I Ligand Riboxxim Synergizes with Immune Checkpoint Blockade for Effective Anti-Cancer Immunotherapy. Nat. Commun. 2021;12:2935. doi: 10.1038/s41467-021-23244-3. PubMed DOI PMC

East B., Plencner M., Kralovic M., Rampichova M., Sovkova V., Vocetkova K., Otahal M., Tonar Z., Kolinko Y., Amler E., et al. A Polypropylene Mesh Modified with Poly-ε-Caprolactone Nanofibers in Hernia Repair: Large Animal Experiment. Int. J. Nanomed. 2018;13:3129–3143. doi: 10.2147/IJN.S159480. PubMed DOI PMC

Franco R.A., Nguyen T.H., Lee B.-T. Preparation and Characterization of Electrospun PCL/PLGA Membranes and Chitosan/Gelatin Hydrogels for Skin Bioengineering Applications. J. Mater. Sci. Mater. Med. 2011;22:2207–2218. doi: 10.1007/s10856-011-4402-8. PubMed DOI

Kim J.Y., Cho D.-W. Blended PCL/PLGA Scaffold Fabrication Using Multi-Head Deposition System. Microelectron. Eng. 2009;86:1447–1450. doi: 10.1016/j.mee.2008.11.026. DOI

Jayaraman P., Gandhimathi C., Venugopal J.R., Becker D.L., Ramakrishna S., Srinivasan D.K. Controlled Release of Drugs in Electrosprayed Nanoparticles for Bone Tissue Engineering. Adv. Drug Deliv. Rev. 2015;94:77–95. doi: 10.1016/j.addr.2015.09.007. PubMed DOI

Singh Y.P., Dasgupta S. Gelatin-Based Electrospun and Lyophilized Scaffolds with Nano Scale Feature for Bone Tissue Engineering Application: Review. J. Biomater. Sci. Polym. Ed. 2022;33:1704–1758. doi: 10.1080/09205063.2022.2068943. PubMed DOI

León-López A., Morales-Peñaloza A., Martínez-Juárez V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules. 2019;24:4031. doi: 10.3390/molecules24224031. PubMed DOI PMC

Atma Y. Amino Acid and Proximate Composition of Fish Bone Gelatin from Different Warm-Water Species: A Comparative Study. IOP Conf. Ser. Earth Environ. Sci. 2017;58:012008. doi: 10.1088/1755-1315/58/1/012008. DOI

Alfaro A.d.T., Balbinot E., Weber C.I., Tonial I.B., Machado-Lunkes A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2015;7:33–44. doi: 10.1007/s12393-014-9096-5. DOI

Raspa A., Marchini A., Pugliese R., Mauri M., Maleki M., Vasita R., Gelain F. A Biocompatibility Study of New Nanofibrous Scaffolds for Nervous System Regeneration. Nanoscale. 2016;8:253–265. doi: 10.1039/C5NR03698D. PubMed DOI

Kim T.-H., Yun Y.-P., Park Y.-E., Lee S.-H., Yong W., Kundu J., Jung J.W., Shim J.-H., Cho D.-W., Kim S.E., et al. In Vitro and in Vivo Evaluation of Bone Formation Using Solid Freeform Fabrication-Based Bone Morphogenic Protein-2 Releasing PCL/PLGA Scaffolds. Biomed. Mater. 2014;9:025008. doi: 10.1088/1748-6041/9/2/025008. PubMed DOI

Wang Y., Zhai W., Li J., Liu H., Li C., Li J. Friction Behavior of Biodegradable Electrospun Polyester Nanofibrous Membranes. Tribol. Int. 2023;188:108891. doi: 10.1016/j.triboint.2023.108891. DOI

Zong C., Wang M., Yang F., Chen G., Chen J., Tang Z., Liu Q., Gao C., Ma L., Wang J. A Novel Therapy Strategy for Bile Duct Repair Using Tissue Engineering Technique: PCL/PLGA Bilayered Scaffold with hMSCs: Effect of Scaffold with MSC on Bile Duct Repair. J. Tissue Eng. Regen. Med. 2017;11:966–976. doi: 10.1002/term.1996. PubMed DOI

Avena-Bustillos R.J., Olsen C.W., Olson D.A., Chiou B., Yee E., Bechtel P.J., McHugh T.H. Water Vapor Permeability of Mammalian and Fish Gelatin Films. J. Food Sci. 2006;71:E202–E207. doi: 10.1111/j.1750-3841.2006.00016.x. PubMed DOI

Chiou B.-S., Avena-Bustillos R.J., Bechtel P.J., Jafri H., Narayan R., Imam S.H., Glenn G.M., Orts W.J. Cold Water Fish Gelatin Films: Effects of Cross-Linking on Thermal, Mechanical, Barrier, and Biodegradation Properties. Eur. Polym. J. 2008;44:3748–3753. doi: 10.1016/j.eurpolymj.2008.08.011. DOI

Bigi A. Drawn Gelatin Films with Improved Mechanical Properties. Biomaterials. 1998;19:2335–2340. doi: 10.1016/S0142-9612(98)00149-5. PubMed DOI

Palacios J., Albano C., González G., Castillo R.V., Karam A., Covis M. Characterization and Thermal Degradation of Poly(d,l-Lactide-Co-Glycolide) Composites with Nanofillers. Polym. Eng. Sci. 2013;53:1414–1429. doi: 10.1002/pen.23396. DOI

Dai C.-A., Chen Y.-F., Liu M.-W. Thermal Properties Measurements of Renatured Gelatin Using Conventional and Temperature Modulated Differential Scanning Calorimetry. J. Appl. Polym. Sci. 2006;99:1795–1801. doi: 10.1002/app.22711. DOI

Cen R., Wang L., He Y., Yue C., Tan Y., Li L., Lei X. Dermal Fibroblast Migration and Proliferation Upon Wounding or Lipopolysaccharide Exposure Is Mediated by Stathmin. Front. Pharmacol. 2022;12:781282. doi: 10.3389/fphar.2021.781282. PubMed DOI PMC

Fu W., Liu Z., Feng B., Hu R., He X., Wang H., Yin M., Huang H., Zhang H., Wang W. Electrospun Gelatin/PCL and Collagen/PLCL Scaffolds for Vascular Tissue Engineering. Int. J. Nanomed. 2014:2335. doi: 10.2147/IJN.S61375. PubMed DOI PMC

Ajmal G., Bonde G.V., Mittal P., Pandey V.K., Yadav N., Mishra B. PLGA/Gelatin-Based Electrospun Nanofiber Scaffold Encapsulating Antibacterial and Antioxidant Molecules for Accelerated Tissue Regeneration. Mater. Today Commun. 2023;35:105633. doi: 10.1016/j.mtcomm.2023.105633. DOI

Chocholata P., Kulda V., Dvorakova J., Supova M., Zaloudkova M., Babuska V. In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. Int. J. Mol. Sci. 2021;22:9335. doi: 10.3390/ijms22179335. PubMed DOI PMC

Sun M., Chi G., Li P., Lv S., Xu J., Xu Z., Xia Y., Tan Y., Xu J., Li L., et al. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018;15:257–268. doi: 10.7150/ijms.21620. PubMed DOI PMC

Ghasemi-Mobarakeh L., Prabhakaran M.P., Morshed M., Nasr-Esfahani M.-H., Ramakrishna S. Electrospun Poly(ε-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials. 2008;29:4532–4539. doi: 10.1016/j.biomaterials.2008.08.007. PubMed DOI

Guler Z., Silva J.C., Sezai Sarac A. RGD Functionalized Poly( ε -Caprolactone)/Poly(m-Anthranilic Acid) Electrospun Nanofibers as High-Performing Scaffolds for Bone Tissue Engineering RGD Functionalized PCL/P3ANA Nanofibers. Int. J. Polym. Mater. Polym. Biomater. 2017;66:139–148. doi: 10.1080/00914037.2016.1190929. DOI

Hassan A.A., Radwan H.A., Abdelaal S.A., Al-Radadi N.S., Ahmed M.K., Shoueir K.R., Hady M.A. Polycaprolactone Based Electrospun Matrices Loaded with Ag/Hydroxyapatite as Wound Dressings: Morphology, Cell Adhesion, and Antibacterial Activity. Int. J. Pharm. 2021;593:120143. doi: 10.1016/j.ijpharm.2020.120143. PubMed DOI

Li D., Sun H., Jiang L., Zhang K., Liu W., Zhu Y., Fangteng J., Shi C., Zhao L., Sun H., et al. Enhanced Biocompatibility of PLGA Nanofibers with Gelatin/Nano-Hydroxyapatite Bone Biomimetics Incorporation. ACS Appl. Mater. Interfaces. 2014;6:9402–9410. doi: 10.1021/am5017792. PubMed DOI

Zhang Y., Ouyang H., Lim C.T., Ramakrishna S., Huang Z.-M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. 2005;72B:156–165. doi: 10.1002/jbm.b.30128. PubMed DOI

Aldemir Dikici B., Dikici S., Reilly G.C., MacNeil S., Claeyssens F. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials. 2019;12:2643. doi: 10.3390/ma12162643. PubMed DOI PMC

Núñez-Flores R., Giménez B., Fernández-Martín F., López-Caballero M.E., Montero M.P., Gómez-Guillén M.C. Role of Lignosulphonate in Properties of Fish Gelatin Films. Food Hydrocoll. 2012;27:60–71. doi: 10.1016/j.foodhyd.2011.08.015. DOI

Shah S.A., Sohail M., Khan S., Minhas M.U., De Matas M., Sikstone V., Hussain Z., Abbasi M., Kousar M. Biopolymer-Based Biomaterials for Accelerated Diabetic Wound Healing: A Critical Review. Int. J. Biol. Macromol. 2019;139:975–993. doi: 10.1016/j.ijbiomac.2019.08.007. PubMed DOI

Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T. Solutions Able to Reproducein Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3. J. Biomed. Mater. Res. 1990;24:721–734. doi: 10.1002/jbm.820240607. PubMed DOI

Chocholata P., Kulda V., Dvorakova J., Kolaja Dobra J., Babuska V. Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int. J. Mol. Sci. 2020;21:5719. doi: 10.3390/ijms21165719. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...