Recent advances and future perspectives of sol-gel derived porous bioactive glasses: a review
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35519068
PubMed Central
PMC9056785
DOI
10.1039/d0ra04287k
PII: d0ra04287k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The sol-gel derived porous bioactive glasses have drawn worldwide attention by virtue of the convenience and flexibility of this versatile synthesis method. In this review, the recent advances in sol-gel processed porous bioactive glasses in biomedical fields, especially for bone tissue regeneration applications have been comprehensively reviewed. Generally, it is envisaged that the morphology and chemical compositions of sol-gel derived porous bioactive glasses significantly affect their biological properties. Therefore, the controlled synthesis of these porous glasses is critical to their effective use in the biomedical fields. With this context, the first part of the review briefly describes the fundamentals of the sol-gel technique. In the subsequent section, different approaches frequently used for the sol-gel synthesis of porous glasses such as microemulsion and acid-catalyzed based synthesis have been reviewed. In the later part of the review, different types of sol-gel derived bioactive glasses namely silica, phosphate and silica-titania based glasses along with organic-inorganic hybrids materials have been discussed. The review also discusses the chemical, surface, mechanical and biological properties and further highlights the strategies to control the pore structure, shape, size and compositions of sol-gel derived bioactive glasses. Finally, the review provides a detailed discussion about the bone tissue regeneration application of different types of sol-gel derived bioactive glasses and presents future research perspectives.
New Technologies Research Center University of West Bohemia Plzeň 30100 Czech Republic 420 775942198
Zobrazit více v PubMed
Owens G. J. Singh R. K. Foroutan F. Alqaysi M. Han C. M. Mahapatra C. Kim H. W. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016;77:1–79. doi: 10.1016/j.pmatsci.2015.12.001. DOI
Tan S. N. Wang W. Ge L. 3.30 Biosensors based on sol–gel derived materials. Compr. Biomater. II. 2017;3:657–689.
Monton M. R. N. Forsberg E. M. Brennan J. D. Tailoring sol–gel derived silica materials for optical biosensing. Chem. Mater. 2012;24:796–811. doi: 10.1021/cm202798e. DOI
Akpan U. G. Hameed B. H. The advancement in sol–gel method of doped TiO2 photocatalyst. Appl. Catal., A. 2010;375:1–11. doi: 10.1016/j.apcata.2009.12.023. DOI
Levy D. and Zayat M., The sol–gel handbook, ed. D. Levy and M. Zayat, vol. 1–3, Wiley VCH, USA, 2015, pp. 1–1508
Rosenholm J. M. Sahlgren C. Linden M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities & challenges. Nanoscale. 2010;2:1870–1883. doi: 10.1039/C0NR00156B. PubMed DOI
Yang P. Gai S. Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012;41:3679–3698. doi: 10.1039/C2CS15308D. PubMed DOI
Sumida K. Liang K. Reboul J. Ibara I. A. Furukawa S. Falcaro P. Sol–gel processing of metal organic frameworks. Chem. Mater. 2017;29:2626–2645. doi: 10.1021/acs.chemmater.6b03934. DOI
Muresan L. M., Corrosion protective coatings for Ti and Ti alloys used for biomedical implants, in Intelligent coatings for corrosion control, ed. A. Tiwari, J. Rawlins and L. H. Hihara, 2015, pp. 585–602
Kickelbick G., Introduction to sol–gel nanocomposites, in Sol–gel nanocomposites, Advances in sol–gel derived materials and technologies, ed. M. Guglielmi, G. Kickelbick and A. Martucci, Springer-Verlag, New York, 2014, pp. 1–19
Carta D. Pickup D. M. Knowles J. C. Smith M. E. Newport R. J. Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. J. Mater. Chem. 2005;15:2134–2140. doi: 10.1039/B414885A. DOI
Esposito S. Traditional sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials. 2019;12:668. doi: 10.3390/ma12040668. PubMed DOI PMC
Lopez T. Manjarrez J. Rembao D. Vinogradova E. Moreno A. Gonzalez R. D. An implantable sol–gel derived titania–silica carrier system for the controlled release of anticonvulsants. Mater. Lett. 2006;60:2903–2908. doi: 10.1016/j.matlet.2006.02.017. DOI
Chen X. Zhang W. Lin Y. Cai Y. Qiu M. Fan Y. Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol–gel method. Microporous Mesoporous Mater. 2015;214:195–203. doi: 10.1016/j.micromeso.2015.04.027. DOI
Priya S. Jones J. R. Sophie V. Robert B. Victoria S. J. Hench L. L. Julia P. M. Binary CaO–SiO2 gel-glasses for biomedical applications. Biomed. Mater. Eng. 2004;14:467–486. PubMed
Abbasian M. Massoumi B. Mohammad-Rezaei R. Samadian H. Jaymand M. Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering. Int. J. Biol. Macromol. 2019;134:673–694. doi: 10.1016/j.ijbiomac.2019.04.197. PubMed DOI
Massoumi B. Hatamzadeh M. Firouzi N. Jaymand M. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater. Sci. Eng., C. 2019;98:300–310. doi: 10.1016/j.msec.2018.12.114. PubMed DOI
Vandhaanooni S. Eskandani M. Electrically conductive biomaterials based on natural polysaccharides: challenges and applications in tissue engineering. Int. J. Biol. Macromol. 2019;141:636–662. doi: 10.1016/j.ijbiomac.2019.09.020. PubMed DOI
Samadian H. Maleki H. Allahyari Z. Jaymand M. Natural polymers-based light-induced hydrogels: promising biomaterials for biomedical applications. Coord. Chem. Rev. 2020;420:213432. doi: 10.1016/j.ccr.2020.213432. DOI
Lutolf M. P. Hubbel J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005;23:47–55. doi: 10.1038/nbt1055. PubMed DOI
Nair L. S. Laurencin C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI
Toirac B. Garcia-Casas A. Cifuentes S. C. Aguilera-Correa J. J. Esteban J. Mediero A. Jimmez-Morales A. Electrochemical characterization of coatings for local prevention of Candida infections on titanium based biomaterials. Prog. Org. Coat. 2020;146:105681. doi: 10.1016/j.porgcoat.2020.105681. DOI
Aguilera-Correa J. J. Garcia-Casas A. Mediero A. Romera D. Mulero F. Cuevas-Lopez I. Jimenez-Morales A. Esteban J. A new antibiotic loaded sol–gel can prevent bacterial prosthetic joint infections: from in vitro studies to an in vivo model. Front. Microbiol. 2020;10:2935. doi: 10.3389/fmicb.2019.02935. PubMed DOI PMC
Ming-Cheng L. Chun-Cheng C. I-Ting W. Shinn-Jyh D. Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair. Mater. Sci. Eng., C. 2020;110:110727. doi: 10.1016/j.msec.2020.110727. PubMed DOI
Roozbahani M. Alehosseini M. Kharaziha M. Emadi R. Nano-calcium phosphate bone cement based on Si-stabilized α-tricalcium phosphate with improved mechanical properties. Mater. Sci. Eng., C. 2017;81:532–541. doi: 10.1016/j.msec.2017.08.016. PubMed DOI
Li H. Li J. Jiang J. Lv F. Chang J. Chen S. Wu C. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Acta Biomater. 2017;54:399–410. doi: 10.1016/j.actbio.2017.03.014. PubMed DOI
Wu G. Deng X. Song J. Chen F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J. Photochem. Photobiol., B. 2018;178:27–32. doi: 10.1016/j.jphotobiol.2017.10.011. PubMed DOI
Catauro M. bollino F. Papale F. Ferrara C. Mustarelli P. Silica–polyethylene glycol hybrids synthesized by sol–gel: biocompatibility improvement of titanium implants by coating. Mater. Sci. Eng., C. 2015;55:118–125. doi: 10.1016/j.msec.2015.05.016. PubMed DOI
Cerqueira A. Romero-Gavilan F. Araujo-Gomes N. Garcia-Arnez I. Martinez-Ramos C. Ozturan S. Azkargota M. Elortza F. Gurruchanga M. Suay J. Goni I. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater. Sci. Eng., C. 2020;116:111262. doi: 10.1016/j.msec.2020.111262. PubMed DOI
Lee W. D. Gawri R. Pilliar R. M. Stanford W. L. Kandel R. A. Sol–gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater. 2017;62:352–361. doi: 10.1016/j.actbio.2017.08.016. PubMed DOI
Hu M. Fang J. Zhang Y. Wang X. Zhong W. Zhou Z. Design and evaluation a kind of functional biomaterial for bone tissue engineering: selenium/mesoporous bioactive glass nanospheres. J. Colloid Interface Sci. 2020;579:654–666. doi: 10.1016/j.jcis.2020.06.122. PubMed DOI
Mondal S. Hoang G. Manivasagan P. Moorthy M. S. Nguyen T. P. Phan T. T. V. Kim H. H. Kim M. H. Nam S. Y. Oh J. Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram. Int. 2018;44:15735–15746. doi: 10.1016/j.ceramint.2018.05.248. DOI
Wang X. Zhang Y. Lin C. Zhong W. Sol–gel derived terbium-containing mesoporous bioactive glasses nanospheres: in vitro hydroxyapatite formation and drug delivery. Colloids Surf., B. 2017;160:406–415. doi: 10.1016/j.colsurfb.2017.09.051. PubMed DOI
Sebastiammal S. Fathima A. S. L. Devanesan S. AlSalhi M. S. Henry J. Govindarajan M. Vaseeharan B. Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: a perspective of nano-based drug delivery. J. Drug Delivery Sci. Technol. 2020;57:101752. doi: 10.1016/j.jddst.2020.101752. DOI
Fa-Ming C. Xiaohua L. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016;53:86–168. doi: 10.1016/j.progpolymsci.2015.02.004. PubMed DOI PMC
Yuan H. De Bruijn J. D. Li Y. Feng J. Yang Z. De Groot K. Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J. Mater. Sci.: Mater. Med. 2001;12:7–13. doi: 10.1023/A:1026792615665. PubMed DOI
Areva S. Paldan H. Peltola T. Narhi T. Jokinen M. Linden M. Use of sol–gel-derived titania coating for direct soft tissue attachment. J. Biomed. Mater. Res., Part A. 2004;70:169–178. doi: 10.1002/jbm.a.20120. PubMed DOI
Meseguer-Olmo L. Ros-Nicolas M. J. Vincente-Ortega V. Alcaraz-Banos M. Clavel-Sainz M. Arcos D. Ragel C. V. Vallet-Regi M. Meseguer-Ortiz C. I. A bioactive sol–gel glass implant for in vivo gentamicin release. Experimental model in rabbit. J. Orthop. Res. 2006;24:454–460. doi: 10.1002/jor.20064. PubMed DOI
Gupta R. Chaudhary N. K. Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron. 2007;22:2387–2399. doi: 10.1016/j.bios.2006.12.025. PubMed DOI
Ahola M. S. Sailynoja E. S. Raitavno M. H. Vaahtio M. H. Salonen J. I. Yli-Urpo A. U. O. In vitro release of heparin from silica xerogels. Biomaterials. 2001;22:2163–2170. doi: 10.1016/S0142-9612(00)00407-5. PubMed DOI
Kandimalla V. B. Tripathi V. S. Ju H. Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit. Rev. Anal. Chem. 2006;36:73–106. doi: 10.1080/10408340600713652. DOI
Kargozar S. Lotfibakshaiesh N. Ai J. Samadikuchaksaraie A. Hill R. G. Shah P. A. Milan P. B. Mozafari M. Fathi M. Joghataei M. T. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. J. Non-Cryst. Solids. 2016;449:133–140. doi: 10.1016/j.jnoncrysol.2016.07.025. DOI
Kargozar S. Baino F. Hamzehlou S. Hill R. G. Mozafari M. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018;36:430–444. doi: 10.1016/j.tibtech.2017.12.003. PubMed DOI
Kargozar S. Mozafari M. Hashemian S. J. Milan P. B. Hamzehlou S. Soleimani M. Joghataei M. T. Gholipourmalekabadi M. Korourian A. Mousavizadeh K. Seifalian A. M. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. J. Biomed. Mater. Res., Part B. 2018;106:61–72. doi: 10.1002/jbm.b.33814. PubMed DOI
Hench L. L. Roki N. Fenn M. B. Bioactive glass: importance of structure and properties in bone regeneration. J. Mol. Struct. 2014;1073:24–30. doi: 10.1016/j.molstruc.2014.03.066. DOI
Hoppe A. Guldal N. S. Boccaccini A. R. A review of the biological response to ionic dissolution products from bioactive glass and glass-ceramics. Biomaterials. 2011;32:2757–2774. doi: 10.1016/j.biomaterials.2011.01.004. PubMed DOI
Vallet-Regi M. Izquierdo-Barba I. Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc., A. 2012;370:1400–1421. doi: 10.1098/rsta.2011.0258. PubMed DOI
Yan X. Yu C. Zhou X. Tang J. Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem., Int. Ed. 2004;43:5980–5984. doi: 10.1002/anie.200460598. PubMed DOI
Chocolata P. Kulda V. Babuska V. Fabrication of scaffolds for bone tissue regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC
Ni S. Chang J. Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. Biomed. Mater. Res., Part A. 2006;76:196–205. doi: 10.1002/jbm.a.30525. PubMed DOI
El Haj A. J. Wood M. A. T. Homas P. Yang Y. Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol. Biol. 2005;53:581–589. doi: 10.1016/j.patbio.2004.12.002. PubMed DOI
Vallet-Regi M. Ruiz-Gonzalez L. Izquierdo-Barba I. Gonzalez-Calbet J. M. Revisiting silica based ordered mesoporous materials medical applications. J. Mater. Chem. 2006;16:26–31. doi: 10.1039/B509744D. DOI
Hertz A. FitzGerald V. Pignotti E. Knowles J. C. Sen T. Bruce I. J. Preparation and characterization of porous silica and silica/titania monoliths for potential use in bone replacement. Microporous Mesoporous Mater. 2012;156:51–61. doi: 10.1016/j.micromeso.2012.02.004. DOI
Izquierdo-Barda I. Ruiz-Gonzalez L. Gonzalez-Calbet J. M. Vallet-Regi M. Tissue regeneration: a new property of mesoporous material. Solid State Sci. 2005;7:983–989. doi: 10.1016/j.solidstatesciences.2005.04.003. DOI
Sen T. Tiddy G. J. T. Casci J. L. Anderson M. W. Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis. Microporous Mesoporous Mater. 2005;78:255–263. doi: 10.1016/j.micromeso.2004.09.022. DOI
Sun H. Yang H. L. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin. Med. J. 2015;128:1121–1127. doi: 10.4103/0366-6999.155121. PubMed DOI PMC
Fu Q. Saiz E. Rahaman M. N. Tomsia A. P. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng., C. 2011;31:1245–1256. doi: 10.1016/j.msec.2011.04.022. PubMed DOI PMC
Kim H. M. Ceramic bioactivity and related biomimetic strategy. Curr. Opin. Solid State Mater. Sci. 2003;7:289–299. doi: 10.1016/j.cossms.2003.09.014. DOI
Zhong J. P. Greenspan D. C. Processing and properties of sol–gel bioactive glasses. J. Biomed. Mater. Res. 2000;53:694–701. doi: 10.1002/1097-4636(2000)53:6<694::AID-JBM12>3.0.CO;2-6. PubMed DOI
Ma J. Chen C. Z. Wang D. G. Meng X. G. Shi J. Z. In vitro degradability and bioactivity of mesoporous CaO–MgO–P2O5–SiO2 glasses synthesized by sol–gel method. J. Sol-Gel Sci. Technol. 2010;54:69–76. doi: 10.1007/s10971-010-2159-z. DOI
Hench L. L. Polak J. M. Xynos I. D. Buttery L. D. K. Bioactive materials to control cell cycle. Mater. Res. Innovations. 2000;3:313–323. doi: 10.1007/s100190000055. DOI
Rezwan K. Chen Q. Z. Blaker J. J. Boccaccini A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. doi: 10.1016/j.biomaterials.2006.01.039. PubMed DOI
Roberto W. D. S. Pereira M. M. Ribiero de Campos T. P. Analysis of bioactive glasses obtained by sol–gel processing for radioactive implants. Mater. Res. 2003;6:123–127. doi: 10.1590/S1516-14392003000200003. DOI
Choi A. H., Conway R. C., Cazalbou S. and Ben-Nissan B., Maxillofacial bioceramics in tissue engineering: production techniques, properties and applications, in Fundamental Biomaterials: Ceramics, S. Thomas, P. Balakrishnan and M. S. Sreekala, Woodhead Publishing, Elsevier, 2018, pp. 63–93
Malik M. A. Wani M. Y. Hashim M. A. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arabian J. Chem. 2012;5:397–417. doi: 10.1016/j.arabjc.2010.09.027. DOI
Zheng K. Boccaccini A. R. Sol–gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017;249:363–373. doi: 10.1016/j.cis.2017.03.008. PubMed DOI
Cushing B. L. Kolesnichenko V. L. O'Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004;104:3893–3946. doi: 10.1021/cr030027b. PubMed DOI
Eastoe J. Hollamby M. J. Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 2006;128–130:5–15. doi: 10.1016/j.cis.2006.11.009. PubMed DOI
Karagiozov C. Momchilova D. Synthesis of nanosized particles from metal carbonates by the method of reverse micelles. Chem. Eng. Process. 2005;44:115–119. doi: 10.1016/j.cep.2004.05.004. DOI
Sun Y. Guo G. Tao D. Wang Z. H. Reverse microemulsion directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J. Phys. Chem. Solids. 2007;68:373–377. doi: 10.1016/j.jpcs.2006.11.026. DOI
Lukowiak A. Lao J. Lacroix J. Nedelec J. M. Bioactive glass nanoparticles obtained through sol–gel chemistry. Chem. Commun. 2013;49:6620–6622. doi: 10.1039/C3CC00003F. PubMed DOI
Li X. Chen X. Miao G. Liu H. Mao C. Yuan G. Liang Q. Shen X. Ning C. Fu X. Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. J. Mater. Chem. B. 2014;2:7045–7054. doi: 10.1039/C4TB00883A. PubMed DOI
Liang Q. Hu Q. Miao G. Yuan B. Chen X. A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Mater. Lett. 2015;148:45–49. doi: 10.1016/j.matlet.2015.01.122. DOI
Kim T. H. Singh R. K. Kang M. S. Kim J. H. Kim H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale. 2016;8:8300–8311. doi: 10.1039/C5NR07933K. PubMed DOI
Kim T. H. Singh R. K. Kang M. S. Kim J. H. Kim H. W. Inhibition of osteoclstogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomater. 2016;29:352–364. doi: 10.1016/j.actbio.2015.09.035. PubMed DOI
Wang Y. Chen X. Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion. Mater. Lett. 2017;189:325–328. doi: 10.1016/j.matlet.2016.12.004. DOI
Sinko K. Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials. 2010;3:704–740. doi: 10.3390/ma3010704. DOI
Vichery C. Nedelc J. M. Bioactive glass nanoparticles: from synthesis to material design for biomedical applications. Materials. 2016;9:288–295. doi: 10.3390/ma9040288. PubMed DOI PMC
Wang Y. Pan H. Chen X. The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Front. Chem. 2019;7:283. doi: 10.3389/fchem.2019.00283. PubMed DOI PMC
Hu Q. Li Y. Zhao N. Ning C. Chen X. Facile synthesis of hollow mesoporous bioactive glass submicron spheres with a tunable cavity size. Mater. Lett. 2014;134:130–133. doi: 10.1016/j.matlet.2014.07.041. DOI
Duan H. Diao J. Zhao N. Ma Y. Synthesis of hollow mesoporous bioactive glass microspheres with tunable shell thickness by hydrothermal assisted self transformation method. Mater. Lett. 2016;167:201–204. doi: 10.1016/j.matlet.2015.12.162. DOI
Xiao J. Wan Y. Yao F. Huang Y. Zhu Y. Yang Z. Luo H. Constructing 3D scaffold with 40 nm diameter hollow mesoporous bioactive glass nanofibres. Mater. Lett. 2019;248:201–203. doi: 10.1016/j.matlet.2019.04.041. DOI
Fardad M. A. Catalysts and the structure of SiO2 sol–gel films. J. Mater. Sci. 2000;35:1835–1841. doi: 10.1023/A:1004749107134. DOI
Issa A. A. Luyt A. S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers. 2019;11:537. doi: 10.3390/polym11030537. PubMed DOI PMC
Chen Q. Z. Li Y. Jin L. Y. Quinn J. M. W. Komesaroff P. A. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–4153. doi: 10.1016/j.actbio.2010.04.022. PubMed DOI
Xia W. Chang J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater. Lett. 2007;61:3251–3253. doi: 10.1016/j.matlet.2006.11.048. DOI
Chen X. GuO C. Zhao N. Preparation and characterization of the sol–gel nano-bioactive glasses modified by the coupling agent gamma-aminopropyltriethoxysilane. Appl. Surf. Sci. 2008;255:466–468. doi: 10.1016/j.apsusc.2008.06.061. DOI
Roohani-Esfahani S. I. Nouri-Khorasani S. Lu Z. F. F. Appleyard R. C. Zreiqat H. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater. 2011;7:1307–1318. doi: 10.1016/j.actbio.2010.10.015. PubMed DOI
Hong Z. Luz G. M. Hampel P. J. Jin M. Liu A. Chen X. Mano J. F. Mono-dispersed bioactive glass nanospheres: preparation and effects on biomechanics of mammalian cells. J. Biomed. Mater. Res., Part A. 2010;95:747–754. doi: 10.1002/jbm.a.32898. PubMed DOI
Hong Z. Reis R. L. Mano J. F. Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 2008;4:1297–1306. doi: 10.1016/j.actbio.2008.03.007. PubMed DOI
Luz G. M. Mano J. F. Nanoengineering of bioactive glasses: hollow and dense nanospheres. J. Nanopart. Res. 2013;15:1457–1468. doi: 10.1007/s11051-013-1457-0. DOI
Nagayama S. Kajihara K. Kanamura K. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process. Mater. Sci. Eng., B. 2012;177:510–514. doi: 10.1016/j.mseb.2012.01.005. DOI
Li R. Clark A. E. Hench L. L. An investigation of bioactive glass powders by sol–gel processing. J. Appl. Biomater. 1991;2:231–239. doi: 10.1002/jab.770020403. PubMed DOI
Jones J. R., Bioactive glass, in Bioceramics and their clinical applications, ed. T. Kokubo, Woodhead Publishing Ltd., Cambridge UK, 2008, pp. 266–286
Jones J. R. New trends in bioactive scaffolds: the importance of nanostructure. J. Eur. Ceram. Soc. 2009;29:1275–1281. doi: 10.1016/j.jeurceramsoc.2008.08.003. DOI
Jones J. R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–4486. doi: 10.1016/j.actbio.2012.08.023. PubMed DOI
Kaur G. Pickrell G. Sriranganathan S. Kumar V. Homa D. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J. Biomed. Mater. Res., Part B. 2016;104:1248–1275. doi: 10.1002/jbm.b.33443. PubMed DOI
Salinas A. J. Vallet-Regi M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013;3:11116–11131. doi: 10.1039/C3RA00166K. DOI
Brauer D. S. Bioactive glasses – structure and properties. Angew. Chem., Int. Ed. 2015;54:4160–4181. doi: 10.1002/anie.201405310. PubMed DOI
Hupa L. and Karlsson K. H., Tailoring of bioactive glasses, in Bioactive glasses – fundamentals, technology and applications, ed. A. R. Boccaccinni, D. S. Brauer and L. Hupa, The Royal Society of Chemistry, 2017, pp. 136–160
Shelby J. E., Introduction to glass science and technology, The Royal Society of Chemistry, 2nd edn, 2005
Hupa L., Composition property relation of bioactive glasses; materials, properties and applications, ed. H. Ylanen, Woodhand Publishing, 2018
Pedone A. Malavasi G. Menziani M. C. Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C. 2009;113:15723–15730. doi: 10.1021/jp904131t. DOI
Watts S. J. Hill R. G. O'Donnell M. D. Law R. V. Influence of magnesia on the structure and properties of bioactive glasses. J. Non-Cryst. Solids. 2010;356:517–524. doi: 10.1016/j.jnoncrysol.2009.04.074. DOI
Hill R. G. Brauer D. S. Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non-Cryst. Solids. 2011;357:3884–3887. doi: 10.1016/j.jnoncrysol.2011.07.025. DOI
Tilocca A. Structural models of bioactive glasses from molecular dynamics simulations. Proc. R. Soc. A. 2009;465:1003–1027.
Lockyer M. W. G. Holland D. Dupree R. NMR investigation of the structure of some bioactive and related glasses. J. Non-Cryst. Solids. 1995;188:207–219. doi: 10.1016/0022-3093(95)00188-3. DOI
Eden M. The split network analysis for exploring composition–structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. J. Non-Cryst. Solids. 2011;357:1595–1602. doi: 10.1016/j.jnoncrysol.2010.11.098. DOI
O'Donnell M. D. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature. Acta Biomater. 2011;7:2264–2269. doi: 10.1016/j.actbio.2011.01.021. PubMed DOI
Eden M. NMR studies of oxide based glasses. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2012;108:177–221. doi: 10.1039/C2PC90006H. DOI
Vallet-Regi M. Ceramics for medical applications, perspective article. J. Chem. Soc., Dalton Trans. 2001;2:97–108. doi: 10.1039/B007852M. DOI
Jones J. R. Ehrenfried L. M. Sarapavan P. Hench L. L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci.: Mater. Med. 2006;17:989–996. doi: 10.1007/s10856-006-0434-x. PubMed DOI
Zhao Y. Ning C. Chang J. Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J. Sol-Gel Sci. Technol. 2009;52:69–74. doi: 10.1007/s10971-009-2006-2. DOI
Saravapavan P. Jones J. R. Pryce R. S. Hench L. L. Bioactivity of gel–glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2P5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O) J. Biomed. Mater. Res., Part A. 2003;66:110–119. doi: 10.1002/jbm.a.10532. PubMed DOI
Tilocca A. Cormack A. N. Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B. 2007;111:14256–14264. doi: 10.1021/jp075677o. PubMed DOI
Arcos D. Greenspan D. C. Vallet-Regi M. Influence of the stabilization temperature on textural and structural features and ion release in SiO2–CaO–P2O5 sol–gel glasses. Chem. Mater. 2002;14:1515–1522. doi: 10.1021/cm011119p. DOI
Balas F. Arcos D. Perez-Pariente J. Vallet-Regi M. Textural properties of SiO2–CaO–P2O5 glasses prepared by the sol–gel method. J. Mater. Res. 2001;16:1345–1348. doi: 10.1557/JMR.2001.0187. DOI
Arcos D. Vallet-Regi M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–2888. doi: 10.1016/j.actbio.2010.02.012. PubMed DOI
Rahman M. N. Day D. E. Bal D. S. Fu Q. Jung S. B. Bonewald L. F. Tomsia A. P. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–2373. doi: 10.1016/j.actbio.2011.03.016. PubMed DOI PMC
Kiran P. Ramakrishna V. Trebbin M. Udayashankar N. K. Shashikala H. D. Effective role of CaO/P2O5 ratio on SiO2–CaO–P2O5 glass system. J. Adv. Res. 2017;8:279–288. doi: 10.1016/j.jare.2017.02.001. PubMed DOI PMC
Sepulveda P. Jones J. R. Hench L. L. Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 2001;58:734–740. doi: 10.1002/jbm.10026. PubMed DOI
Oki A. Parveen B. Hossain S. Adeniji S. Donahue H. Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J. Biomed. Mater. Res., Part A. 2004;69:216–221. doi: 10.1002/jbm.a.20070. PubMed DOI
Moghanian A. Sedghi A. Ghorbanoghli A. Salari E. The effect of magnesium content on the in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceram. Int. 2018;44:9422–9432. doi: 10.1016/j.ceramint.2018.02.159. DOI
Liu X. Hunag W. Fu H. Yao A. Wang D. Pan H. Lu W. W. Jiang X. Zhang X. Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors. J. Mater. Sci.: Mater. Med. 2009;20:1237–1243. doi: 10.1007/s10856-009-3691-7. PubMed DOI
Lao J. Nedelec J. M. Jallot E. New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J. Mater. Chem. 2009;19:2940–2949. doi: 10.1039/B822214B. DOI
Varansi V. G. Siaz E. Loomer P. M. Ancheta B. Uritani N. Tomsia A. P. Marshall S. J. Marshall G. W. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomater. 2009;5:3536–3547. doi: 10.1016/j.actbio.2009.05.035. PubMed DOI PMC
Hench L. L. Challenges for bioceramics in the 21st century. Am. Ceram. Soc. Bull. 2005;84:18–21.
Aguiar H. Serra J. Gonzalez P. Leon B. Influence of the stabilization temperature on the structure of bioactive sol–gel silicate glasses. J. Am. Chem. Soc. 2010;93:2286–2291.
Kaur G. Kumar V. Baino F. Mauro J. C. Pickrell G. Evans I. Breteano O. Mechanical properties of bioactive glasses, ceramics and composites: state of the art review and future challenges. Mater. Sci. Eng., C. 2019;104:109895. doi: 10.1016/j.msec.2019.109895. PubMed DOI
Lenza R. F. Vasconcelos W. L. Jones J. R. Hench L. L. Surface-modified 3D scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 2002;13:837–842. doi: 10.1023/A:1016592127407. PubMed DOI
Hench L. L. Polak J. M. Third-generation biomedical materials. Science. 2002;295:1014–1017. doi: 10.1126/science.1067404. PubMed DOI
Kumar V., Pickreu G., Waldrop S. G. and Sriranganathan N., Future perspectives of bioactive glasses for the clinical applications, in Bioactive glasses: potential biomaterials for future therapy, ed. G. Kaur, Springer Publication, 2017, p. 314
Catauro M. Bollino F. Renella R. A. Papale F. Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram. Int. 2015;73:12578–12588. doi: 10.1016/j.ceramint.2015.06.075. DOI
Dziadek M. Zagrajczuk B. Menassck E. Wegrzynowicz A. Pawlik J. Cholewa-Kowalska K. Gel derived SiO2–CaO–P2O5 bioactive glasses and glass ceramics modified by SrO addition. Ceram. Int. 2016;42:5842–5857. doi: 10.1016/j.ceramint.2015.12.128. DOI
Vallet-Regi M. Arcos D. Perez-Pariente J. Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J. Biomed. Mater. Res. 2000;51:23–28. doi: 10.1002/(SICI)1097-4636(200007)51:1<23::AID-JBM4>3.0.CO;2-B. PubMed DOI
Vallet-Regi M. Ragel C. V. Salinas A. J. Glasses with medical applications. Eur. J. Inorg. Chem. 2003:1029–1042. doi: 10.1002/ejic.200390134. DOI
Hamadouche M. Meunier A. Greenspan D. C. Blanchat C. Zhong J. P. La Torre G. P. Sedel L. Long-term in vivo bioactivity and degradability of bulk sol–gel bioactive glasses. J. Biomed. Mater. Res. 2001;54:560–566. doi: 10.1002/1097-4636(20010315)54:4<560::AID-JBM130>3.0.CO;2-J. PubMed DOI
Gil-Albarova J. Garrido-Lahiguera R. Salinas A. J. Roman J. Bueno-Lozano A. L. Gil-Albarova R. Vallet-Regi M. The in vivo performance of a sol–gel glass and glass ceramic in the treatment of limited bone defects. Biomaterials. 2004;25:4639–4645. doi: 10.1016/j.biomaterials.2003.12.009. PubMed DOI
Silver I. A. Erecinska M. Interactions of osteoblastic and other cells with bioactive glasses and silica in vitro and in vivo. Materialwiss. Werkstofftech. 2003;34:1069–1075. doi: 10.1002/mawe.200300710. DOI
Lin C. Mao C. Zhang J. Li Y. Chen X. Healing effect of bioactive glass ointment on full thickness skin wounds. Biomed. Mater. 2012;7:045017. doi: 10.1088/1748-6041/7/4/045017. PubMed DOI
Xie W. H. Chen X. F. Miao G. H. Tang J. Y. Fu X. L. Regulation of cellular behaviors of fibroblasts related to wound healing by sol–gel derived bioactive glass particles. J. Biomed. Mater. Res., Part A. 2016;104:2420–2429. doi: 10.1002/jbm.a.35782. PubMed DOI
Salinas A. J. Martin A. I. Vallet-Regi M. Bioactivity of three CaO–P2O5–SiO2 sol–gel glasses. J. Biomed. Mater. Res. 2002;61:524–532. doi: 10.1002/jbm.10229. PubMed DOI
Ma J. Chen C. Z. Wang D. G. Jiao Y. Shi J. Z. Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surf., B. 2010;81:87–95. doi: 10.1016/j.colsurfb.2010.06.022. PubMed DOI
Salinas A. J. Roman J. Vallet-Regi M. Oliveria J. M. Correia R. M. Fernandes M. H. In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5–CaO·SiO2–CaO·MgO·2SiO2 system. Biomaterials. 2000;21:251–257. doi: 10.1016/S0142-9612(99)00150-7. PubMed DOI
Perez-Pariente J. Balas F. Vallet-Regi M. Surface and chemical study of SiO2·P2O5·CaO·(MgO) bioactive glasses. Chem. Mater. 2000;12:750–755. doi: 10.1021/cm9911114. DOI
Saboori A. Rabiee M. Mutarzadeh F. Sheikhi M. Tahiri M. Karimi M. Synthesis, characterizations and in vitro bioactivity of sol–gel derived SiO2–CaO–P2O5–MgO bioglasses. Mater. Sci. Eng., C. 2009;29:335–340. doi: 10.1016/j.msec.2008.07.004. DOI
Bellantone M. Coleman N. J. Hench L. L. Bacteriostatic action of a novel four-component bioactive glass. J. Biomed. Mater. Res. 2000;51:484–490. doi: 10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4. PubMed DOI
Hu G. Xiao L. Tong P. Bi D. Wang H. Ma H. Zhu G. Liu H. Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int. J. Nanomed. 2012;7:2613–2620. doi: 10.2147/IJN.S31081. PubMed DOI PMC
Pratten J. Nazhat S. N. Blaker J. J. Boccaccini A. R. In vitro attachment of staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J. Biomater. Appl. 2004;19:47–57. doi: 10.1177/0885328204043200. PubMed DOI
Catauro M. Raucci M. G. De Gaetano F. Marotta A. Antibacterial and bioactive silver-containing Na2OxCaOx2SiO2 glass prepared by sol–gel method. J. Mater. Sci.: Mater. Med. 2004;15:831–837. doi: 10.1023/B:JMSM.0000032825.51052.00. PubMed DOI
Balamurugan A. Balossier G. Kannan S. Michel J. Rebelo A. H. S. Fereira J. M. F. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–262. doi: 10.1016/j.actbio.2006.09.005. PubMed DOI
Courtheoux L. Lao J. Nedelec J. M. Jallot E. Controlled bioactivity in zinc-doped sol–gel-derived binary bioactive glasses. J. Phys. Chem. C. 2008;112:13663–13667. doi: 10.1021/jp8044498. DOI
Aina V. Banino F. Morterra C. Miola M. Bianchi C. L. Malavasi G. Marchetti M. Bolis V. Influence of the chemical composition on nature and activity of the surface layer of Zn-substituted sol–gel (bioactive) glasses. J. Phys. Chem. C. 2011;115:2196–2210. doi: 10.1021/jp1101708. DOI
Aina V. Malavasi G. Pla A. F. Munaron L. Morterra C. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. 2009;5:1211–1222. doi: 10.1016/j.actbio.2008.10.020. PubMed DOI
Isaac J. Nohra J. Lao J. Jallot E. Nedelec J. M. Berdal A. Sautier J. M. Effects of strontium doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 2011;21:130–143. doi: 10.22203/eCM.v021a11. PubMed DOI
Leite A. J. Gonclaves A. I. Rodrigues M. T. Gomes M. E. Mano J. F. Strontium-doped bioactive glass nanoparticles in osteogenic commitment. ACS Appl. Mater. Interfaces. 2018;10:23311–23320. doi: 10.1021/acsami.8b06154. PubMed DOI
Naruphontjirakul P. Porter A. E. Jones J. R. In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomater. 2018;66:67–80. doi: 10.1016/j.actbio.2017.11.008. PubMed DOI
Herasaki S. Alizadeh M. Nazarian H. Sharifi D. Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J. Mater. Sci.: Mater. Med. 2010;21:695–705. doi: 10.1007/s10856-009-3920-0. PubMed DOI
Skelton K. L. Glenn J. V. Clarke S. A. Georgiou G. Valappil S. P. Knowles J. C. Nazhat S. N. Jordan G. R. Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro. Acta Biomater. 2007;3:563–572. doi: 10.1016/j.actbio.2006.11.008. PubMed DOI
Brow R. K. Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids. 2000;263–264:1–28. doi: 10.1016/S0022-3093(99)00620-1. DOI
Rajendran V. Devi A. V. G. Azooz M. El-Batal F. H. Physicochemical studies of phosphate based P2O5–Na2O–CaO–TiO2 glasses for biomedical applications. J. Non-Cryst. Solids. 2006;353:77–84. doi: 10.1016/j.jnoncrysol.2006.08.047. DOI
Abou Neel E. A. Ahmed I. Pratten J. Nazhat S. N. Knowles J. C. Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials. 2005;26:2247–2254. doi: 10.1016/j.biomaterials.2004.07.024. PubMed DOI
Abou Neel E. A. O'Dell L. A. Smith M. E. Knowles J. C. Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications. J. Mater. Sci.: Mater. Med. 2008;19:1669–1679. doi: 10.1007/s10856-007-3313-1. PubMed DOI
Ahmed I. Collins C. A. Lewis M. P. Olsen I. Knowles J. C. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials. 2004;25:3223–3232. doi: 10.1016/j.biomaterials.2003.10.013. PubMed DOI
Shah R. Sinanam A. C. M. Knowles J. C. Hunt N. P. Lewis M. P. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials. 2005;26:1497–1505. doi: 10.1016/j.biomaterials.2004.04.049. PubMed DOI
Knowles J. C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003;13:2395–2401. doi: 10.1039/B307119G. DOI
Carta D. Knowles J. C. Smith M. E. Newport R. J. Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. J. Non-Cryst. Solids. 2007;353:1141–1149. doi: 10.1016/j.jnoncrysol.2006.12.093. DOI
Pickup D. M. Guerry P. Moss R. M. Knowles J. C. Smith M. E. Newport R. J. New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J. Mater. Chem. 2007;17:4777–4784. doi: 10.1039/B709955J. DOI
Pickup D. M. Speight R. J. Knowles J. C. Smith M. E. Newport R. J. Sol–gel synthesis and structural characterisation of binary TiO2–P2O5 glasses. Mater. Res. Bull. 2008;43:333–342. doi: 10.1016/j.materresbull.2007.03.005. DOI
Pickup D. M. Newport R. J. Knowles J. C. Sol–gel phosphate-based glass for drug delivery applications. J. Biomater. Appl. 2012;26:613–622. doi: 10.1177/0885328210380761. PubMed DOI
Abou Neel E. A. Chrzanowski W. Vlappil S. P. O'Dell L. A. Pickup D. M. Smith M. E. Newport R. J. Knowles J. C. Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J. Non-Cryst. Solids. 2009;355:991–1000. doi: 10.1016/j.jnoncrysol.2009.04.016. DOI
Abou Neel E. A. Knowles J. C. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci.: Mater. Med. 2008;19:377–386. doi: 10.1007/s10856-007-3079-5. PubMed DOI
Abou Neel E. A. Mizoguchi T. Ito M. Bitar M. Salih V. Knowles J. C. In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials. 2007;28:2967–2977. doi: 10.1016/j.biomaterials.2007.03.018. PubMed DOI
Abou Neel E. A. Young A. M. Nazhat S. N. Knowles J. C. A facile synthesis route to prepare microtubes from phosphate glass fibres. Adv. Mater. 2007;19:2856–2862. doi: 10.1002/adma.200700039. DOI
Guedes J. C. Park J. H. Lakhkar N. J. Kim H. W. Knowles J. C. Wall I. B. TiO2-doped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. J. Biomater. Appl. 2013;28:3–11. doi: 10.1177/0885328212459093. PubMed DOI PMC
Bitar M. Salih V. Knowles J. C. Lewis M. P. Iron-phosphate glass fiber scaffolds for the hard–soft interface regeneration: the effect of fiber diameter and flow culture condition on cell survival and differentiation. J. Biomed. Mater. Res., Part A. 2008;87:1017–1026. doi: 10.1002/jbm.a.31855. PubMed DOI
Vitale-Brovarone C. Novajra G. Lousteau J. Milanese D. Raimondo S. Fornaro M. Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. Acta Biomater. 2012;8:1125–1136. doi: 10.1016/j.actbio.2011.11.018. PubMed DOI
Abou Neel E. A. Pickup D. M. Valappil S. P. Newport R. J. Knowles J. C. Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. B. 2009;19:690–701. doi: 10.1039/B810675D. DOI
Sene F. F. Martinelli J. R. Okumo E. Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids. 2008;354:4887–4893. doi: 10.1016/j.jnoncrysol.2008.04.041. DOI
Nazhat S. N. Abou Neel E. A. Kidane A. Ahmed I. Hope C. Kershaw M. Lee P. D. Stride E. Saffari N. Knowles J. C. Brown R. A. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromol. 2006;8:543–551. doi: 10.1021/bm060715f. PubMed DOI
Ahmed I. Cronin P. S. Abou Neel E. A. Parsons A. J. Knowles J. C. Rudd C. D. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J. Biomed. Mater. Res., Part B. 2009;89:18–27. doi: 10.1002/jbm.b.31182. PubMed DOI
Salih V. Franks K. James M. Hastings G. W. Knowles J. C. Olsen I. Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J. Mater. Sci.: Mater. Med. 2000;11:615–620. doi: 10.1023/A:1008901612674. PubMed DOI
Bitar M. Salih V. Mudera V. Knowles J. C. Lewis M. P. Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials. 2004;25:2283–2292. doi: 10.1016/j.biomaterials.2003.08.054. PubMed DOI
Gough J. E. Christian P. Scotchford C. A. Rudd C. D. Jones I. A. Synthesis, degradation, and in vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Biomed. Mater. Res. 2002;59:481–489. doi: 10.1002/jbm.10020. PubMed DOI
Dorozhkin S. V. Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. 2002;41:3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1. PubMed DOI
Bouler J. M. LeGeros R. Z. Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J. Biomed. Mater. Res. 2000;51:680–684. doi: 10.1002/1097-4636(20000915)51:4<680::AID-JBM16>3.0.CO;2-#. PubMed DOI
Vallet-Regi M. Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005;15:1509–1516. doi: 10.1039/B414143A. DOI
Valappil S. P. Pickup D. M. Carroll D. L. Hope C. K. Pratten J. Newport R. J. Smith M. E. Wilson M. Knowles J. C. Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 2007;51:4453–4461. doi: 10.1128/AAC.00605-07. PubMed DOI PMC
Christie J. K. Ainsworth R. I. de Leeuw N. H. Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials. 2014;35:6164–6171. doi: 10.1016/j.biomaterials.2014.04.032. PubMed DOI
Lahkar N. J. Abou Neel E. A. Salih V. Knowles J. C. Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. J. Mater. Sci.: Mater. Med. 2009;20:1339–1346. doi: 10.1007/s10856-008-3688-7. PubMed DOI
Hussain K. M. Z. Patel U. Kennedy A. R. Laura M. P. Sottile V. Grant D. M. Scammell B. E. Ahmed I. Porous calcium phosphate glass microspheres for orthobiologic applications. Acta Biomater. 2018;72:396–406. doi: 10.1016/j.actbio.2018.03.040. PubMed DOI
Maeno S. Niki Y. Matsumoto H. Morioka H. Yatabe T. Funayama A. Toyama Y. Taguchi T. Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–4855. doi: 10.1016/j.biomaterials.2005.01.006. PubMed DOI
Yoshizawa S. Brown A. Bachowsky A. Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect. Tissue Res. 2014;55:155–159. doi: 10.3109/03008207.2014.923877. PubMed DOI
Julien M. Khoshniat S. Lacreusette A. Gatius M. Bozec A. Wagner E. F. Wittrant Y. Masson M. Weiss P. Beck L. Magne D. Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J. Bone Miner. Res. 2009;24:1856–1868. doi: 10.1359/jbmr.090508. PubMed DOI
Michael-Titus A., Revest P. and Shortland P., Elements of cellular and molecular neurosciences, in The nervous system, 2nd Edition, 2010, pp. 31–46
Patel U. Moss R. M. Hossain K. M. Z. Kennedy A. R. Barney E. R. Ahmed I. Hannon A. C. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications. Acta Biomater. 2017;60:109–127. doi: 10.1016/j.actbio.2017.07.002. PubMed DOI
Ahmed I. Abou Neel E. A. Valappil S. P. Nazhat S. N. Pickup D. M. Carta D. Carroll D. L. Newport R. J. Smith M. E. Knowles J. C. The structure and properties of silver-doped phosphate-based glasses. J. Mater. Sci. 2007;42:9827–9835. doi: 10.1007/s10853-007-2008-9. DOI
Ahmed I. Reddy D. Wilson M. Knowles J. C. Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res., Part A. 2006;79:618–626. doi: 10.1002/jbm.a.30808. PubMed DOI
Mourino V. Cattalini J. P. Boccaccini A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc., Interface. 2012;9:401–419. doi: 10.1098/rsif.2011.0611. PubMed DOI PMC
Weng L. Boda S. K. Teusink M. J. Shuler F. D. Li X. Xie J. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl. Mater. Interfaces. 2017;9:24484–24496. doi: 10.1021/acsami.7b06521. PubMed DOI
Zhu H. Pan Z. Chen B. Lee B. Mahurin S. M. Overbury S. H. Dai S. Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts. J. Phys. Chem. B. 2004;108:20038–20044. doi: 10.1021/jp047525o. DOI
Tang J. Liu J. Yang J. Feng Z. Fan F. Yang Q. Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution. J. Colloid Interface Sci. 2009;335:203–209. doi: 10.1016/j.jcis.2009.03.090. PubMed DOI
Kim W. I. Hong I. K. J. Synthesis of monolithic titania–silica composite aerogels with supercritical drying process. J. Ind. Eng. Chem. 2003;9:728–734.
Melero J. A. Arsuaga J. M. de Frutos P. Iglesias J. Sainz J. Blazquez S. Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous Mesoporous Mater. 2005;86:364–373. doi: 10.1016/j.micromeso.2005.07.040. DOI
Ruzimuradov O. Nurmanov S. Kodani Y. Takahashi R. Yamada I. Morphology and dispersion control of titania–silica monolith with macro–meso pore system. J. Sol-Gel Sci. Technol. 2012;64:684–693. doi: 10.1007/s10971-012-2903-7. DOI
Zhang W. H. Lu J. Han B. Li M. Xiu J. Ying P. Li C. Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15. Chem. Mater. 2002;14:3413–3421. doi: 10.1021/cm011686c. DOI
Liu G. Liu Y. Yang G. Li S. Zu Y. Zhang W. Jia M. Preparation of titania–silica mixed oxides by a sol–gel route in the presence of citric acid. J. Phys. Chem. C. 2009;113:9345–9351. doi: 10.1021/jp900577c. DOI
Chen H. J. Wang L. Chiu W. Y. Chelation and solvent effect on the preparation of titania colloids. Mater. Chem. Phys. 2007;101:12–19. doi: 10.1016/j.matchemphys.2006.02.007. DOI
Rupp W. Husing N. Schubert U. Preparation of silica–titania xerogels and aerogels by sol–gel processing of new single-source precursors. J. Mater. Chem. 2002;12:2594–2596. doi: 10.1039/B204956B. DOI
Lenza R. F. Vasconcelos W. L. Synthesis of titania–silica materials by sol–gel. Mater. Res. 2002;5:497–502. doi: 10.1590/S1516-14392002000400017. DOI
Konishi J. Fujita K. Nakanishi K. Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol–gel process accompanied by phase separation. Chem. Mater. 2006;18:6069–6074. doi: 10.1021/cm0617485. DOI
Nakanishi K. Tanaka N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007;40:863–873. doi: 10.1021/ar600034p. PubMed DOI
Ruzimuradov O. N. Formation of bimodal porous silica–titania monoliths by sol–gel route. IOP Conf. Ser.: Mater. Sci. Eng. 2011;18:032004.
Deshmukh K. Kovarik T. Krenek T. Stitch T. Docheva D. Microstructural evaluation and thermal properties of sol–gel derived silica–titania based porous glasses. J. Phys.: Conf. Ser. 2020;1527:012031. doi: 10.1088/1742-6596/1527/1/012031. DOI
Nakanishi K. Preparation of SiO2–TiO2 gels with controlled pore structure via sol–gel route. Bull. Inst. Chem. Res., Kyoto Univ. 1992;70:144–151.
Flaig S. Akbarzadeh J. Dolcet P. Gross S. Peterlik H. Husing N. Hierarchically organized silica–titania monoliths prepared under purely aqueous conditions. Chem.–Eur. J. 2014;20:17409–17419. doi: 10.1002/chem.201402873. PubMed DOI
Aravind P. R. Shjesh P. Mukundan P. Warrier K. G. K. Silica–titania aerogel monoliths with large pore volume and surface area by ambient pressure drying. J. Sol-Gel Sci. Technol. 2009;52:328–334. doi: 10.1007/s10971-009-2042-y. DOI
Destino J. F. Dudukovic N. A. Johnson M. A. Nguyen D. T. Yee T. D. Egan G. C. Sawvel A. M. Steele W. A. Baumann T. F. Duoss E. B. Suratwala T. Dylla-Spears R. 3D printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Adv. Mater. Technol. 2018;3:1700323. doi: 10.1002/admt.201700323. DOI
Scannell G. Koike A. Hunag L. Structure and thermomechanical response of TiO2–SiO2 glasses to temperature. J. Non-Cryst. Solids. 2016;447:238–247. doi: 10.1016/j.jnoncrysol.2016.06.018. DOI
Brusatin G. Guglielmi M. Innocenzi P. Martucci A. Battaglin G. Pelli S. Righini G. Microstructural and optical properties of sol–gel silica–titania waveguides. J. Non-Cryst. Solids. 1997;220:202–209. doi: 10.1016/S0022-3093(97)00263-9. DOI
Shingyouchi K. Konishi S. Gradient-index doped silica rod lenses produced by a sol gel method. Appl. Opt. 1990;29:4061–4063. doi: 10.1364/AO.29.004061. PubMed DOI
Deng Z. Wang J. Zhang Y. Weng Z. Zhang Z. Zhou B. Shen J. Chen L. Preparation and photocatalytic activity of TiO2–SiO2 binary aerogels. Nanostruct. Mater. 1999;11:1313–1318. doi: 10.1016/S0965-9773(99)00423-7. DOI
Dutoit D. C. M. Schneider M. Baiker A. Titania-silica mixed oxides: I. Influence of sol–gel and drying conditions on structural properties. J. Catal. 1995;153:165–176. doi: 10.1006/jcat.1995.1118. DOI
Xu Z. Jia Y. Hao Z. Liu M. Chen L. Preparation and characterization of silica–titania aerogel-like balls by ambient pressure drying. J. Sol-Gel Sci. Technol. 2007;41:203–207. doi: 10.1007/s10971-006-1500-z. DOI
Malinowska B. Walendziewski J. Robert D. Weber J. V. Stolarski M. The study of photocatalytic activities of titania and titania–silica aerogels. Appl. Catal., B. 2003;46:441–451. doi: 10.1016/S0926-3373(03)00273-X. DOI
Deng Z. Breval E. Pantano C. G. Colloidal sol/gel processing of ultra-low expansion TiO2/SiO2 glasses. J. Non-Cryst. Solids. 1988;100:364–370. doi: 10.1016/0022-3093(88)90047-6. DOI
Satoh S. Susa K. Matsuyama I. Sol–gel derived binary silica glasses with high refractive index. J. Non-Cryst. Solids. 1992;146:121–128. doi: 10.1016/S0022-3093(05)80483-1. DOI
El-Bashir S. M. Physical properties Nd3+ doped (SiO2–TiO2) monolithic glass for photoresistor applications. Mater. Res. Express. 2017;4:115203. doi: 10.1088/2053-1591/aa97a7. DOI
Guangwu L. and Yangang L., Preparation and characterization of silica–titania aerogel monoliths by sol gel method, IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, August 22–25, 2016, pp. 85–88
Pandey S. Mishra S. B. Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 2011;59:73–94. doi: 10.1007/s10971-011-2465-0. DOI
Mir S. H. Nagahara L. A. Thundat T. Mokarian-Tabari P. Furukawa H. Khosla A. Review – organic–inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 2018;165:B3137–B3156. doi: 10.1149/2.0191808jes. DOI
Kickelbick G., Introduction to hybrid materials, in Hybrid materials: synthesis, characterization and applications, ed. G. Kickelbick, Wiley-VCH Verlag, GmbH & Co KGaA, Weinheim, 2007, pp. 1–48
Baino F. Fiume E. Miola M. Verne E. Bioactive sol–gel glasses: processing, properties, and applications. Int. J. Appl. Ceram. Technol. 2018;15:841–860. doi: 10.1111/ijac.12873. DOI
Gill I. Bio-doped nanocomposite polymers: sol–gel bioencapsulates. Chem. Mater. 2001;13:3404–3421. doi: 10.1021/cm0102483. DOI
Vallient E. M. Jones J. R. Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter. 2011;7:5083–5095. doi: 10.1039/C0SM01348J. DOI
Crouzet I. Leclercq D. Polyphosphazene–metal oxide hybrids by nonhydrolytic sol–gel processes. J. Mater. Chem. 2000;10:1195–1201. doi: 10.1039/A909362A. DOI
Tamaki R. Naka K. Chujo Y. Synthesis of poly(N,N-dimethylacrylamide)/silica gel polymer hybrids by in situ polymerization method. Polym. J. 1998;30:60–65. doi: 10.1295/polymj.30.60. DOI
Toki M. Chow T. Y. Ohnaka T. Samura H. Saegusa T. Structure of poly(vinylpyrrolidone)–silica hybrid. Polym. Bull. 1992;29:653–660. doi: 10.1007/BF01041151. DOI
Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. 2009;48:4488–4507. doi: 10.1002/anie.200900723. PubMed DOI
Yang F. Nelson G. L. PMMA/silica nanocomposite studies: synthesis and properties. J. Appl. Polym. Sci. 2004;91:3844–3850. doi: 10.1002/app.13573. DOI
Mauritz K. A. Jones C. K. Novel poly (n-butyl methacrylate)/titanium oxide alloys produced by sol–gel process for titanium alkoxides. J. Appl. Polym. Sci. 1990;40:1401–1420. doi: 10.1002/app.1990.070400726. DOI
Zhao X. Wu Y. Du Y. Chen X. Lei B. Xue Y. Ma P. X. A highly bioactive and biodegradable poly(glycerolsebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J. Mater. Chem. B. 2015;3:3222–3233. doi: 10.1039/C4TB01693A. PubMed DOI
Kamitakahara M. Kawashita M. Miyata N. Kokubo T. Nakamura T. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)–CaO–SiO2 hybrids with different calcium contents. J. Mater. Sci.: Mater. Med. 2002;13:1015–1020. doi: 10.1023/A:1020324101682. PubMed DOI
Sanchez-Tellez D. Tellez-Jurado L. Rodriguez-Lorenzo L. M. Optimization of the CaO and P2O5 contents on PDMS–SiO2–CaO–P2O5 hybrids intended for bone regeneration. J. Mater. Sci. 2015;50:5993–6006. doi: 10.1007/s10853-015-9147-1. DOI
Pereira A. P. V. Vasconcelos W. L. Orefice R. L. Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity. J. Non-Cryst. Solids. 2000;273:180–185. doi: 10.1016/S0022-3093(00)00166-6. DOI
Martin A. I. Salinas A. J. Vallet-Regi M. Bioactive and degradable organic–inorganic hybrids. J. Eur. Ceram. Soc. 2005;25:3533–3538. doi: 10.1016/j.jeurceramsoc.2004.09.030. DOI
Catauro M. Bollino F. Papale F. Gallicchio M. Pacifico S. Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol–gel technique. Mater. Sci. Eng., C. 2015;48:548–555. doi: 10.1016/j.msec.2014.12.035. PubMed DOI
Song J. H. Yoon B. H. Kim H. E. Kim H. W. Bioactive and degradable hybridized nanofibers of gelatin–siloxane for bone regeneration. J. Biomed. Mater. Res., Part A. 2008;84:875–884. doi: 10.1002/jbm.a.31330. PubMed DOI
Lee E. J. Jun S. H. Kim H. E. Kim H. W. Koh Y. H. Jang J. H. Silica xerogel–chitosan nano-hybrids for use as drug eluting bone replacement. J. Mater. Sci.: Mater. Med. 2010;21:207–214. doi: 10.1007/s10856-009-3835-9. PubMed DOI
Lee E. J. Shin D. S. Kim H. E. Kim H. W. Koh Y. H. Jang J. H. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials. 2009;30:743–750. doi: 10.1016/j.biomaterials.2008.10.025. PubMed DOI
Lee E. J. Teng S. H. Jang T. S. Wang P. Yook S. W. Kim H. E. Koh Y. H. Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomater. 2010;6:3557–3565. doi: 10.1016/j.actbio.2010.03.022. PubMed DOI
Catauro M. Bollino F. Papale F. Marciano S. Pacifico S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater. Sci. Eng., C. 2015;47:135–141. doi: 10.1016/j.msec.2014.11.040. PubMed DOI
Catauro M. Bollino F. Papale F. Mozetic P. Rainer A. Trombetta M. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation. Mater. Sci. Eng., C. 2014;45:395–401. doi: 10.1016/j.msec.2014.09.007. PubMed DOI
Ren L. Tsuru K. Hayakawa S. Osaka A. Sol–gel preparation and in vitro deposition of apatite on porous gelatin–siloxane hybrids. J. Non-Cryst. Solids. 2001;285:116–122. doi: 10.1016/S0022-3093(01)00441-0. DOI
Ren L. Tsuru K. Hayakawa S. Osaka A. Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–4773. doi: 10.1016/S0142-9612(02)00226-0. PubMed DOI
Silva S. S. Ferreira R. A. S. Fu L. Carlos L. D. Mano J. F. Reis R. L. Rocha J. Functional nanostructured chitosan–siloxane hybrids. J. Mater. Chem. 2005;15:3952–3961. doi: 10.1039/B505875A. DOI
Ohtsuki C. Miyazaki T. Tanihara M. Development of bioactive organic–inorganic hybrid for bone substitutes. Mater. Sci. Eng., C. 2002;22:27–34. doi: 10.1016/S0928-4931(02)00109-1. DOI
Gupta R. Kumar A. Bioactive materials for biomedical applications using sol–gel technology. Biomed. Mater. 2008;3:034005. doi: 10.1088/1748-6041/3/3/034005. PubMed DOI
Szczesniak B. Choma J. Joroniec M. Major advances in the development of ordered mesoporous materials. Chem. Commun. 2020;56:7836–7848. doi: 10.1039/D0CC02840A. PubMed DOI
Thommes M. Kaneko K. Neimark A. V. Olivier J. P. Rodriguez-Reinoso F. Rouquerol J. Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069.
Jones J. R. Lee P. D. Hench L. L. Hierarchical porous materials for tissue engineering. Philos. Trans. R. Soc., A. 2006;364:263–281. doi: 10.1098/rsta.2005.1689. PubMed DOI
Pal N. Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrids and purely organic solids. Adv. Colloid Interface Sci. 2013;189–190:21–41. doi: 10.1016/j.cis.2012.12.002. PubMed DOI
Arcos D. Vallet-Regi M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911. doi: 10.1016/j.actamat.2012.10.039. DOI
Wu C. Chang J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus. 2012;2:292–306. doi: 10.1098/rsfs.2011.0121. PubMed DOI PMC
Horcajada P. Ramila A. Perez-Pariente J. Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68:105–109. doi: 10.1016/j.micromeso.2003.12.012. DOI
Li Y. Bastakoti B. P. Yamauchi Y. Smart soft-templating synthesis of hollow mesoporous bioactive glass spheres. Chem.–Eur. J. 2015;21:8038–8042. doi: 10.1002/chem.201406570. PubMed DOI
Pappas G. S. Liatsi P. Kartsonakis I. A. Danilidis I. Kordas G. Synthesis and characterization of new SiO2–CaO hollow nanospheres by sol–gel method: bioactivity of the new system. J. Non-Cryst. Solids. 2008;354:755–760. doi: 10.1016/j.jnoncrysol.2007.09.007. DOI
Zheng K. Bortuzzo J. A. Liu Y. Li W. Pischetsrieder M. Roether J. Lu M. Boccaccini A. R. Bio-templated bioactive glass particles with hierarchical macro–nano porous structure and drug delivery capability. Colloids Surf., B. 2015;135:825–832. doi: 10.1016/j.colsurfb.2015.03.038. PubMed DOI
Li X. Guohou M. Xiaofeng C. Guang Y. Hui L. Cong M. Xiongjun S. Chengyun N. Investigation of radial mesoporous bioactive glass particles as drug carriers for inhibition of tumor cells. Sci. Adv. Mater. 2017;9:562–570. doi: 10.1166/sam.2017.2341. DOI
Arcos D. Lopez-Noriega A. Ruiz-Hernandez E. Terasaki O. Vallet-Regi M. Ordered mesoporous microspheres for bone grafting and drug delivery. Chem. Mater. 2009;21:1000–1009. doi: 10.1021/cm801649z. DOI
Zheng K. Lu M. Rutkowski B. Dai X. Yang Y. Taccardi N. Stachewicz U. Czyrska-Filemonowicz A. Huser N. Boccaccini A. R. ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. J. Mater. Chem. B. 2016;4:7936–7949. doi: 10.1039/C6TB02053D. PubMed DOI
Tsigkou O. Labbaf S. Stevens M. M. Porter A. E. Jones J. R. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv. Healthcare Mater. 2014;3:115–125. doi: 10.1002/adhm.201300126. PubMed DOI
Hu Q. Li Y. Miao G. Zhao N. Chen X. Size control and biological properties of monodispersed mesoporous bioactive glass sub-micron spheres. RSC Adv. 2014;4:22678–22687. doi: 10.1039/C4RA01276C. DOI
Kolhar P. Anselmo A. C. Gupta V. Pant K. Prabhakarpandian B. Ruoslahti E. Mitragotri S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U. S. A. 2013;110:10753–10758. doi: 10.1073/pnas.1308345110. PubMed DOI PMC
Colquhoun R. Tanner K. E. Mechanical behaviour of degradable phosphate glass fibres and composites: a review. Biomed. Mater. 2015;11:14105. doi: 10.1088/1748-6041/11/1/014105. PubMed DOI
Li Y. Chen X. Ning C. Yuan B. Hu Q. Facile synthesis of mesoporous bioactive glasses with controlled shapes. Mater. Lett. 2015;161:605–608. doi: 10.1016/j.matlet.2015.09.057. DOI
El-Meliegy E. Mabrouk M. El-Sayed S. A. M. Abd El-Hady B. M. Shehata M. R. Hosny W. M. Novel Fe2O3-doped glass/chitosan scaffolds for bone tissue replacement. Ceram. Int. 2018;44:9140–9151. doi: 10.1016/j.ceramint.2018.02.122. DOI
El-Sayed S. A. M. Mabrouk M. Khallaf M. E. Abd El-Hady B. M. El-Meliegy E. Shehata M. R. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J. Drug Delivery Sci. Technol. 2020;57:101757. doi: 10.1016/j.jddst.2020.101757. DOI
Baino F. Fiume E. Miola M. Leone F. Onida B. Verne E. Fe-doped bioactive glass-derived scaffolds produced by sol–gel foaming. Mater. Lett. 2019;235:207–211. doi: 10.1016/j.matlet.2018.10.042. DOI
Charoensuk T. Sirisathitkul C. Boonyang U. Macha I. J. Santos J. Grossin D. Ben-Nissan B. In vitro bioactivity and stem cells attachment of three-dimensionally ordered macroporous bioactive glass incorporating iron oxides. J. Non-Cryst. Solids. 2016;452:62–73. doi: 10.1016/j.jnoncrysol.2016.08.019. DOI
Mesquita-Guimarães J. Ramos L. Detsch R. Henriques B. Fredel M. C. Silva F. S. Boccaccini A. R. Evaluation of in vitro properties of 3D micro–macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. J. Eur. Ceram. Soc. 2019;39:2545–2558. doi: 10.1016/j.jeurceramsoc.2019.01.029. DOI
Ni S. Li X. Yang P. Ni S. Hong F. Webster T. J. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO–SiO2–Ag2O bioactive materials. Mater. Sci. Eng., C. 2016;58:700–708. doi: 10.1016/j.msec.2015.09.011. PubMed DOI
Yazdimamaghani M. Vashae D. Assefa S. Walker K. J. Madihally S. V. Kohler G. A. Tayebi L. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J. Biomed. Nanotechnol. 2014;10(6):911–931. doi: 10.1166/jbn.2014.1783. PubMed DOI
Sharifianjazi F. Parvin N. Tahriri M. Synthesis and characteristics of sol–gel bioactive SiO2–P2O5–CaO–Ag2O glasses. J. Non-Cryst. Solids. 2017;476:108–113. doi: 10.1016/j.jnoncrysol.2017.09.035. DOI
Jalise S. Z. Baheiraei N. Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: in vitro and in vivo characterization. Ceram. Int. 2018;44:14217–14227. doi: 10.1016/j.ceramint.2018.05.025. DOI
Shaltooki M. Dini G. Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng., C. 2019;105:110138. doi: 10.1016/j.msec.2019.110138. PubMed DOI
Amudha S. Ramya J. R. Arul K. T. Deepika A. Sathiamurthi P. Mohana B. Asokan K. Dong C. L. Kalkura S. N. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Composites, Part B. 2020;196:108099. doi: 10.1016/j.compositesb.2020.108099. DOI
Zamani D. Moztarzadeh F. Bizari D. Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2019;137:1256–1267. doi: 10.1016/j.ijbiomac.2019.06.182. PubMed DOI
Hong Y. Chen X. Jing X. Fan H. Gu Z. Zhang X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv. Funct. Mater. 2010;20:1503–1510. doi: 10.1002/adfm.200901627. DOI
Poologasundarampillai G. Wang D. Li S. Nakamura J. Bradley R. Lee P. D. Stevens M. M. McPhail D. S. Kasuga T. Jones J. R. Cotton–wool-like bioactive glasses for bone regeneration. Acta Biomater. 2014;10:3733–3746. doi: 10.1016/j.actbio.2014.05.020. PubMed DOI
Baino F. Novajra G. Miguez-Pacheco V. Boccaccini A. R. Vitale-Bovarone C. Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids. 2016;432:15–30. doi: 10.1016/j.jnoncrysol.2015.02.015. DOI
Rabie S. M. Nazparvar N. Azizian M. Vashaee D. Tayebi L. Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 2015;41:7241–7251. doi: 10.1016/j.ceramint.2015.02.140. DOI
Faure J. Drevet R. Lemelle A. Jaber N. B. Tara A. El Btaouri H. Benhayoune H. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater. Sci. Eng., C. 2015;47:407–412. doi: 10.1016/j.msec.2014.11.045. PubMed DOI
Lopes J. H. Bueno O. M. V. M. Mazali I. O. Bertran C. A. Investigation of citric acid-assisted sol–gel synthesis coupled to the self-propagating combustion method for preparing bioactive glass with high structural homogeneity. Mater. Sci. Eng., C. 2019;97:669–678. doi: 10.1016/j.msec.2018.12.022. PubMed DOI
Thibault M. H. Comeau C. Vienneau G. Robichaud J. Brown D. Bruening R. Martin L. J. Djaoued Y. Assessing the potential of boronic acid/chitosan/bioglass composite. Mater. Sci. Eng., C. 2020;110:110674. doi: 10.1016/j.msec.2020.110674. PubMed DOI
Hench L. L. The story of bioglass. J. Mater. Sci.: Mater. Med. 2006;17:967–978. doi: 10.1007/s10856-006-0432-z. PubMed DOI
Baino F. Bioactive glass – when glass science and technology meet regenerative medicine. Ceram. Int. 2018;44:14953–14966. doi: 10.1016/j.ceramint.2018.05.180. DOI
Hupa L., Composition–property relations of bioactive silicate glasses, in Bioactive glasses: materials properties and applications, ed. H. Ylanen, Woodhead Publishing, 2nd edn, 2018, pp. 1–36
Deliormanli A. M. Liu X. Rahaman M. N. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model. J. Biomater. Appl. 2014;28:643–653. doi: 10.1177/0885328212470013. PubMed DOI
Shah F. A. Brauer D. S. Desai N. Hill R. G. Hing K. A. Fluoride-containing bioactive glasses and Bioglass® 45S5 form apatite in low pH cell culture medium. Mater. Lett. 2014;119:96–99. doi: 10.1016/j.matlet.2013.12.102. DOI
Andersson O. H. Liu G. Karlsson K. H. Niemi L. Miettinen J. Juhanoja J. In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J. Mater. Sci.: Mater. Med. 1990;1:219–227. doi: 10.1007/BF00701080. DOI
Brink M. Turunen T. Happonen R. P. Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 1997;37:114–121. doi: 10.1002/(SICI)1097-4636(199710)37:1<114::AID-JBM14>3.0.CO;2-G. PubMed DOI
Lusvardi G. Malavasi G. Menabue L. Menziani M. C. Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B. 2002;106:9753–9760. doi: 10.1021/jp020321s. DOI
Wren A. W. Coughlan A. Smith C. M. Hudson S. P. Laffir F. R. Towler M. R. Investigating the solubility and cytocompatibility of CaO–Na2O–SiO2/TiO2 bioactive glasses. J. Biomed. Mater. Res., Part A. 2015;103:709–720. doi: 10.1002/jbm.a.35223. PubMed DOI
Pourshahrestani S. Zeimaran E. Kadri N. A. Gargiulo N. Samuel S. Naveen S. V. Kamarul T. Towler M. R. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J. Mater. Chem. B. 2016;4:71–86. doi: 10.1039/C5TB02062J. PubMed DOI
Kaur G. Pandey O. P. Singh K. Homa D. Scott B. Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res., Part A. 2014;102:254–274. doi: 10.1002/jbm.a.34690. PubMed DOI
Goudouri O. M. Kontonasaki E. Lohbauer U. Boccaccini A. R. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater. 2014;10:3795–3810. doi: 10.1016/j.actbio.2014.03.028. PubMed DOI
Li X. Wang X. He D. Shi J. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem. 2008;18:4103–4109. doi: 10.1039/B805114C. DOI
Verne E. Nunzio S. D. Bosetti M. Appendino P. Brovarone C. V. Maina G. Cannas M. Surface characterization of silver-doped bioactive glass. Biomaterials. 2005;26:5111–5119. doi: 10.1016/j.biomaterials.2005.01.038. PubMed DOI
Yamaguchi M. Role of zinc in bone metabolism and preventive effect on bone disorder. Biomed. Res. Trace Elem. 2007;18:346–366.
Boyd D. Clarkin O. M. Wren A. W. Towler M. R. Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomater. 2008;4:425–431. doi: 10.1016/j.actbio.2007.07.010. PubMed DOI
Zreqat H. Valenzuela S. M. Nissan B. B. Roest R. Knabe C. Radlanski R. J. Renz H. Evans P. J. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. J. Biomed. Mater. Res. 2002;62:175–184. doi: 10.1002/jbm.10270. PubMed DOI
Arima Y. Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:4079–4087. doi: 10.1016/j.biomaterials.2007.03.013. PubMed DOI
Hasan A. Pattanayek S. K. Pandey L. M. Effect of functional groups of self assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater. Sci. Eng. 2018;4:3224–3233. doi: 10.1021/acsbiomaterials.8b00795. PubMed DOI
Duan K. Wang R. Z. Surface modifications of bone implants through wet chemistry. J. Mater. Chem. 2006;16:2309–2321. doi: 10.1039/B517634D. DOI
Chang J. and Zhou Y. L., Surface modification of bioactive glasses, in Bioactive glasses: materials properties and applications, ed. H. Ylanen, Woodhead Publishing, 2017, pp. 119–143
Kargozar S. Kermani F. Beidokhti S. M. Hamzehlou S. Verne E. Ferraris S. Baino F. Functionalization and surface modification of bioactive glasses (BGs): tailoring the biological response working on the outermost surface layer. Materials. 2019;12:3696. doi: 10.3390/ma12223696. PubMed DOI PMC
Ferraris S. and Verne E., Surface functionalization of bioactive glasses: reactive groups, biomolecules, and drugs on bioactive surfaces for smart and functional biomaterials, in Bioactive glasses: fundamentals, technology and applications, ed. A. R. Boccaccini, D. S. Brauer and L. Hupa, The Royal Society of Chemistry, 2018, pp. 221–235
Qiu Z. Y. Chen C. Wang X. M. Lee I. S. Advances in the surface modification techniques of bone-related implants for last 10 years. Regener. Biomater. 2014;1:67–79. doi: 10.1093/rb/rbu007. PubMed DOI PMC
Stanic V., Variation in properties of bioactive glasses after surface modification, in Clinical applications of biomaterials, ed. G. Kaur, Springer International Publishing AG, 2017, pp. 35–63
Towarfe G. K. Composto R. J. Shapiro I. M. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials. 2006;27:631–642. doi: 10.1016/j.biomaterials.2005.06.017. PubMed DOI
Zucca P. Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 2014;19:14139–14194. doi: 10.3390/molecules190914139. PubMed DOI PMC
Aina V. Magistris C. Cerrato G. Martra G. Viscardi G. Lusvardi G. Malavasi G. Menabue L. New formulation of functionalized bioactive glasses to be used as carriers for the development of pH-stimuli responsive biomaterials for bone diseases. Langmuir. 2014;30:4703–4715. doi: 10.1021/la5003989. PubMed DOI
Verne E. Vitale-Brovarone C. Bui E. Bianchi C. L. Boccaccini A. R. Surface functionalization of bioactive glasses. J. Biomed. Mater. Res., Part A. 2009;90(4):981–992. doi: 10.1002/jbm.a.32153. PubMed DOI
Ferraris S. Vitale-Brovarone C. Bretcanu O. Cassinelli C. Verne E. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro. Appl. Surf. Sci. 2013;271:412–420. doi: 10.1016/j.apsusc.2013.02.002. DOI
Chen Q. Z. Rezwan K. Francon V. Armitage D. Nazhat S. N. Jones F. H. Boccaccini A. R. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3:551–562. doi: 10.1016/j.actbio.2007.01.008. PubMed DOI
Lopez-Noriega A. Arcos D. Vallet-Regi M. Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery. Chem.–Eur. J. 2010;16:10879–10886. doi: 10.1002/chem.201000137. PubMed DOI
El-Fiqi A. Lee J. H. Lee E. J. Kim H. W. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013;9:9503–9521. doi: 10.1016/j.actbio.2013.07.036. PubMed DOI
Verne E. Ferraris S. Vitale-Brovarone C. Spriano S. Bianchi C. L. Naldoni A. Morra M. Cassinelli C. Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater. 2010;6:229–240. doi: 10.1016/j.actbio.2009.06.025. PubMed DOI
Lusvardi G. Malavasi G. Menabue L. Shruti S. Gallium-containing phosphosilicate glasses: functionalization and in vitro bioactivity. Mater. Sci. Eng., C. 2013;33:3190–3196. doi: 10.1016/j.msec.2013.03.046. PubMed DOI
Chen Q. Z. Rezwan K. Armitage D. Nazhat S. N. Boccaccini A. R. The surface functionalization of 45S5 Bioglass®-based glass–ceramic scaffolds and its impact on bioactivity. J. Mater. Sci.: Mater. Med. 2006;17:979–987. doi: 10.1007/s10856-006-0433-y. PubMed DOI
Chen Q. Z. Ahmed I. Knowles J. C. Nazhat S. N. Boccaccini A. R. Rezwan K. Collagen release kinetics of surface functionalized 45S5 Bioglass®-based porous scaffolds. J. Biomed. Mater. Res., Part A. 2008;86:987–995. doi: 10.1002/jbm.a.31718. PubMed DOI
Gruian C. Vanea E. Simon S. Simon V. FTIR and XPS studies of protein adsorption onto functionalized bioactive glass. Biochim. Biophys. Acta. 2012;1824:873–881. doi: 10.1016/j.bbapap.2012.04.008. PubMed DOI
Ainar V. Malavasi G. Magistris C. Cerrato G. Martra G. Viscardi G. Menabue L. Lusvardi G. Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. J. Mater. Sci.: Mater. Med. 2014;25:2243–2253. doi: 10.1007/s10856-014-5206-4. PubMed DOI
Sun J. Li Y. Li L. Zhao W. Li L. Gao J. Ruan M. Shi J. Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J. Non-Cryst. Solids. 2008;354:3799–3805. doi: 10.1016/j.jnoncrysol.2008.05.001. DOI
Zhang X. Zeng D. Li N. Wen J. Jiang X. Liu C. Li Y. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci. Rep. 2016;6:19361. doi: 10.1038/srep19361. PubMed DOI PMC
Misra S. K. Mohn D. Brunner T. J. Stark W. J. Philip S. E. Roy I. Salih V. Knowles J. C. Boccaccini A. R. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass® composites. Biomaterials. 2008;25:1750–1761. doi: 10.1016/j.biomaterials.2007.12.040. PubMed DOI
Maquet V. Boccaccini A. R. Pravata L. Notingher I. Jerome R. Porous poly(α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterization. Biomaterials. 2004;25:4185–4194. doi: 10.1016/j.biomaterials.2003.10.082. PubMed DOI
Jiang G. Evans M. E. Jones I. A. Rudd C. D. Scotchford C. A. Walker G. S. Preparation of poly(ε-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant. Biomaterials. 2005;26:2281–2288. doi: 10.1016/j.biomaterials.2004.07.042. PubMed DOI
Silva G. A. Costa F. J. Coutinho O. P. Radin S. Ducheyne P. Reis R. L. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J. Biomed. Mater. Res., Part A. 2004;70:442–449. doi: 10.1002/jbm.a.30099. PubMed DOI
Roether J. A. Boccaccini A. R. Hench L. L. Maquet V. Gautier S. Jerome R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials. 2002;23:3871–3878. doi: 10.1016/S0142-9612(02)00131-X. PubMed DOI
Zhou Z. Liu L. Liu Q. Yi Q. Zeng W. Zhao Y. Effect of surface modification of bioactive glass on properties of poly-l-lactide composite materials. J. Macromol. Sci., Part B: Phys. 2012;51:1637–1646. doi: 10.1080/00222348.2012.672295. DOI
Ducker R. E. Montague M. T. Leggett G. J. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases. 2008;3:59–65. doi: 10.1116/1.2976451. PubMed DOI
Gruian C. Vulpoi A. Steinhoff H. J. Simon S. Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration. J. Mol. Struct. 2012;1015:20–26. doi: 10.1016/j.molstruc.2012.01.045. DOI
Gruian C. Vulpoi A. Vanea E. Oprea B. Steinhoff H. J. Simon S. The attachment affinity of hemoglobin toward silver-containing bioactive glass functionalized with glutaraldehyde. J. Phys. Chem. B. 2013;117:16558–16564. doi: 10.1021/jp408830t. PubMed DOI
Wang K. Zhou C. Hong Y. Zhang X. A review of protein adsorption on bioceramics. Interface Focus. 2012;2:259–277. doi: 10.1098/rsfs.2012.0012. PubMed DOI PMC
Long Q. Da-Li Z. Zhang X. Jia-Bei Z. Surface modification of apatite–wollastonite glass ceramic by synthetic coupling agent. Front. Mater. Sci. 2014;8:157–164. doi: 10.1007/s11706-014-0244-x. DOI
Aina V. Marchis T. Laurenti E. Diana E. Lusvardi G. Malavasi G. Menabue L. Cerrato G. Morterra C. Functionalization of sol gel bioactive glasses carrying Au nanoparticles: selective Au affinity for amino and thiol ligand groups. Langmuir. 2010;26:18600–18605. doi: 10.1021/la1036647. PubMed DOI
Leonor I. B. Alves C. M. Azevedo H. S. Reis R. L. Effects of protein incorporation on calcium phosphate coating. Mater. Sci. Eng., C. 2009;29:913–918. doi: 10.1016/j.msec.2008.08.003. DOI
Zhu M. Zhang J. Tao C. He X. Zhu Y. Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater. Lett. 2014;115:194–197. doi: 10.1016/j.matlet.2013.10.058. DOI
Schickle K. Zurlinden K. Bergmann C. Lindner M. Kirsten A. Laub M. Telle R. Jennissen H. Fischer H. Synthesis of novel tricalcium phosphate–bioactive glass composite and functionalization with rhBMP-2. J. Mater. Sci.: Mater. Med. 2011;22:763. doi: 10.1007/s10856-011-4252-4. PubMed DOI
Hattar S. Asselin A. Greenspan D. Oboeuf M. Berdal A. Sautier J. M. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials. 2005;26:839–848. doi: 10.1016/j.biomaterials.2004.03.026. PubMed DOI
Lenza R. F. S. Jones J. R. Vasconcelos W. L. Hench L. L. In vitro release kinetics of proteins from bioactive foams. J. Biomed. Mater. Res., Part A. 2003;67:121–129. doi: 10.1002/jbm.a.10042. PubMed DOI
Xia W. Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J. Non-Cryst. Solids. 2008;354:1338–1341. doi: 10.1016/j.jnoncrysol.2006.10.084. DOI
Xia W. Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J. Controlled Release. 2006;110:522–530. doi: 10.1016/j.jconrel.2005.11.002. PubMed DOI
Zhao L. Yan X. Zhou L. Wang H. Tang J. Yu C. Mesoporous bioactive glasses for controlled drug release. Microporous Mesoporous Mater. 2008;109:210–215. doi: 10.1016/j.micromeso.2007.04.041. DOI
Baino F. Fiorilli S. Mortera R. Onida B. Saino E. Visai L. Verne E. Vitale-Brovarone C. Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release. J. Appl. Biomater. Funct. Mater. 2012;10:12–21. PubMed
Verne E. Miola M. Ferraris S. Bianchi C. L. Naldoni A. Maina G. Bretcanu O. Surface activation of a ferrimagnetic glass-ceramic for antineoplastic drugs grafting. Adv. Biomater. 2010;12:B309–B319.
Boanini E. Panseri S. Arroyo F. Montesi M. Rubini K. Tampieri A. Covarrubias C. Bigi A. Alendronate functionalized mesoporous bioactive glass nanospheres. Materials. 2016;9:135. doi: 10.3390/ma9030135. PubMed DOI PMC
Malavasi G. Ferrari E. Gigliola L. Valentina A. Francesca F. Claudio M. Francesca P. Monica S. Ledi M. The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. J. Mater. Chem. 2011;21:5027–5037. doi: 10.1039/C0JM03421E. DOI
Zhang X. Ferraris S. Prenesti E. Verne E. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: gallic acid as model molecule. Appl. Surf. Sci. 2013;287:329–340. doi: 10.1016/j.apsusc.2013.09.151. DOI
Ferraris S. Zhang X. Prenesti E. Corazzari I. Turci F. Tomatis M. Verne E. Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. J. Non-Cryst. Solids. 2016;432:167–175. doi: 10.1016/j.jnoncrysol.2015.05.023. PubMed DOI
Zhao S. Zhang J. Zhu M. Zhang Y. Liu Z. Ma Y. Zhu Y. Zhang C. Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J. Mater. Chem. B. 2015;3:1612–1623. doi: 10.1039/C4TB01287A. PubMed DOI
Olmo N. Marti A. I. Salinas A. J. Turnay J. Vallet-Regi M. Lizarbe M. A. Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials. 2003;24:3383–3393. doi: 10.1016/S0142-9612(03)00200-X. PubMed DOI
Sanz-Herrera J. A. Boccaccini A. R. Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int. J. Solids Struct. 2011;48:257–268. doi: 10.1016/j.ijsolstr.2010.09.025. DOI
Wu C. Zhang Y. Zhu Y. Friis T. Xiao Y. Structure–property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31:3429–3438. doi: 10.1016/j.biomaterials.2010.01.061. PubMed DOI
Amini A. R. Wallace J. S. Nukavarapu S. P. Short-term and long-term effects of orthopedic biodegradable implants. J. Long-Term Eff. Med. Implants. 2011;21:93–122. doi: 10.1615/JLongTermEffMedImplants.v21.i2.10. PubMed DOI PMC
Solgi S. Khakbiz M. Shahrezaee M. Zamanian A. Tahriri M. Keshtkari S. Raz M. Khoshroo K. Moghadas S. Rajabnejad A. Synthesis, characterization and in vitro biological evaluation of sol–gel derived Sr-containing nano bioactive glass. Silicon. 2017;9:535–542. doi: 10.1007/s12633-015-9291-x. DOI
Valliant E. M. Romer F. Wang D. McPhail D. S. Smith M. E. Hanna J. V. Jones J. R. Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater. 2013;9:7662–7671. doi: 10.1016/j.actbio.2013.04.037. PubMed DOI
Sepulveda P. Jones J. R. Hench L. L. In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 2002;61:301–311. doi: 10.1002/jbm.10207. PubMed DOI
Varila L. Fagerlund S. Lehtonen T. Tuominen J. Hupa L. Surface reactions of bioactive glasses in buffered solutions. J. Eur. Ceram. Soc. 2012;32:2757–2763. doi: 10.1016/j.jeurceramsoc.2012.01.025. DOI
Fernandes H. R. Gaddam A. Rebelo A. Brazete D. Stan G. E. Ferreira J. M. F. Bioactive glasses and glass ceramics for healthcare applications in bone regeneration and tissue engineering. Materials. 2018;11:2530. doi: 10.3390/ma11122530. PubMed DOI PMC
Kokubo T. Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Luz G. M. Mano J. F. Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology. 2011;22:494014–494025. doi: 10.1088/0957-4484/22/49/494014. PubMed DOI
Turdean-Ionescu C. Stevensson B. Izquierdo-Barba I. Garcia A. Arcos D. Vallet-Regi M. Eden M. Surface reactions of mesoporous bioactive glasses monitored by solid state NMR: concentration effects in simulated body fluid. J. Phys. Chem. C. 2016;120:4961–4974. doi: 10.1021/acs.jpcc.5b12490. DOI
Vallet-Regi M. Salinas A. J. Martinez A. Izquierdo-Barba I. Perez-Pariente J. Textural properties of CaO–SiO2 glasses for use in implants. Solid State Ionics. 2004;172:441–444. doi: 10.1016/j.ssi.2004.04.037. DOI
De Oliveira A. A. R. De Souza A. A. Dias L. L. S. De Carvalho S. M. Mansur H. S. Pereira M. D. M. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed. Mater. 2011;8:025011. doi: 10.1088/1748-6041/8/2/025011. PubMed DOI
Kokubo T. Design of bioactive bone substitutes based on biomineralization process. Mater. Sci. Eng., C. 2005;25:97–104. doi: 10.1016/j.msec.2005.01.002. DOI
Vitale-Brovarone C. Baino F. Tallia F. Gervasio C. Verne E. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J. Mater. Sci.: Mater. Med. 2012;23:2369–2380. doi: 10.1007/s10856-012-4643-1. PubMed DOI
Lopez-Noriego A. D. Arcos D. Izquierdo-Barba I. Sakamoto Y. Terasaki O. Vallet-Regi M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem. Mater. 2006;18:3137–3144. doi: 10.1021/cm060488o. DOI
Vallet-Regi M., Garcia M. M. and Colilla M., Biocompatible and bioactive mesoporous ceramics, in Biomedical applications of mesoporous ceramics: drug delivery, smart materials and bone tissue engineering, CRC Press, Boca Raton, FL, USA, 2012, p. 40
Salinas A. J., Vallet-Regi M. and Heikkila J., Use of bioactive glasses as bone substitutes in orthopedics and traumatology, in Bioactive glasses: materials, properties and applications, ed. H. Ylanen, 2018, pp. 337–364
Pereira M. M. Hench L. L. Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J. Sol-Gel Sci. Technol. 1996;7:59–68. doi: 10.1007/BF00401884. DOI
Cacciotti I. Lombardi M. Bianco A. Ravaglioli A. Montanaro L. Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J. Mater. Sci.: Mater. Med. 2012;23:1849–1866. doi: 10.1007/s10856-012-4667-6. PubMed DOI
Bunker B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids. 1994;179:300–308. doi: 10.1016/0022-3093(94)90708-0. DOI
Bunker B. C. Arnold G. W. Wilder J. A. Phosphate glass dissolution in aqueous solutions. J. Non-Cryst. Solids. 1984;64:291–316. doi: 10.1016/0022-3093(84)90184-4. DOI
Paris J. L. Colilla M. Izquierdo-Barba I. Manzano M. Vallet-Regi M. Tuning mesoporous silica dissolution in physiological environment: a review. J. Mater. Sci. 2017;52:8761–8771. doi: 10.1007/s10853-017-0787-1. DOI
Etou M. Tsuji Y. Somiya K. Okaue Y. Yokoyama T. The dissolution of amorphous silica in the presence of tropolone under acidic conditions. Clays Clay Miner. 2014;62:235–242. doi: 10.1346/CCMN.2014.0620307. DOI
Uo M. Mizuno M. Kuboki Y. Makishima A. Watari F. Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glass. Biomaterials. 1998;19:2277–2284. doi: 10.1016/S0142-9612(98)00136-7. PubMed DOI
Woignier T. Phalippou J. Mechanical strength of silica aerogels. J. Non-Cryst. Solids. 1988;100:404–408. doi: 10.1016/0022-3093(88)90054-3. DOI
Calas S. Despetis F. Woignier T. Phalippou J. Mechanical strength evaluation from aerogel to silica glass. J. Porous Mater. 1997;4:211–217. doi: 10.1023/A:1009671118838. DOI
Baino F. Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res., Part A. 2011;97:514–535. doi: 10.1002/jbm.a.33072. PubMed DOI
Klein L. C., Sol–gel optics: processing and applications, Springer Science and Business Media, New York, 1994
Li H. C. Wang D. G. Hu J. H. Chen C. Z. Effect of various additives on microstructure, mechanical properties and invitro bioactivity of sodium oxide–calcium oxide–silica–phosphorous pentoxide glass ceramics. J. Colloid Interface Sci. 2013;405:296–304. doi: 10.1016/j.jcis.2013.04.046. PubMed DOI
Martin R. A. Moss R. M. Lakar N. J. Knowles J. C. Cuello G. J. Smith M. E. Hanna J. V. Newport R. J. Structural characterization of titanium doped bioglass using isotopic substitution neutron diffraction. Phys. Chem. Chem. Phys. 2012;14:15807–15815. doi: 10.1039/C2CP43032K. PubMed DOI
Rabie S. M. Ravarian R. Mehmanchi M. Khoshakhlagh P. Azizian M. Effect of alumina on microstructure and compressive strength of a porous silicate hydroxyapatite. J. Appl. Biomater. Funct. Mater. 2012;12:102–106. PubMed
Arepalli S. K. Tripathi H. Vyas V. K. Jain S. Suman S. K. Pyare R. Singh S. P. Influence of barium substitution on bioactivity, thermal and physio-mechanical properties of bioactive glass. Mater. Sci. Eng., C. 2015;49:549–559. doi: 10.1016/j.msec.2015.01.049. PubMed DOI
Castano O. Sachot N. Xuriguera E. Engel E. Planell J. A. Park J. H. Jin G. Z. Kim T. H. Kim J. H. Kim H. W. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl. Mater. Interfaces. 2014;6:7512–7522. doi: 10.1021/am500885v. PubMed DOI
Yang X. Zhang L. Chen X. Sun X. Yang G. GuO X. Yang H. Gao C. GuO Z. Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low temperature co-fired porous glass ceramics. J. Non-Cryst. Solids. 2012;358:1171–1179. doi: 10.1016/j.jnoncrysol.2012.02.005. DOI
Ben Arfa B. A. E. Neto S. Salvado I. M. M. Pullar R. C. Ferreira J. M. F. Robocasting of Cu2+ & La3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: compressive strength up to 14 MPa. Acta Biomater. 2019;87:265–272. doi: 10.1016/j.actbio.2019.01.048. PubMed DOI
Carter D. R. Schwab G. H. Spengler D. M. Tensile fracture of cancellous bone. Acta Orthop. Scand. 1980;51:733–741. doi: 10.3109/17453678008990868. PubMed DOI
Lin C. C. Chen S. F. Leung K. S. Shen P. Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2–CaO–Na2O–P2O5 bioglass. J. Mater. Sci.: Mater. Med. 2012;23:245–258. doi: 10.1007/s10856-011-4504-3. PubMed DOI
Poologasundarampillai G. Lee P. D. Lam C. Kourkouta A. M. Jones J. R. Compressive strength of bioactive sol–gel glass foam scaffolds. Int. J. Appl. Glass Sci. 2016;7:229–237. doi: 10.1111/ijag.12211. DOI
Chen Q. Thouas G. A. Fabrication and characterization of sol–gel derived 45S5 bioglass ceramic scaffolds. Acta Biomater. 2011;7:3616–3626. doi: 10.1016/j.actbio.2011.06.005. PubMed DOI
Jones J. R. Ehrenfried L. M. Hench L. L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–973. doi: 10.1016/j.biomaterials.2005.07.017. PubMed DOI
Vallet-Regi M. Roman J. Padilla S. Doadrio J. C. Gil F. J. Bioactivity and mechanical properties of SiO2–CaO–P2O5 glass ceramics. J. Mater. Chem. 2005;15:1353–1359. doi: 10.1039/B415134H. DOI
Li N. Wang C. Zhu S. Li Q. Wang R. Preparation and evaluation of macroporous sol–gel bioglass with high mechanical strength. Key Eng. Mater. 2005;280–283:1585–1588.
Karp J. M. Dalton P. D. Shoichet M. S. Scaffolds for tissue engineering. MRS Bull. 2003;28:301–306. doi: 10.1557/mrs2003.85. DOI
Boccaccini A. R. Blaker J. J. Maquet V. Day R. M. Jerome R. Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater. Sci. Eng., C. 2005;25:23–31. doi: 10.1016/j.msec.2004.03.002. DOI
Zhang K. Wang Y. Hillmyer M. A. Francis L. F. Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials. 2004;25:2489–2500. doi: 10.1016/j.biomaterials.2003.09.033. PubMed DOI
Poologasundarampillai G. Yu B. Tsigkou O. Valliant E. Yue S. Lee P. D. Hamilton R. W. Stevens M. M. Kasuga T. Jones J. R. Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter. 2012;8:4822–4832. doi: 10.1039/C2SM00033D. DOI
Hench L. L. West J. K. Biological applications of bioactive glasses. Life Chem. Rep. 1996;13:187–241.
Li A. Shen H. Ren H. Wu D. Martin R. A. Qiu D. Bioactive organic/inorganic hybrids with improved mechanical performance. J. Mater. Chem. B. 2015;3:1379–1390. doi: 10.1039/C4TB01776E. PubMed DOI
Bossard C. Granel H. Wittrant Y. Jallot E. Lao J. Vial C. Tiainen H. Polycaprolactone/bioactive glass hybrid scaffolds for bone regeneration. Biomed. Glas. 2018;4(1):108–122.
Gibson L. J. Biomechanics of cellular solids. J. Biomech. 2005;38:377–399. doi: 10.1016/j.jbiomech.2004.09.027. PubMed DOI
Kopperdahl D. L. Keaveny T. M. Yield strain behavior of trabecular bone. J. Biomech. 1998;31:601–608. doi: 10.1016/S0021-9290(98)00057-8. PubMed DOI
Engelberg I. Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials. 1991;12:292–304. doi: 10.1016/0142-9612(91)90037-B. PubMed DOI
Vandel de Velde K. Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 2002;21:433–442. doi: 10.1016/S0142-9418(01)00107-6. DOI
Currey J. D., Ontogenetic changes in compact bone material properties, in Bone mechanics handbook, ed. S. C. Cowin, Boca Raton, FL, Informa Healthcare, CRC Press, 2001, ch. 19, pp. 5–9
Guo X. E., Mechanical properties of cortical bone and cancellous bone tissue, in Bone mechanics handbook, ed. S. C. Cowin, Informa Healthcare, CRC Press, Boca Raton, FL, 2001, ch. 10, pp. 4–11
Chung J. J. Li S. Stevens M. M. Georgiou T. K. Jones J. R. Tailoring mechanical properties of sol–gel hybrids for bone regeneration through polymer structure. Chem. Mater. 2016;28:6127–6135. doi: 10.1021/acs.chemmater.6b01941. DOI
Babensee J. E. McIntire L. V. Mikos A. G. Growth factor delivery for tissue engineering. Pharm. Res. 2000;17:497–504. doi: 10.1023/A:1007502828372. PubMed DOI
Mahoney M. J. Saltzman W. M. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat. Biotechnol. 2001;19:934–939. doi: 10.1038/nbt1001-934. PubMed DOI
Pina S. Ribeiro V. P. Marques C. F. Maia F. R. Silva T. H. Reis R. L. Oliveira J. M. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12:1824. doi: 10.3390/ma12111824. PubMed DOI PMC
Yang S. Leong K. F. Du Z. Chua C. K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI
Hutmacher D. W. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J. Biomater. Sci., Polym. Ed. 2001;12:107–124. doi: 10.1163/156856201744489. PubMed DOI
Miguez-Pacheco V. Hench L. L. Boccaccini A. R. Bioactive glass beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi: 10.1016/j.actbio.2014.11.004. PubMed DOI
Handbook of bioactive ceramics, ed. T. Yamamuro, L. L. Hench and J. Wilson, CRC Press, Boca Raton, FL, 1990, vol. 1 and 2
Rahaman M. N. Brown R. F. Bal B. S. Day D. E. Bioactive glasses for nonbearing applications in total joint replacement. Semin. Arthroplasty. 2007;17:102–112. doi: 10.1053/j.sart.2006.09.003. DOI
Kargozar S. Hamsehlou S. Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater. Sci. Eng., C. 2019;97:1009–1020. doi: 10.1016/j.msec.2019.01.028. PubMed DOI
Albrektsson T. Johansson C. Osteoinduction, osteoconduction and osteointegration. Eur. Spine J. 2001;10:S96–S101. doi: 10.1007/s005860100282. PubMed DOI PMC
Karageorgiou V. Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Anselme K. Davidson P. Popa A. M. Giazzon M. Liley M. Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010;6:3824–3846. doi: 10.1016/j.actbio.2010.04.001. PubMed DOI
Wang S. Kowal T. J. Marei M. K. Falk M. M. Jain H. Nanoporosity significantly enhances the biological performance of engineered glass tissue scaffolds. Tissue Eng., Part A. 2013;9:1632–1640. doi: 10.1089/ten.tea.2012.0585. PubMed DOI PMC
Hutmacher D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543. doi: 10.1016/S0142-9612(00)00121-6. PubMed DOI
Jones J. R. and Boccaccini A. R., Cellular ceramics in biomedical applications: tissue engineering, in Cellular ceramics: structure, manufacturing, processing and applications, ed. M. Scheffler and P. Colombo, Wiley-VCH Verlag GmbH & Co., Wenheim, 2005, pp. 550–573
Ribbas R. G. Schatkoksi V. M. Montanheiro T. L. D. A. de Menezes B. R. C. Stegemann C. Leite D. M. G. Thim G. P. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram. Int. 2019;45:21051–21061. doi: 10.1016/j.ceramint.2019.07.096. DOI
Griffith L. G. Polymeric biomaterials. Acta Mater. 2000;48:263–277. doi: 10.1016/S1359-6454(99)00299-2. DOI
Lee K. Y. Mooney D. J. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1880. doi: 10.1021/cr000108x. PubMed DOI
Porter B. D. Oldham J. B. He S. L. Zobitz M. E. Payne R. G. An K. N. Currier B. L. Mikos A. G. Yaszemski M. J. Mechanical properties of a biodegradable bone regeneration scaffold. J. Biomech. Eng. 2000;122:286–288. doi: 10.1115/1.429659. PubMed DOI
Yu H. Mathew H. W. Wooley P. H. Yang S. Y. Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone–hydroxyapatite composites. J. Biomed. Mater. Res., Part B. 2008;86:541–547. doi: 10.1002/jbm.b.31054. PubMed DOI
Thomson R. C. Yaszemski M. J. Powers J. M. Mikos A. G. Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–1943. doi: 10.1016/S0142-9612(98)00097-0. PubMed DOI
Kim S. S. Ahn K. M. Park M. S. Lee J. H. Choi C. Y. Kim B. S. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res., Part A. 2007;80:206–215. doi: 10.1002/jbm.a.30836. PubMed DOI
Chen Q. Miyata N. Kokubo T. Nakamura T. Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol–gel process. J. Biomed. Mater. Res. 2000;51:605–611. doi: 10.1002/1097-4636(20000915)51:4<605::AID-JBM8>3.0.CO;2-U. PubMed DOI
Lu H. H. El-Amin S. F. Scott K. D. Laurencrin C. T. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J. Biomed. Mater. Res., Part A. 2003;64:465–474. doi: 10.1002/jbm.a.10399. PubMed DOI
Baino F. Fiorilli S. Vitale-Brovone C. Bioactive glass based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater. 2016;42:18–32. doi: 10.1016/j.actbio.2016.06.033. PubMed DOI
Goudourni O. M. Vogel C. Grunewald A. Detsch R. Kontonasaki E. Boccaccini A. R. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J. Biomater. Appl. 2016;30:740–749. doi: 10.1177/0885328215584887. PubMed DOI
Murphy C. M. Obrien F. J. Understanding the effect of mean pore size on cell activity in collagen–glycosaminoglycan scaffolds. Cell Adhes. Migr. 2010;4:377–381. doi: 10.4161/cam.4.3.11747. PubMed DOI PMC
Obrien F. J. Harley B. A. Waller M. A. Yannas I. V. Gibson L. J. Prendergast P. J. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care. 2007;15:3–17. PubMed
Yannas I. V. Tissue regeneration by use of collagen–glycosaminoglycan copolymers. Clin. Mater. 1992;9:179–187. doi: 10.1016/0267-6605(92)90098-E. PubMed DOI
Izquierdo-Barba I. Arcos D. Sakamoto Y. Terasaki O. Lopez-Noriega A. Vallet-Regi M. High-performance mesoporous bioceramics mimicking bone mineralization. Chem. Mater. 2008;20:3191–3198. doi: 10.1021/cm800172x. DOI
Salgado A. J. Coutinho O. P. Reis R. L. Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 2004;4:743–765. doi: 10.1002/mabi.200400026. PubMed DOI
Salinas A. J. Vallet-Regi M. Glasses in bone regeneration: a multiscale issue. J. Non-Cryst. Solids. 2016;432:9–14. doi: 10.1016/j.jnoncrysol.2015.03.025. DOI
Wu C. Zhou Y. Chang J. Xiao Y. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 2013;9:9159–9168. doi: 10.1016/j.actbio.2013.06.026. PubMed DOI
Yun H. Kim S. E. Hyun Y. T. Heo S. J. Shin J. W. Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. J. Biomed. Mater. Res., Part B. 2008;87:374–380. doi: 10.1002/jbm.b.31114. PubMed DOI
Zhu Y. Wu C. Ramaswamy Y. Kockrick E. Simon P. Kaskel S. Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2008;112:494–503. doi: 10.1016/j.micromeso.2007.10.029. DOI
Li X. Shi J. Dong X. Zhang L. Zeng H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J. Biomed. Mater. Res., Part A. 2008;84:84–91. PubMed
Wu C. Ramaswamy Y. Zhu Y. Zheng R. Appleyard R. Howard A. Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials. 2009;30:2199–2208. doi: 10.1016/j.biomaterials.2009.01.029. PubMed DOI
Zhu Y. Zhang Y. Wu C. Fang Y. Yang J. Wang S. The effect of zirconium incorporation on the physiochemical and biological properties of mesoporous bioactive glasses scaffolds. Microporous Mesoporous Mater. 2011;143:311–319. doi: 10.1016/j.micromeso.2011.03.007. DOI
Wu C. Miron R. Sculean A. Kaskel S. Doert T. Schulze R. Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–7078. doi: 10.1016/j.biomaterials.2011.06.009. PubMed DOI
Wu C. Fan W. Gelinsky M. Xiao Y. Simon P. Schulze R. Doert T. Luo Y. Cuniberti G. Bioactive SrO–SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7:1797–1806. doi: 10.1016/j.actbio.2010.12.018. PubMed DOI
Wu C. Fan W. Zhu Y. Gelinsky M. Chang J. Cuniberti G. Albrecht V. Friis T. Xiao Y. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater. 2011;7:3563–3572. doi: 10.1016/j.actbio.2011.06.028. PubMed DOI
Wu C. Chang J. Xiao Y. Mesoporous bioactive glasses as drug delivery and bone tissue engineering platforms. Ther. Delivery. 2011;2:1189–1198. doi: 10.4155/tde.11.84. PubMed DOI
Jones J. R. Poologasundarampillai G. Atwood R. C. Bernard D. Lee P. D. Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials. 2007;28:1404–1413. doi: 10.1016/j.biomaterials.2006.11.014. PubMed DOI
Martin R. A. Yue S. Hanna J. V. Lee P. D. Newport R. J. Smith M. E. Jones J. R. Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Trans. R. Soc., A. 2012;370:1422–1443. doi: 10.1098/rsta.2011.0308. PubMed DOI
Jones J. R. Lin S. Yue S. Bioactive glass scaffolds for bone regeneration and their hierarchical characterization. Proc. Inst. Mech. Eng., Part H. 2010;224:1373–1387. doi: 10.1243/09544119JEIM836. PubMed DOI
Jones J. R., Sol–gel materials for biomedical applications, in The sol–gel handbook: synthesis, characterization and application, ed. L. David and Z. Marcos., Wiley-VCH Verlag GmbH, 1st edn, 2015, pp. 1345–1369
Jones J. R. Hench L. L. Effect of surfactant concentration and composition on the structure and properties of sol–gel-derived bioactive glass foam scaffolds for tissue engineering. J. Mater. Sci. 2003;38:3783–3790. doi: 10.1023/A:1025988301542. DOI
Jones J. R. Hench L. L. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J. Biomed. Mater. Res., Part B. 2004;68:36–44. doi: 10.1002/jbm.b.10071. PubMed DOI
Sepulveda P. Jones J. R. Hench L. L. Bioactive sol–gel foams for tissue repair. J. Biomed. Mater. Res. 2002;59:340–348. doi: 10.1002/jbm.1250. PubMed DOI
Gough J. E. Jones J. R. Hench L. L. Nodule formation and mineralization of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials. 2004;25:2039–2046. doi: 10.1016/j.biomaterials.2003.07.001. PubMed DOI
Crook R. J., 58S sol–gel bioglass: a study of osteoproductive interfacial and handling properties using new microscopic techniques, PhD thesis, University of London, 2013
Valerio P. Guimaraes M. H. R. Pereira M. M. Leite M. F. Goes A. M. Primary osteoblast cell response to sol–gel derived bioactive glass foams. J. Mater. Sci.: Mater. Med. 2005;16:851–856. doi: 10.1007/s10856-005-3582-5. PubMed DOI
Jones J. R. Tsigkou O. Coates E. E. Steven M. M. Polak J. M. Hench L. L. Extracellular matrix formation and mineralization on a phosphate free porous bioactive glass scaffold using primary human osteoblasts (HOB) cells. Biomaterials. 2007;28:1653–1663. doi: 10.1016/j.biomaterials.2006.11.022. PubMed DOI