Recent advances and future perspectives of sol-gel derived porous bioactive glasses: a review

. 2020 Sep 10 ; 10 (56) : 33782-33835. [epub] 20200911

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35519068

The sol-gel derived porous bioactive glasses have drawn worldwide attention by virtue of the convenience and flexibility of this versatile synthesis method. In this review, the recent advances in sol-gel processed porous bioactive glasses in biomedical fields, especially for bone tissue regeneration applications have been comprehensively reviewed. Generally, it is envisaged that the morphology and chemical compositions of sol-gel derived porous bioactive glasses significantly affect their biological properties. Therefore, the controlled synthesis of these porous glasses is critical to their effective use in the biomedical fields. With this context, the first part of the review briefly describes the fundamentals of the sol-gel technique. In the subsequent section, different approaches frequently used for the sol-gel synthesis of porous glasses such as microemulsion and acid-catalyzed based synthesis have been reviewed. In the later part of the review, different types of sol-gel derived bioactive glasses namely silica, phosphate and silica-titania based glasses along with organic-inorganic hybrids materials have been discussed. The review also discusses the chemical, surface, mechanical and biological properties and further highlights the strategies to control the pore structure, shape, size and compositions of sol-gel derived bioactive glasses. Finally, the review provides a detailed discussion about the bone tissue regeneration application of different types of sol-gel derived bioactive glasses and presents future research perspectives.

Zobrazit více v PubMed

Owens G. J. Singh R. K. Foroutan F. Alqaysi M. Han C. M. Mahapatra C. Kim H. W. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016;77:1–79. doi: 10.1016/j.pmatsci.2015.12.001. DOI

Tan S. N. Wang W. Ge L. 3.30 Biosensors based on sol–gel derived materials. Compr. Biomater. II. 2017;3:657–689.

Monton M. R. N. Forsberg E. M. Brennan J. D. Tailoring sol–gel derived silica materials for optical biosensing. Chem. Mater. 2012;24:796–811. doi: 10.1021/cm202798e. DOI

Akpan U. G. Hameed B. H. The advancement in sol–gel method of doped TiO2 photocatalyst. Appl. Catal., A. 2010;375:1–11. doi: 10.1016/j.apcata.2009.12.023. DOI

Levy D. and Zayat M., The sol–gel handbook, ed. D. Levy and M. Zayat, vol. 1–3, Wiley VCH, USA, 2015, pp. 1–1508

Rosenholm J. M. Sahlgren C. Linden M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities & challenges. Nanoscale. 2010;2:1870–1883. doi: 10.1039/C0NR00156B. PubMed DOI

Yang P. Gai S. Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012;41:3679–3698. doi: 10.1039/C2CS15308D. PubMed DOI

Sumida K. Liang K. Reboul J. Ibara I. A. Furukawa S. Falcaro P. Sol–gel processing of metal organic frameworks. Chem. Mater. 2017;29:2626–2645. doi: 10.1021/acs.chemmater.6b03934. DOI

Muresan L. M., Corrosion protective coatings for Ti and Ti alloys used for biomedical implants, in Intelligent coatings for corrosion control, ed. A. Tiwari, J. Rawlins and L. H. Hihara, 2015, pp. 585–602

Kickelbick G., Introduction to sol–gel nanocomposites, in Sol–gel nanocomposites, Advances in sol–gel derived materials and technologies, ed. M. Guglielmi, G. Kickelbick and A. Martucci, Springer-Verlag, New York, 2014, pp. 1–19

Carta D. Pickup D. M. Knowles J. C. Smith M. E. Newport R. J. Sol–gel synthesis of the P2O5–CaO–Na2O–SiO2 system as a novel bioresorbable glass. J. Mater. Chem. 2005;15:2134–2140. doi: 10.1039/B414885A. DOI

Esposito S. Traditional sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials. 2019;12:668. doi: 10.3390/ma12040668. PubMed DOI PMC

Lopez T. Manjarrez J. Rembao D. Vinogradova E. Moreno A. Gonzalez R. D. An implantable sol–gel derived titania–silica carrier system for the controlled release of anticonvulsants. Mater. Lett. 2006;60:2903–2908. doi: 10.1016/j.matlet.2006.02.017. DOI

Chen X. Zhang W. Lin Y. Cai Y. Qiu M. Fan Y. Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol–gel method. Microporous Mesoporous Mater. 2015;214:195–203. doi: 10.1016/j.micromeso.2015.04.027. DOI

Priya S. Jones J. R. Sophie V. Robert B. Victoria S. J. Hench L. L. Julia P. M. Binary CaO–SiO2 gel-glasses for biomedical applications. Biomed. Mater. Eng. 2004;14:467–486. PubMed

Abbasian M. Massoumi B. Mohammad-Rezaei R. Samadian H. Jaymand M. Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering. Int. J. Biol. Macromol. 2019;134:673–694. doi: 10.1016/j.ijbiomac.2019.04.197. PubMed DOI

Massoumi B. Hatamzadeh M. Firouzi N. Jaymand M. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater. Sci. Eng., C. 2019;98:300–310. doi: 10.1016/j.msec.2018.12.114. PubMed DOI

Vandhaanooni S. Eskandani M. Electrically conductive biomaterials based on natural polysaccharides: challenges and applications in tissue engineering. Int. J. Biol. Macromol. 2019;141:636–662. doi: 10.1016/j.ijbiomac.2019.09.020. PubMed DOI

Samadian H. Maleki H. Allahyari Z. Jaymand M. Natural polymers-based light-induced hydrogels: promising biomaterials for biomedical applications. Coord. Chem. Rev. 2020;420:213432. doi: 10.1016/j.ccr.2020.213432. DOI

Lutolf M. P. Hubbel J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005;23:47–55. doi: 10.1038/nbt1055. PubMed DOI

Nair L. S. Laurencin C. T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017. DOI

Toirac B. Garcia-Casas A. Cifuentes S. C. Aguilera-Correa J. J. Esteban J. Mediero A. Jimmez-Morales A. Electrochemical characterization of coatings for local prevention of Candida infections on titanium based biomaterials. Prog. Org. Coat. 2020;146:105681. doi: 10.1016/j.porgcoat.2020.105681. DOI

Aguilera-Correa J. J. Garcia-Casas A. Mediero A. Romera D. Mulero F. Cuevas-Lopez I. Jimenez-Morales A. Esteban J. A new antibiotic loaded sol–gel can prevent bacterial prosthetic joint infections: from in vitro studies to an in vivo model. Front. Microbiol. 2020;10:2935. doi: 10.3389/fmicb.2019.02935. PubMed DOI PMC

Ming-Cheng L. Chun-Cheng C. I-Ting W. Shinn-Jyh D. Enhanced antibacterial activity of calcium silicate-based hybrid cements for bone repair. Mater. Sci. Eng., C. 2020;110:110727. doi: 10.1016/j.msec.2020.110727. PubMed DOI

Roozbahani M. Alehosseini M. Kharaziha M. Emadi R. Nano-calcium phosphate bone cement based on Si-stabilized α-tricalcium phosphate with improved mechanical properties. Mater. Sci. Eng., C. 2017;81:532–541. doi: 10.1016/j.msec.2017.08.016. PubMed DOI

Li H. Li J. Jiang J. Lv F. Chang J. Chen S. Wu C. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction. Acta Biomater. 2017;54:399–410. doi: 10.1016/j.actbio.2017.03.014. PubMed DOI

Wu G. Deng X. Song J. Chen F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J. Photochem. Photobiol., B. 2018;178:27–32. doi: 10.1016/j.jphotobiol.2017.10.011. PubMed DOI

Catauro M. bollino F. Papale F. Ferrara C. Mustarelli P. Silica–polyethylene glycol hybrids synthesized by sol–gel: biocompatibility improvement of titanium implants by coating. Mater. Sci. Eng., C. 2015;55:118–125. doi: 10.1016/j.msec.2015.05.016. PubMed DOI

Cerqueira A. Romero-Gavilan F. Araujo-Gomes N. Garcia-Arnez I. Martinez-Ramos C. Ozturan S. Azkargota M. Elortza F. Gurruchanga M. Suay J. Goni I. A possible use of melatonin in the dental field: protein adsorption and in vitro cell response on coated titanium. Mater. Sci. Eng., C. 2020;116:111262. doi: 10.1016/j.msec.2020.111262. PubMed DOI

Lee W. D. Gawri R. Pilliar R. M. Stanford W. L. Kandel R. A. Sol–gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater. 2017;62:352–361. doi: 10.1016/j.actbio.2017.08.016. PubMed DOI

Hu M. Fang J. Zhang Y. Wang X. Zhong W. Zhou Z. Design and evaluation a kind of functional biomaterial for bone tissue engineering: selenium/mesoporous bioactive glass nanospheres. J. Colloid Interface Sci. 2020;579:654–666. doi: 10.1016/j.jcis.2020.06.122. PubMed DOI

Mondal S. Hoang G. Manivasagan P. Moorthy M. S. Nguyen T. P. Phan T. T. V. Kim H. H. Kim M. H. Nam S. Y. Oh J. Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram. Int. 2018;44:15735–15746. doi: 10.1016/j.ceramint.2018.05.248. DOI

Wang X. Zhang Y. Lin C. Zhong W. Sol–gel derived terbium-containing mesoporous bioactive glasses nanospheres: in vitro hydroxyapatite formation and drug delivery. Colloids Surf., B. 2017;160:406–415. doi: 10.1016/j.colsurfb.2017.09.051. PubMed DOI

Sebastiammal S. Fathima A. S. L. Devanesan S. AlSalhi M. S. Henry J. Govindarajan M. Vaseeharan B. Curcumin-encased hydroxyapatite nanoparticles as novel biomaterials for antimicrobial, antioxidant and anticancer applications: a perspective of nano-based drug delivery. J. Drug Delivery Sci. Technol. 2020;57:101752. doi: 10.1016/j.jddst.2020.101752. DOI

Fa-Ming C. Xiaohua L. Advancing biomaterials of human origin for tissue engineering. Prog. Polym. Sci. 2016;53:86–168. doi: 10.1016/j.progpolymsci.2015.02.004. PubMed DOI PMC

Yuan H. De Bruijn J. D. Li Y. Feng J. Yang Z. De Groot K. Zhang X. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP. J. Mater. Sci.: Mater. Med. 2001;12:7–13. doi: 10.1023/A:1026792615665. PubMed DOI

Areva S. Paldan H. Peltola T. Narhi T. Jokinen M. Linden M. Use of sol–gel-derived titania coating for direct soft tissue attachment. J. Biomed. Mater. Res., Part A. 2004;70:169–178. doi: 10.1002/jbm.a.20120. PubMed DOI

Meseguer-Olmo L. Ros-Nicolas M. J. Vincente-Ortega V. Alcaraz-Banos M. Clavel-Sainz M. Arcos D. Ragel C. V. Vallet-Regi M. Meseguer-Ortiz C. I. A bioactive sol–gel glass implant for in vivo gentamicin release. Experimental model in rabbit. J. Orthop. Res. 2006;24:454–460. doi: 10.1002/jor.20064. PubMed DOI

Gupta R. Chaudhary N. K. Entrapment of biomolecules in sol–gel matrix for applications in biosensors: problems and future prospects. Biosens. Bioelectron. 2007;22:2387–2399. doi: 10.1016/j.bios.2006.12.025. PubMed DOI

Ahola M. S. Sailynoja E. S. Raitavno M. H. Vaahtio M. H. Salonen J. I. Yli-Urpo A. U. O. In vitro release of heparin from silica xerogels. Biomaterials. 2001;22:2163–2170. doi: 10.1016/S0142-9612(00)00407-5. PubMed DOI

Kandimalla V. B. Tripathi V. S. Ju H. Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit. Rev. Anal. Chem. 2006;36:73–106. doi: 10.1080/10408340600713652. DOI

Kargozar S. Lotfibakshaiesh N. Ai J. Samadikuchaksaraie A. Hill R. G. Shah P. A. Milan P. B. Mozafari M. Fathi M. Joghataei M. T. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering. J. Non-Cryst. Solids. 2016;449:133–140. doi: 10.1016/j.jnoncrysol.2016.07.025. DOI

Kargozar S. Baino F. Hamzehlou S. Hill R. G. Mozafari M. Bioactive glasses: sprouting angiogenesis in tissue engineering. Trends Biotechnol. 2018;36:430–444. doi: 10.1016/j.tibtech.2017.12.003. PubMed DOI

Kargozar S. Mozafari M. Hashemian S. J. Milan P. B. Hamzehlou S. Soleimani M. Joghataei M. T. Gholipourmalekabadi M. Korourian A. Mousavizadeh K. Seifalian A. M. Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: a comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. J. Biomed. Mater. Res., Part B. 2018;106:61–72. doi: 10.1002/jbm.b.33814. PubMed DOI

Hench L. L. Roki N. Fenn M. B. Bioactive glass: importance of structure and properties in bone regeneration. J. Mol. Struct. 2014;1073:24–30. doi: 10.1016/j.molstruc.2014.03.066. DOI

Hoppe A. Guldal N. S. Boccaccini A. R. A review of the biological response to ionic dissolution products from bioactive glass and glass-ceramics. Biomaterials. 2011;32:2757–2774. doi: 10.1016/j.biomaterials.2011.01.004. PubMed DOI

Vallet-Regi M. Izquierdo-Barba I. Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc., A. 2012;370:1400–1421. doi: 10.1098/rsta.2011.0258. PubMed DOI

Yan X. Yu C. Zhou X. Tang J. Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem., Int. Ed. 2004;43:5980–5984. doi: 10.1002/anie.200460598. PubMed DOI

Chocolata P. Kulda V. Babuska V. Fabrication of scaffolds for bone tissue regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC

Ni S. Chang J. Chou L. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J. Biomed. Mater. Res., Part A. 2006;76:196–205. doi: 10.1002/jbm.a.30525. PubMed DOI

El Haj A. J. Wood M. A. T. Homas P. Yang Y. Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol. Biol. 2005;53:581–589. doi: 10.1016/j.patbio.2004.12.002. PubMed DOI

Vallet-Regi M. Ruiz-Gonzalez L. Izquierdo-Barba I. Gonzalez-Calbet J. M. Revisiting silica based ordered mesoporous materials medical applications. J. Mater. Chem. 2006;16:26–31. doi: 10.1039/B509744D. DOI

Hertz A. FitzGerald V. Pignotti E. Knowles J. C. Sen T. Bruce I. J. Preparation and characterization of porous silica and silica/titania monoliths for potential use in bone replacement. Microporous Mesoporous Mater. 2012;156:51–61. doi: 10.1016/j.micromeso.2012.02.004. DOI

Izquierdo-Barda I. Ruiz-Gonzalez L. Gonzalez-Calbet J. M. Vallet-Regi M. Tissue regeneration: a new property of mesoporous material. Solid State Sci. 2005;7:983–989. doi: 10.1016/j.solidstatesciences.2005.04.003. DOI

Sen T. Tiddy G. J. T. Casci J. L. Anderson M. W. Meso-cellular silica foams, macro-cellular silica foams and mesoporous solids: a study of emulsion-mediated synthesis. Microporous Mesoporous Mater. 2005;78:255–263. doi: 10.1016/j.micromeso.2004.09.022. DOI

Sun H. Yang H. L. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin. Med. J. 2015;128:1121–1127. doi: 10.4103/0366-6999.155121. PubMed DOI PMC

Fu Q. Saiz E. Rahaman M. N. Tomsia A. P. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng., C. 2011;31:1245–1256. doi: 10.1016/j.msec.2011.04.022. PubMed DOI PMC

Kim H. M. Ceramic bioactivity and related biomimetic strategy. Curr. Opin. Solid State Mater. Sci. 2003;7:289–299. doi: 10.1016/j.cossms.2003.09.014. DOI

Zhong J. P. Greenspan D. C. Processing and properties of sol–gel bioactive glasses. J. Biomed. Mater. Res. 2000;53:694–701. doi: 10.1002/1097-4636(2000)53:6<694::AID-JBM12>3.0.CO;2-6. PubMed DOI

Ma J. Chen C. Z. Wang D. G. Meng X. G. Shi J. Z. In vitro degradability and bioactivity of mesoporous CaO–MgO–P2O5–SiO2 glasses synthesized by sol–gel method. J. Sol-Gel Sci. Technol. 2010;54:69–76. doi: 10.1007/s10971-010-2159-z. DOI

Hench L. L. Polak J. M. Xynos I. D. Buttery L. D. K. Bioactive materials to control cell cycle. Mater. Res. Innovations. 2000;3:313–323. doi: 10.1007/s100190000055. DOI

Rezwan K. Chen Q. Z. Blaker J. J. Boccaccini A. R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. doi: 10.1016/j.biomaterials.2006.01.039. PubMed DOI

Roberto W. D. S. Pereira M. M. Ribiero de Campos T. P. Analysis of bioactive glasses obtained by sol–gel processing for radioactive implants. Mater. Res. 2003;6:123–127. doi: 10.1590/S1516-14392003000200003. DOI

Choi A. H., Conway R. C., Cazalbou S. and Ben-Nissan B., Maxillofacial bioceramics in tissue engineering: production techniques, properties and applications, in Fundamental Biomaterials: Ceramics, S. Thomas, P. Balakrishnan and M. S. Sreekala, Woodhead Publishing, Elsevier, 2018, pp. 63–93

Malik M. A. Wani M. Y. Hashim M. A. Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arabian J. Chem. 2012;5:397–417. doi: 10.1016/j.arabjc.2010.09.027. DOI

Zheng K. Boccaccini A. R. Sol–gel processing of bioactive glass nanoparticles: a review. Adv. Colloid Interface Sci. 2017;249:363–373. doi: 10.1016/j.cis.2017.03.008. PubMed DOI

Cushing B. L. Kolesnichenko V. L. O'Connor C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004;104:3893–3946. doi: 10.1021/cr030027b. PubMed DOI

Eastoe J. Hollamby M. J. Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 2006;128–130:5–15. doi: 10.1016/j.cis.2006.11.009. PubMed DOI

Karagiozov C. Momchilova D. Synthesis of nanosized particles from metal carbonates by the method of reverse micelles. Chem. Eng. Process. 2005;44:115–119. doi: 10.1016/j.cep.2004.05.004. DOI

Sun Y. Guo G. Tao D. Wang Z. H. Reverse microemulsion directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J. Phys. Chem. Solids. 2007;68:373–377. doi: 10.1016/j.jpcs.2006.11.026. DOI

Lukowiak A. Lao J. Lacroix J. Nedelec J. M. Bioactive glass nanoparticles obtained through sol–gel chemistry. Chem. Commun. 2013;49:6620–6622. doi: 10.1039/C3CC00003F. PubMed DOI

Li X. Chen X. Miao G. Liu H. Mao C. Yuan G. Liang Q. Shen X. Ning C. Fu X. Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. J. Mater. Chem. B. 2014;2:7045–7054. doi: 10.1039/C4TB00883A. PubMed DOI

Liang Q. Hu Q. Miao G. Yuan B. Chen X. A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Mater. Lett. 2015;148:45–49. doi: 10.1016/j.matlet.2015.01.122. DOI

Kim T. H. Singh R. K. Kang M. S. Kim J. H. Kim H. W. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration. Nanoscale. 2016;8:8300–8311. doi: 10.1039/C5NR07933K. PubMed DOI

Kim T. H. Singh R. K. Kang M. S. Kim J. H. Kim H. W. Inhibition of osteoclstogenesis through siRNA delivery with tunable mesoporous bioactive nanocarriers. Acta Biomater. 2016;29:352–364. doi: 10.1016/j.actbio.2015.09.035. PubMed DOI

Wang Y. Chen X. Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion. Mater. Lett. 2017;189:325–328. doi: 10.1016/j.matlet.2016.12.004. DOI

Sinko K. Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials. 2010;3:704–740. doi: 10.3390/ma3010704. DOI

Vichery C. Nedelc J. M. Bioactive glass nanoparticles: from synthesis to material design for biomedical applications. Materials. 2016;9:288–295. doi: 10.3390/ma9040288. PubMed DOI PMC

Wang Y. Pan H. Chen X. The preparation of hollow mesoporous bioglass nanoparticles with excellent drug delivery capacity for bone tissue regeneration. Front. Chem. 2019;7:283. doi: 10.3389/fchem.2019.00283. PubMed DOI PMC

Hu Q. Li Y. Zhao N. Ning C. Chen X. Facile synthesis of hollow mesoporous bioactive glass submicron spheres with a tunable cavity size. Mater. Lett. 2014;134:130–133. doi: 10.1016/j.matlet.2014.07.041. DOI

Duan H. Diao J. Zhao N. Ma Y. Synthesis of hollow mesoporous bioactive glass microspheres with tunable shell thickness by hydrothermal assisted self transformation method. Mater. Lett. 2016;167:201–204. doi: 10.1016/j.matlet.2015.12.162. DOI

Xiao J. Wan Y. Yao F. Huang Y. Zhu Y. Yang Z. Luo H. Constructing 3D scaffold with 40 nm diameter hollow mesoporous bioactive glass nanofibres. Mater. Lett. 2019;248:201–203. doi: 10.1016/j.matlet.2019.04.041. DOI

Fardad M. A. Catalysts and the structure of SiO2 sol–gel films. J. Mater. Sci. 2000;35:1835–1841. doi: 10.1023/A:1004749107134. DOI

Issa A. A. Luyt A. S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: a review. Polymers. 2019;11:537. doi: 10.3390/polym11030537. PubMed DOI PMC

Chen Q. Z. Li Y. Jin L. Y. Quinn J. M. W. Komesaroff P. A. A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater. 2010;6:4143–4153. doi: 10.1016/j.actbio.2010.04.022. PubMed DOI

Xia W. Chang J. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater. Lett. 2007;61:3251–3253. doi: 10.1016/j.matlet.2006.11.048. DOI

Chen X. GuO C. Zhao N. Preparation and characterization of the sol–gel nano-bioactive glasses modified by the coupling agent gamma-aminopropyltriethoxysilane. Appl. Surf. Sci. 2008;255:466–468. doi: 10.1016/j.apsusc.2008.06.061. DOI

Roohani-Esfahani S. I. Nouri-Khorasani S. Lu Z. F. F. Appleyard R. C. Zreiqat H. Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater. 2011;7:1307–1318. doi: 10.1016/j.actbio.2010.10.015. PubMed DOI

Hong Z. Luz G. M. Hampel P. J. Jin M. Liu A. Chen X. Mano J. F. Mono-dispersed bioactive glass nanospheres: preparation and effects on biomechanics of mammalian cells. J. Biomed. Mater. Res., Part A. 2010;95:747–754. doi: 10.1002/jbm.a.32898. PubMed DOI

Hong Z. Reis R. L. Mano J. F. Preparation and in vitro characterization of scaffolds of poly(l-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomater. 2008;4:1297–1306. doi: 10.1016/j.actbio.2008.03.007. PubMed DOI

Luz G. M. Mano J. F. Nanoengineering of bioactive glasses: hollow and dense nanospheres. J. Nanopart. Res. 2013;15:1457–1468. doi: 10.1007/s11051-013-1457-0. DOI

Nagayama S. Kajihara K. Kanamura K. Synthesis of nanocrystalline LaF3 doped silica glasses by hydrofluoric acid catalyzed sol–gel process. Mater. Sci. Eng., B. 2012;177:510–514. doi: 10.1016/j.mseb.2012.01.005. DOI

Li R. Clark A. E. Hench L. L. An investigation of bioactive glass powders by sol–gel processing. J. Appl. Biomater. 1991;2:231–239. doi: 10.1002/jab.770020403. PubMed DOI

Jones J. R., Bioactive glass, in Bioceramics and their clinical applications, ed. T. Kokubo, Woodhead Publishing Ltd., Cambridge UK, 2008, pp. 266–286

Jones J. R. New trends in bioactive scaffolds: the importance of nanostructure. J. Eur. Ceram. Soc. 2009;29:1275–1281. doi: 10.1016/j.jeurceramsoc.2008.08.003. DOI

Jones J. R. Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–4486. doi: 10.1016/j.actbio.2012.08.023. PubMed DOI

Kaur G. Pickrell G. Sriranganathan S. Kumar V. Homa D. Review and the state of the art: sol–gel and melt quenched bioactive glasses for tissue engineering. J. Biomed. Mater. Res., Part B. 2016;104:1248–1275. doi: 10.1002/jbm.b.33443. PubMed DOI

Salinas A. J. Vallet-Regi M. Bioactive ceramics: from bone grafts to tissue engineering. RSC Adv. 2013;3:11116–11131. doi: 10.1039/C3RA00166K. DOI

Brauer D. S. Bioactive glasses – structure and properties. Angew. Chem., Int. Ed. 2015;54:4160–4181. doi: 10.1002/anie.201405310. PubMed DOI

Hupa L. and Karlsson K. H., Tailoring of bioactive glasses, in Bioactive glasses – fundamentals, technology and applications, ed. A. R. Boccaccinni, D. S. Brauer and L. Hupa, The Royal Society of Chemistry, 2017, pp. 136–160

Shelby J. E., Introduction to glass science and technology, The Royal Society of Chemistry, 2nd edn, 2005

Hupa L., Composition property relation of bioactive glasses; materials, properties and applications, ed. H. Ylanen, Woodhand Publishing, 2018

Pedone A. Malavasi G. Menziani M. C. Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C. 2009;113:15723–15730. doi: 10.1021/jp904131t. DOI

Watts S. J. Hill R. G. O'Donnell M. D. Law R. V. Influence of magnesia on the structure and properties of bioactive glasses. J. Non-Cryst. Solids. 2010;356:517–524. doi: 10.1016/j.jnoncrysol.2009.04.074. DOI

Hill R. G. Brauer D. S. Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non-Cryst. Solids. 2011;357:3884–3887. doi: 10.1016/j.jnoncrysol.2011.07.025. DOI

Tilocca A. Structural models of bioactive glasses from molecular dynamics simulations. Proc. R. Soc. A. 2009;465:1003–1027.

Lockyer M. W. G. Holland D. Dupree R. NMR investigation of the structure of some bioactive and related glasses. J. Non-Cryst. Solids. 1995;188:207–219. doi: 10.1016/0022-3093(95)00188-3. DOI

Eden M. The split network analysis for exploring composition–structure correlations in multi-component glasses: I. Rationalizing bioactivity-composition trends of bioglasses. J. Non-Cryst. Solids. 2011;357:1595–1602. doi: 10.1016/j.jnoncrysol.2010.11.098. DOI

O'Donnell M. D. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature. Acta Biomater. 2011;7:2264–2269. doi: 10.1016/j.actbio.2011.01.021. PubMed DOI

Eden M. NMR studies of oxide based glasses. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2012;108:177–221. doi: 10.1039/C2PC90006H. DOI

Vallet-Regi M. Ceramics for medical applications, perspective article. J. Chem. Soc., Dalton Trans. 2001;2:97–108. doi: 10.1039/B007852M. DOI

Jones J. R. Ehrenfried L. M. Sarapavan P. Hench L. L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci.: Mater. Med. 2006;17:989–996. doi: 10.1007/s10856-006-0434-x. PubMed DOI

Zhao Y. Ning C. Chang J. Sol–gel synthesis of Na2CaSiO4 and its in vitro biological behaviors. J. Sol-Gel Sci. Technol. 2009;52:69–74. doi: 10.1007/s10971-009-2006-2. DOI

Saravapavan P. Jones J. R. Pryce R. S. Hench L. L. Bioactivity of gel–glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2P5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O) J. Biomed. Mater. Res., Part A. 2003;66:110–119. doi: 10.1002/jbm.a.10532. PubMed DOI

Tilocca A. Cormack A. N. Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B. 2007;111:14256–14264. doi: 10.1021/jp075677o. PubMed DOI

Arcos D. Greenspan D. C. Vallet-Regi M. Influence of the stabilization temperature on textural and structural features and ion release in SiO2–CaO–P2O5 sol–gel glasses. Chem. Mater. 2002;14:1515–1522. doi: 10.1021/cm011119p. DOI

Balas F. Arcos D. Perez-Pariente J. Vallet-Regi M. Textural properties of SiO2–CaO–P2O5 glasses prepared by the sol–gel method. J. Mater. Res. 2001;16:1345–1348. doi: 10.1557/JMR.2001.0187. DOI

Arcos D. Vallet-Regi M. Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010;6:2874–2888. doi: 10.1016/j.actbio.2010.02.012. PubMed DOI

Rahman M. N. Day D. E. Bal D. S. Fu Q. Jung S. B. Bonewald L. F. Tomsia A. P. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–2373. doi: 10.1016/j.actbio.2011.03.016. PubMed DOI PMC

Kiran P. Ramakrishna V. Trebbin M. Udayashankar N. K. Shashikala H. D. Effective role of CaO/P2O5 ratio on SiO2–CaO–P2O5 glass system. J. Adv. Res. 2017;8:279–288. doi: 10.1016/j.jare.2017.02.001. PubMed DOI PMC

Sepulveda P. Jones J. R. Hench L. L. Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 2001;58:734–740. doi: 10.1002/jbm.10026. PubMed DOI

Oki A. Parveen B. Hossain S. Adeniji S. Donahue H. Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J. Biomed. Mater. Res., Part A. 2004;69:216–221. doi: 10.1002/jbm.a.20070. PubMed DOI

Moghanian A. Sedghi A. Ghorbanoghli A. Salari E. The effect of magnesium content on the in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceram. Int. 2018;44:9422–9432. doi: 10.1016/j.ceramint.2018.02.159. DOI

Liu X. Hunag W. Fu H. Yao A. Wang D. Pan H. Lu W. W. Jiang X. Zhang X. Bioactive borosilicate glass scaffolds: in vitro degradation and bioactivity behaviors. J. Mater. Sci.: Mater. Med. 2009;20:1237–1243. doi: 10.1007/s10856-009-3691-7. PubMed DOI

Lao J. Nedelec J. M. Jallot E. New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products. J. Mater. Chem. 2009;19:2940–2949. doi: 10.1039/B822214B. DOI

Varansi V. G. Siaz E. Loomer P. M. Ancheta B. Uritani N. Tomsia A. P. Marshall S. J. Marshall G. W. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactive coating glass (SiO2–CaO–P2O5–MgO–K2O–Na2O system) ions. Acta Biomater. 2009;5:3536–3547. doi: 10.1016/j.actbio.2009.05.035. PubMed DOI PMC

Hench L. L. Challenges for bioceramics in the 21st century. Am. Ceram. Soc. Bull. 2005;84:18–21.

Aguiar H. Serra J. Gonzalez P. Leon B. Influence of the stabilization temperature on the structure of bioactive sol–gel silicate glasses. J. Am. Chem. Soc. 2010;93:2286–2291.

Kaur G. Kumar V. Baino F. Mauro J. C. Pickrell G. Evans I. Breteano O. Mechanical properties of bioactive glasses, ceramics and composites: state of the art review and future challenges. Mater. Sci. Eng., C. 2019;104:109895. doi: 10.1016/j.msec.2019.109895. PubMed DOI

Lenza R. F. Vasconcelos W. L. Jones J. R. Hench L. L. Surface-modified 3D scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 2002;13:837–842. doi: 10.1023/A:1016592127407. PubMed DOI

Hench L. L. Polak J. M. Third-generation biomedical materials. Science. 2002;295:1014–1017. doi: 10.1126/science.1067404. PubMed DOI

Kumar V., Pickreu G., Waldrop S. G. and Sriranganathan N., Future perspectives of bioactive glasses for the clinical applications, in Bioactive glasses: potential biomaterials for future therapy, ed. G. Kaur, Springer Publication, 2017, p. 314

Catauro M. Bollino F. Renella R. A. Papale F. Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram. Int. 2015;73:12578–12588. doi: 10.1016/j.ceramint.2015.06.075. DOI

Dziadek M. Zagrajczuk B. Menassck E. Wegrzynowicz A. Pawlik J. Cholewa-Kowalska K. Gel derived SiO2–CaO–P2O5 bioactive glasses and glass ceramics modified by SrO addition. Ceram. Int. 2016;42:5842–5857. doi: 10.1016/j.ceramint.2015.12.128. DOI

Vallet-Regi M. Arcos D. Perez-Pariente J. Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J. Biomed. Mater. Res. 2000;51:23–28. doi: 10.1002/(SICI)1097-4636(200007)51:1<23::AID-JBM4>3.0.CO;2-B. PubMed DOI

Vallet-Regi M. Ragel C. V. Salinas A. J. Glasses with medical applications. Eur. J. Inorg. Chem. 2003:1029–1042. doi: 10.1002/ejic.200390134. DOI

Hamadouche M. Meunier A. Greenspan D. C. Blanchat C. Zhong J. P. La Torre G. P. Sedel L. Long-term in vivo bioactivity and degradability of bulk sol–gel bioactive glasses. J. Biomed. Mater. Res. 2001;54:560–566. doi: 10.1002/1097-4636(20010315)54:4<560::AID-JBM130>3.0.CO;2-J. PubMed DOI

Gil-Albarova J. Garrido-Lahiguera R. Salinas A. J. Roman J. Bueno-Lozano A. L. Gil-Albarova R. Vallet-Regi M. The in vivo performance of a sol–gel glass and glass ceramic in the treatment of limited bone defects. Biomaterials. 2004;25:4639–4645. doi: 10.1016/j.biomaterials.2003.12.009. PubMed DOI

Silver I. A. Erecinska M. Interactions of osteoblastic and other cells with bioactive glasses and silica in vitro and in vivo. Materialwiss. Werkstofftech. 2003;34:1069–1075. doi: 10.1002/mawe.200300710. DOI

Lin C. Mao C. Zhang J. Li Y. Chen X. Healing effect of bioactive glass ointment on full thickness skin wounds. Biomed. Mater. 2012;7:045017. doi: 10.1088/1748-6041/7/4/045017. PubMed DOI

Xie W. H. Chen X. F. Miao G. H. Tang J. Y. Fu X. L. Regulation of cellular behaviors of fibroblasts related to wound healing by sol–gel derived bioactive glass particles. J. Biomed. Mater. Res., Part A. 2016;104:2420–2429. doi: 10.1002/jbm.a.35782. PubMed DOI

Salinas A. J. Martin A. I. Vallet-Regi M. Bioactivity of three CaO–P2O5–SiO2 sol–gel glasses. J. Biomed. Mater. Res. 2002;61:524–532. doi: 10.1002/jbm.10229. PubMed DOI

Ma J. Chen C. Z. Wang D. G. Jiao Y. Shi J. Z. Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloids Surf., B. 2010;81:87–95. doi: 10.1016/j.colsurfb.2010.06.022. PubMed DOI

Salinas A. J. Roman J. Vallet-Regi M. Oliveria J. M. Correia R. M. Fernandes M. H. In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5–CaO·SiO2–CaO·MgO·2SiO2 system. Biomaterials. 2000;21:251–257. doi: 10.1016/S0142-9612(99)00150-7. PubMed DOI

Perez-Pariente J. Balas F. Vallet-Regi M. Surface and chemical study of SiO2·P2O5·CaO·(MgO) bioactive glasses. Chem. Mater. 2000;12:750–755. doi: 10.1021/cm9911114. DOI

Saboori A. Rabiee M. Mutarzadeh F. Sheikhi M. Tahiri M. Karimi M. Synthesis, characterizations and in vitro bioactivity of sol–gel derived SiO2–CaO–P2O5–MgO bioglasses. Mater. Sci. Eng., C. 2009;29:335–340. doi: 10.1016/j.msec.2008.07.004. DOI

Bellantone M. Coleman N. J. Hench L. L. Bacteriostatic action of a novel four-component bioactive glass. J. Biomed. Mater. Res. 2000;51:484–490. doi: 10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4. PubMed DOI

Hu G. Xiao L. Tong P. Bi D. Wang H. Ma H. Zhu G. Liu H. Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int. J. Nanomed. 2012;7:2613–2620. doi: 10.2147/IJN.S31081. PubMed DOI PMC

Pratten J. Nazhat S. N. Blaker J. J. Boccaccini A. R. In vitro attachment of staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J. Biomater. Appl. 2004;19:47–57. doi: 10.1177/0885328204043200. PubMed DOI

Catauro M. Raucci M. G. De Gaetano F. Marotta A. Antibacterial and bioactive silver-containing Na2OxCaOx2SiO2 glass prepared by sol–gel method. J. Mater. Sci.: Mater. Med. 2004;15:831–837. doi: 10.1023/B:JMSM.0000032825.51052.00. PubMed DOI

Balamurugan A. Balossier G. Kannan S. Michel J. Rebelo A. H. S. Fereira J. M. F. Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 2007;3:255–262. doi: 10.1016/j.actbio.2006.09.005. PubMed DOI

Courtheoux L. Lao J. Nedelec J. M. Jallot E. Controlled bioactivity in zinc-doped sol–gel-derived binary bioactive glasses. J. Phys. Chem. C. 2008;112:13663–13667. doi: 10.1021/jp8044498. DOI

Aina V. Banino F. Morterra C. Miola M. Bianchi C. L. Malavasi G. Marchetti M. Bolis V. Influence of the chemical composition on nature and activity of the surface layer of Zn-substituted sol–gel (bioactive) glasses. J. Phys. Chem. C. 2011;115:2196–2210. doi: 10.1021/jp1101708. DOI

Aina V. Malavasi G. Pla A. F. Munaron L. Morterra C. Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. 2009;5:1211–1222. doi: 10.1016/j.actbio.2008.10.020. PubMed DOI

Isaac J. Nohra J. Lao J. Jallot E. Nedelec J. M. Berdal A. Sautier J. M. Effects of strontium doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 2011;21:130–143. doi: 10.22203/eCM.v021a11. PubMed DOI

Leite A. J. Gonclaves A. I. Rodrigues M. T. Gomes M. E. Mano J. F. Strontium-doped bioactive glass nanoparticles in osteogenic commitment. ACS Appl. Mater. Interfaces. 2018;10:23311–23320. doi: 10.1021/acsami.8b06154. PubMed DOI

Naruphontjirakul P. Porter A. E. Jones J. R. In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. Acta Biomater. 2018;66:67–80. doi: 10.1016/j.actbio.2017.11.008. PubMed DOI

Herasaki S. Alizadeh M. Nazarian H. Sharifi D. Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J. Mater. Sci.: Mater. Med. 2010;21:695–705. doi: 10.1007/s10856-009-3920-0. PubMed DOI

Skelton K. L. Glenn J. V. Clarke S. A. Georgiou G. Valappil S. P. Knowles J. C. Nazhat S. N. Jordan G. R. Effect of ternary phosphate-based glass compositions on osteoblast and osteoblast-like proliferation, differentiation and death in vitro. Acta Biomater. 2007;3:563–572. doi: 10.1016/j.actbio.2006.11.008. PubMed DOI

Brow R. K. Review: the structure of simple phosphate glasses. J. Non-Cryst. Solids. 2000;263–264:1–28. doi: 10.1016/S0022-3093(99)00620-1. DOI

Rajendran V. Devi A. V. G. Azooz M. El-Batal F. H. Physicochemical studies of phosphate based P2O5–Na2O–CaO–TiO2 glasses for biomedical applications. J. Non-Cryst. Solids. 2006;353:77–84. doi: 10.1016/j.jnoncrysol.2006.08.047. DOI

Abou Neel E. A. Ahmed I. Pratten J. Nazhat S. N. Knowles J. C. Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials. 2005;26:2247–2254. doi: 10.1016/j.biomaterials.2004.07.024. PubMed DOI

Abou Neel E. A. O'Dell L. A. Smith M. E. Knowles J. C. Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications. J. Mater. Sci.: Mater. Med. 2008;19:1669–1679. doi: 10.1007/s10856-007-3313-1. PubMed DOI

Ahmed I. Collins C. A. Lewis M. P. Olsen I. Knowles J. C. Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials. 2004;25:3223–3232. doi: 10.1016/j.biomaterials.2003.10.013. PubMed DOI

Shah R. Sinanam A. C. M. Knowles J. C. Hunt N. P. Lewis M. P. Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials. 2005;26:1497–1505. doi: 10.1016/j.biomaterials.2004.04.049. PubMed DOI

Knowles J. C. Phosphate based glasses for biomedical applications. J. Mater. Chem. 2003;13:2395–2401. doi: 10.1039/B307119G. DOI

Carta D. Knowles J. C. Smith M. E. Newport R. J. Synthesis and structural characterization of P2O5–CaO–Na2O sol–gel materials. J. Non-Cryst. Solids. 2007;353:1141–1149. doi: 10.1016/j.jnoncrysol.2006.12.093. DOI

Pickup D. M. Guerry P. Moss R. M. Knowles J. C. Smith M. E. Newport R. J. New sol–gel synthesis of a (CaO)0.3(Na2O)0.2(P2O5)0.5 bioresorbable glass and its structural characterization. J. Mater. Chem. 2007;17:4777–4784. doi: 10.1039/B709955J. DOI

Pickup D. M. Speight R. J. Knowles J. C. Smith M. E. Newport R. J. Sol–gel synthesis and structural characterisation of binary TiO2–P2O5 glasses. Mater. Res. Bull. 2008;43:333–342. doi: 10.1016/j.materresbull.2007.03.005. DOI

Pickup D. M. Newport R. J. Knowles J. C. Sol–gel phosphate-based glass for drug delivery applications. J. Biomater. Appl. 2012;26:613–622. doi: 10.1177/0885328210380761. PubMed DOI

Abou Neel E. A. Chrzanowski W. Vlappil S. P. O'Dell L. A. Pickup D. M. Smith M. E. Newport R. J. Knowles J. C. Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J. Non-Cryst. Solids. 2009;355:991–1000. doi: 10.1016/j.jnoncrysol.2009.04.016. DOI

Abou Neel E. A. Knowles J. C. Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci.: Mater. Med. 2008;19:377–386. doi: 10.1007/s10856-007-3079-5. PubMed DOI

Abou Neel E. A. Mizoguchi T. Ito M. Bitar M. Salih V. Knowles J. C. In vitro bioactivity and gene expression by cells cultured on titanium dioxide doped phosphate-based glasses. Biomaterials. 2007;28:2967–2977. doi: 10.1016/j.biomaterials.2007.03.018. PubMed DOI

Abou Neel E. A. Young A. M. Nazhat S. N. Knowles J. C. A facile synthesis route to prepare microtubes from phosphate glass fibres. Adv. Mater. 2007;19:2856–2862. doi: 10.1002/adma.200700039. DOI

Guedes J. C. Park J. H. Lakhkar N. J. Kim H. W. Knowles J. C. Wall I. B. TiO2-doped phosphate glass microcarriers: a stable bioactive substrate for expansion of adherent mammalian cells. J. Biomater. Appl. 2013;28:3–11. doi: 10.1177/0885328212459093. PubMed DOI PMC

Bitar M. Salih V. Knowles J. C. Lewis M. P. Iron-phosphate glass fiber scaffolds for the hard–soft interface regeneration: the effect of fiber diameter and flow culture condition on cell survival and differentiation. J. Biomed. Mater. Res., Part A. 2008;87:1017–1026. doi: 10.1002/jbm.a.31855. PubMed DOI

Vitale-Brovarone C. Novajra G. Lousteau J. Milanese D. Raimondo S. Fornaro M. Phosphate glass fibres and their role in neuronal polarization and axonal growth direction. Acta Biomater. 2012;8:1125–1136. doi: 10.1016/j.actbio.2011.11.018. PubMed DOI

Abou Neel E. A. Pickup D. M. Valappil S. P. Newport R. J. Knowles J. C. Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. B. 2009;19:690–701. doi: 10.1039/B810675D. DOI

Sene F. F. Martinelli J. R. Okumo E. Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids. 2008;354:4887–4893. doi: 10.1016/j.jnoncrysol.2008.04.041. DOI

Nazhat S. N. Abou Neel E. A. Kidane A. Ahmed I. Hope C. Kershaw M. Lee P. D. Stride E. Saffari N. Knowles J. C. Brown R. A. Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromol. 2006;8:543–551. doi: 10.1021/bm060715f. PubMed DOI

Ahmed I. Cronin P. S. Abou Neel E. A. Parsons A. J. Knowles J. C. Rudd C. D. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J. Biomed. Mater. Res., Part B. 2009;89:18–27. doi: 10.1002/jbm.b.31182. PubMed DOI

Salih V. Franks K. James M. Hastings G. W. Knowles J. C. Olsen I. Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J. Mater. Sci.: Mater. Med. 2000;11:615–620. doi: 10.1023/A:1008901612674. PubMed DOI

Bitar M. Salih V. Mudera V. Knowles J. C. Lewis M. P. Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials. 2004;25:2283–2292. doi: 10.1016/j.biomaterials.2003.08.054. PubMed DOI

Gough J. E. Christian P. Scotchford C. A. Rudd C. D. Jones I. A. Synthesis, degradation, and in vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Biomed. Mater. Res. 2002;59:481–489. doi: 10.1002/jbm.10020. PubMed DOI

Dorozhkin S. V. Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. 2002;41:3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1. PubMed DOI

Bouler J. M. LeGeros R. Z. Daculsi G. Biphasic calcium phosphates: influence of three synthesis parameters on the HA/β-TCP ratio. J. Biomed. Mater. Res. 2000;51:680–684. doi: 10.1002/1097-4636(20000915)51:4<680::AID-JBM16>3.0.CO;2-#. PubMed DOI

Vallet-Regi M. Arcos D. Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J. Mater. Chem. 2005;15:1509–1516. doi: 10.1039/B414143A. DOI

Valappil S. P. Pickup D. M. Carroll D. L. Hope C. K. Pratten J. Newport R. J. Smith M. E. Wilson M. Knowles J. C. Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 2007;51:4453–4461. doi: 10.1128/AAC.00605-07. PubMed DOI PMC

Christie J. K. Ainsworth R. I. de Leeuw N. H. Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials. 2014;35:6164–6171. doi: 10.1016/j.biomaterials.2014.04.032. PubMed DOI

Lahkar N. J. Abou Neel E. A. Salih V. Knowles J. C. Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. J. Mater. Sci.: Mater. Med. 2009;20:1339–1346. doi: 10.1007/s10856-008-3688-7. PubMed DOI

Hussain K. M. Z. Patel U. Kennedy A. R. Laura M. P. Sottile V. Grant D. M. Scammell B. E. Ahmed I. Porous calcium phosphate glass microspheres for orthobiologic applications. Acta Biomater. 2018;72:396–406. doi: 10.1016/j.actbio.2018.03.040. PubMed DOI

Maeno S. Niki Y. Matsumoto H. Morioka H. Yatabe T. Funayama A. Toyama Y. Taguchi T. Tanaka J. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials. 2005;26:4847–4855. doi: 10.1016/j.biomaterials.2005.01.006. PubMed DOI

Yoshizawa S. Brown A. Bachowsky A. Sfeir C. Role of magnesium ions on osteogenic response in bone marrow stromal cells. Connect. Tissue Res. 2014;55:155–159. doi: 10.3109/03008207.2014.923877. PubMed DOI

Julien M. Khoshniat S. Lacreusette A. Gatius M. Bozec A. Wagner E. F. Wittrant Y. Masson M. Weiss P. Beck L. Magne D. Guicheux J. Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J. Bone Miner. Res. 2009;24:1856–1868. doi: 10.1359/jbmr.090508. PubMed DOI

Michael-Titus A., Revest P. and Shortland P., Elements of cellular and molecular neurosciences, in The nervous system, 2nd Edition, 2010, pp. 31–46

Patel U. Moss R. M. Hossain K. M. Z. Kennedy A. R. Barney E. R. Ahmed I. Hannon A. C. Structural and physico-chemical analysis of calcium/strontium substituted, near-invert phosphate based glasses for biomedical applications. Acta Biomater. 2017;60:109–127. doi: 10.1016/j.actbio.2017.07.002. PubMed DOI

Ahmed I. Abou Neel E. A. Valappil S. P. Nazhat S. N. Pickup D. M. Carta D. Carroll D. L. Newport R. J. Smith M. E. Knowles J. C. The structure and properties of silver-doped phosphate-based glasses. J. Mater. Sci. 2007;42:9827–9835. doi: 10.1007/s10853-007-2008-9. DOI

Ahmed I. Reddy D. Wilson M. Knowles J. C. Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res., Part A. 2006;79:618–626. doi: 10.1002/jbm.a.30808. PubMed DOI

Mourino V. Cattalini J. P. Boccaccini A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc., Interface. 2012;9:401–419. doi: 10.1098/rsif.2011.0611. PubMed DOI PMC

Weng L. Boda S. K. Teusink M. J. Shuler F. D. Li X. Xie J. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl. Mater. Interfaces. 2017;9:24484–24496. doi: 10.1021/acsami.7b06521. PubMed DOI

Zhu H. Pan Z. Chen B. Lee B. Mahurin S. M. Overbury S. H. Dai S. Synthesis of ordered mixed titania and silica mesostructured monoliths for gold catalysts. J. Phys. Chem. B. 2004;108:20038–20044. doi: 10.1021/jp047525o. DOI

Tang J. Liu J. Yang J. Feng Z. Fan F. Yang Q. Mesoporous titanosilicates with high loading of titanium synthesized in mild acidic buffer solution. J. Colloid Interface Sci. 2009;335:203–209. doi: 10.1016/j.jcis.2009.03.090. PubMed DOI

Kim W. I. Hong I. K. J. Synthesis of monolithic titania–silica composite aerogels with supercritical drying process. J. Ind. Eng. Chem. 2003;9:728–734.

Melero J. A. Arsuaga J. M. de Frutos P. Iglesias J. Sainz J. Blazquez S. Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous Mesoporous Mater. 2005;86:364–373. doi: 10.1016/j.micromeso.2005.07.040. DOI

Ruzimuradov O. Nurmanov S. Kodani Y. Takahashi R. Yamada I. Morphology and dispersion control of titania–silica monolith with macro–meso pore system. J. Sol-Gel Sci. Technol. 2012;64:684–693. doi: 10.1007/s10971-012-2903-7. DOI

Zhang W. H. Lu J. Han B. Li M. Xiu J. Ying P. Li C. Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15. Chem. Mater. 2002;14:3413–3421. doi: 10.1021/cm011686c. DOI

Liu G. Liu Y. Yang G. Li S. Zu Y. Zhang W. Jia M. Preparation of titania–silica mixed oxides by a sol–gel route in the presence of citric acid. J. Phys. Chem. C. 2009;113:9345–9351. doi: 10.1021/jp900577c. DOI

Chen H. J. Wang L. Chiu W. Y. Chelation and solvent effect on the preparation of titania colloids. Mater. Chem. Phys. 2007;101:12–19. doi: 10.1016/j.matchemphys.2006.02.007. DOI

Rupp W. Husing N. Schubert U. Preparation of silica–titania xerogels and aerogels by sol–gel processing of new single-source precursors. J. Mater. Chem. 2002;12:2594–2596. doi: 10.1039/B204956B. DOI

Lenza R. F. Vasconcelos W. L. Synthesis of titania–silica materials by sol–gel. Mater. Res. 2002;5:497–502. doi: 10.1590/S1516-14392002000400017. DOI

Konishi J. Fujita K. Nakanishi K. Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol–gel process accompanied by phase separation. Chem. Mater. 2006;18:6069–6074. doi: 10.1021/cm0617485. DOI

Nakanishi K. Tanaka N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007;40:863–873. doi: 10.1021/ar600034p. PubMed DOI

Ruzimuradov O. N. Formation of bimodal porous silica–titania monoliths by sol–gel route. IOP Conf. Ser.: Mater. Sci. Eng. 2011;18:032004.

Deshmukh K. Kovarik T. Krenek T. Stitch T. Docheva D. Microstructural evaluation and thermal properties of sol–gel derived silica–titania based porous glasses. J. Phys.: Conf. Ser. 2020;1527:012031. doi: 10.1088/1742-6596/1527/1/012031. DOI

Nakanishi K. Preparation of SiO2–TiO2 gels with controlled pore structure via sol–gel route. Bull. Inst. Chem. Res., Kyoto Univ. 1992;70:144–151.

Flaig S. Akbarzadeh J. Dolcet P. Gross S. Peterlik H. Husing N. Hierarchically organized silica–titania monoliths prepared under purely aqueous conditions. Chem.–Eur. J. 2014;20:17409–17419. doi: 10.1002/chem.201402873. PubMed DOI

Aravind P. R. Shjesh P. Mukundan P. Warrier K. G. K. Silica–titania aerogel monoliths with large pore volume and surface area by ambient pressure drying. J. Sol-Gel Sci. Technol. 2009;52:328–334. doi: 10.1007/s10971-009-2042-y. DOI

Destino J. F. Dudukovic N. A. Johnson M. A. Nguyen D. T. Yee T. D. Egan G. C. Sawvel A. M. Steele W. A. Baumann T. F. Duoss E. B. Suratwala T. Dylla-Spears R. 3D printed optical quality silica and silica–titania glasses from sol–gel feedstocks. Adv. Mater. Technol. 2018;3:1700323. doi: 10.1002/admt.201700323. DOI

Scannell G. Koike A. Hunag L. Structure and thermomechanical response of TiO2–SiO2 glasses to temperature. J. Non-Cryst. Solids. 2016;447:238–247. doi: 10.1016/j.jnoncrysol.2016.06.018. DOI

Brusatin G. Guglielmi M. Innocenzi P. Martucci A. Battaglin G. Pelli S. Righini G. Microstructural and optical properties of sol–gel silica–titania waveguides. J. Non-Cryst. Solids. 1997;220:202–209. doi: 10.1016/S0022-3093(97)00263-9. DOI

Shingyouchi K. Konishi S. Gradient-index doped silica rod lenses produced by a sol gel method. Appl. Opt. 1990;29:4061–4063. doi: 10.1364/AO.29.004061. PubMed DOI

Deng Z. Wang J. Zhang Y. Weng Z. Zhang Z. Zhou B. Shen J. Chen L. Preparation and photocatalytic activity of TiO2–SiO2 binary aerogels. Nanostruct. Mater. 1999;11:1313–1318. doi: 10.1016/S0965-9773(99)00423-7. DOI

Dutoit D. C. M. Schneider M. Baiker A. Titania-silica mixed oxides: I. Influence of sol–gel and drying conditions on structural properties. J. Catal. 1995;153:165–176. doi: 10.1006/jcat.1995.1118. DOI

Xu Z. Jia Y. Hao Z. Liu M. Chen L. Preparation and characterization of silica–titania aerogel-like balls by ambient pressure drying. J. Sol-Gel Sci. Technol. 2007;41:203–207. doi: 10.1007/s10971-006-1500-z. DOI

Malinowska B. Walendziewski J. Robert D. Weber J. V. Stolarski M. The study of photocatalytic activities of titania and titania–silica aerogels. Appl. Catal., B. 2003;46:441–451. doi: 10.1016/S0926-3373(03)00273-X. DOI

Deng Z. Breval E. Pantano C. G. Colloidal sol/gel processing of ultra-low expansion TiO2/SiO2 glasses. J. Non-Cryst. Solids. 1988;100:364–370. doi: 10.1016/0022-3093(88)90047-6. DOI

Satoh S. Susa K. Matsuyama I. Sol–gel derived binary silica glasses with high refractive index. J. Non-Cryst. Solids. 1992;146:121–128. doi: 10.1016/S0022-3093(05)80483-1. DOI

El-Bashir S. M. Physical properties Nd3+ doped (SiO2–TiO2) monolithic glass for photoresistor applications. Mater. Res. Express. 2017;4:115203. doi: 10.1088/2053-1591/aa97a7. DOI

Guangwu L. and Yangang L., Preparation and characterization of silica–titania aerogel monoliths by sol gel method, IEEE 16th International Conference on Nanotechnology (IEEE-NANO), Sendai, Japan, August 22–25, 2016, pp. 85–88

Pandey S. Mishra S. B. Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 2011;59:73–94. doi: 10.1007/s10971-011-2465-0. DOI

Mir S. H. Nagahara L. A. Thundat T. Mokarian-Tabari P. Furukawa H. Khosla A. Review – organic–inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc. 2018;165:B3137–B3156. doi: 10.1149/2.0191808jes. DOI

Kickelbick G., Introduction to hybrid materials, in Hybrid materials: synthesis, characterization and applications, ed. G. Kickelbick, Wiley-VCH Verlag, GmbH & Co KGaA, Weinheim, 2007, pp. 1–48

Baino F. Fiume E. Miola M. Verne E. Bioactive sol–gel glasses: processing, properties, and applications. Int. J. Appl. Ceram. Technol. 2018;15:841–860. doi: 10.1111/ijac.12873. DOI

Gill I. Bio-doped nanocomposite polymers: sol–gel bioencapsulates. Chem. Mater. 2001;13:3404–3421. doi: 10.1021/cm0102483. DOI

Vallient E. M. Jones J. R. Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter. 2011;7:5083–5095. doi: 10.1039/C0SM01348J. DOI

Crouzet I. Leclercq D. Polyphosphazene–metal oxide hybrids by nonhydrolytic sol–gel processes. J. Mater. Chem. 2000;10:1195–1201. doi: 10.1039/A909362A. DOI

Tamaki R. Naka K. Chujo Y. Synthesis of poly(N,N-dimethylacrylamide)/silica gel polymer hybrids by in situ polymerization method. Polym. J. 1998;30:60–65. doi: 10.1295/polymj.30.60. DOI

Toki M. Chow T. Y. Ohnaka T. Samura H. Saegusa T. Structure of poly(vinylpyrrolidone)–silica hybrid. Polym. Bull. 1992;29:653–660. doi: 10.1007/BF01041151. DOI

Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew. Chem. 2009;48:4488–4507. doi: 10.1002/anie.200900723. PubMed DOI

Yang F. Nelson G. L. PMMA/silica nanocomposite studies: synthesis and properties. J. Appl. Polym. Sci. 2004;91:3844–3850. doi: 10.1002/app.13573. DOI

Mauritz K. A. Jones C. K. Novel poly (n-butyl methacrylate)/titanium oxide alloys produced by sol–gel process for titanium alkoxides. J. Appl. Polym. Sci. 1990;40:1401–1420. doi: 10.1002/app.1990.070400726. DOI

Zhao X. Wu Y. Du Y. Chen X. Lei B. Xue Y. Ma P. X. A highly bioactive and biodegradable poly(glycerolsebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. J. Mater. Chem. B. 2015;3:3222–3233. doi: 10.1039/C4TB01693A. PubMed DOI

Kamitakahara M. Kawashita M. Miyata N. Kokubo T. Nakamura T. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)–CaO–SiO2 hybrids with different calcium contents. J. Mater. Sci.: Mater. Med. 2002;13:1015–1020. doi: 10.1023/A:1020324101682. PubMed DOI

Sanchez-Tellez D. Tellez-Jurado L. Rodriguez-Lorenzo L. M. Optimization of the CaO and P2O5 contents on PDMS–SiO2–CaO–P2O5 hybrids intended for bone regeneration. J. Mater. Sci. 2015;50:5993–6006. doi: 10.1007/s10853-015-9147-1. DOI

Pereira A. P. V. Vasconcelos W. L. Orefice R. L. Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity. J. Non-Cryst. Solids. 2000;273:180–185. doi: 10.1016/S0022-3093(00)00166-6. DOI

Martin A. I. Salinas A. J. Vallet-Regi M. Bioactive and degradable organic–inorganic hybrids. J. Eur. Ceram. Soc. 2005;25:3533–3538. doi: 10.1016/j.jeurceramsoc.2004.09.030. DOI

Catauro M. Bollino F. Papale F. Gallicchio M. Pacifico S. Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol–gel technique. Mater. Sci. Eng., C. 2015;48:548–555. doi: 10.1016/j.msec.2014.12.035. PubMed DOI

Song J. H. Yoon B. H. Kim H. E. Kim H. W. Bioactive and degradable hybridized nanofibers of gelatin–siloxane for bone regeneration. J. Biomed. Mater. Res., Part A. 2008;84:875–884. doi: 10.1002/jbm.a.31330. PubMed DOI

Lee E. J. Jun S. H. Kim H. E. Kim H. W. Koh Y. H. Jang J. H. Silica xerogel–chitosan nano-hybrids for use as drug eluting bone replacement. J. Mater. Sci.: Mater. Med. 2010;21:207–214. doi: 10.1007/s10856-009-3835-9. PubMed DOI

Lee E. J. Shin D. S. Kim H. E. Kim H. W. Koh Y. H. Jang J. H. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials. 2009;30:743–750. doi: 10.1016/j.biomaterials.2008.10.025. PubMed DOI

Lee E. J. Teng S. H. Jang T. S. Wang P. Yook S. W. Kim H. E. Koh Y. H. Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomater. 2010;6:3557–3565. doi: 10.1016/j.actbio.2010.03.022. PubMed DOI

Catauro M. Bollino F. Papale F. Marciano S. Pacifico S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater. Sci. Eng., C. 2015;47:135–141. doi: 10.1016/j.msec.2014.11.040. PubMed DOI

Catauro M. Bollino F. Papale F. Mozetic P. Rainer A. Trombetta M. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation. Mater. Sci. Eng., C. 2014;45:395–401. doi: 10.1016/j.msec.2014.09.007. PubMed DOI

Ren L. Tsuru K. Hayakawa S. Osaka A. Sol–gel preparation and in vitro deposition of apatite on porous gelatin–siloxane hybrids. J. Non-Cryst. Solids. 2001;285:116–122. doi: 10.1016/S0022-3093(01)00441-0. DOI

Ren L. Tsuru K. Hayakawa S. Osaka A. Novel approach to fabricate porous gelatin–siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–4773. doi: 10.1016/S0142-9612(02)00226-0. PubMed DOI

Silva S. S. Ferreira R. A. S. Fu L. Carlos L. D. Mano J. F. Reis R. L. Rocha J. Functional nanostructured chitosan–siloxane hybrids. J. Mater. Chem. 2005;15:3952–3961. doi: 10.1039/B505875A. DOI

Ohtsuki C. Miyazaki T. Tanihara M. Development of bioactive organic–inorganic hybrid for bone substitutes. Mater. Sci. Eng., C. 2002;22:27–34. doi: 10.1016/S0928-4931(02)00109-1. DOI

Gupta R. Kumar A. Bioactive materials for biomedical applications using sol–gel technology. Biomed. Mater. 2008;3:034005. doi: 10.1088/1748-6041/3/3/034005. PubMed DOI

Szczesniak B. Choma J. Joroniec M. Major advances in the development of ordered mesoporous materials. Chem. Commun. 2020;56:7836–7848. doi: 10.1039/D0CC02840A. PubMed DOI

Thommes M. Kaneko K. Neimark A. V. Olivier J. P. Rodriguez-Reinoso F. Rouquerol J. Sing K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069.

Jones J. R. Lee P. D. Hench L. L. Hierarchical porous materials for tissue engineering. Philos. Trans. R. Soc., A. 2006;364:263–281. doi: 10.1098/rsta.2005.1689. PubMed DOI

Pal N. Bhaumik A. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic–inorganic hybrids and purely organic solids. Adv. Colloid Interface Sci. 2013;189–190:21–41. doi: 10.1016/j.cis.2012.12.002. PubMed DOI

Arcos D. Vallet-Regi M. Bioceramics for drug delivery. Acta Mater. 2013;61:890–911. doi: 10.1016/j.actamat.2012.10.039. DOI

Wu C. Chang J. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus. 2012;2:292–306. doi: 10.1098/rsfs.2011.0121. PubMed DOI PMC

Horcajada P. Ramila A. Perez-Pariente J. Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater. 2004;68:105–109. doi: 10.1016/j.micromeso.2003.12.012. DOI

Li Y. Bastakoti B. P. Yamauchi Y. Smart soft-templating synthesis of hollow mesoporous bioactive glass spheres. Chem.–Eur. J. 2015;21:8038–8042. doi: 10.1002/chem.201406570. PubMed DOI

Pappas G. S. Liatsi P. Kartsonakis I. A. Danilidis I. Kordas G. Synthesis and characterization of new SiO2–CaO hollow nanospheres by sol–gel method: bioactivity of the new system. J. Non-Cryst. Solids. 2008;354:755–760. doi: 10.1016/j.jnoncrysol.2007.09.007. DOI

Zheng K. Bortuzzo J. A. Liu Y. Li W. Pischetsrieder M. Roether J. Lu M. Boccaccini A. R. Bio-templated bioactive glass particles with hierarchical macro–nano porous structure and drug delivery capability. Colloids Surf., B. 2015;135:825–832. doi: 10.1016/j.colsurfb.2015.03.038. PubMed DOI

Li X. Guohou M. Xiaofeng C. Guang Y. Hui L. Cong M. Xiongjun S. Chengyun N. Investigation of radial mesoporous bioactive glass particles as drug carriers for inhibition of tumor cells. Sci. Adv. Mater. 2017;9:562–570. doi: 10.1166/sam.2017.2341. DOI

Arcos D. Lopez-Noriega A. Ruiz-Hernandez E. Terasaki O. Vallet-Regi M. Ordered mesoporous microspheres for bone grafting and drug delivery. Chem. Mater. 2009;21:1000–1009. doi: 10.1021/cm801649z. DOI

Zheng K. Lu M. Rutkowski B. Dai X. Yang Y. Taccardi N. Stachewicz U. Czyrska-Filemonowicz A. Huser N. Boccaccini A. R. ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. J. Mater. Chem. B. 2016;4:7936–7949. doi: 10.1039/C6TB02053D. PubMed DOI

Tsigkou O. Labbaf S. Stevens M. M. Porter A. E. Jones J. R. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv. Healthcare Mater. 2014;3:115–125. doi: 10.1002/adhm.201300126. PubMed DOI

Hu Q. Li Y. Miao G. Zhao N. Chen X. Size control and biological properties of monodispersed mesoporous bioactive glass sub-micron spheres. RSC Adv. 2014;4:22678–22687. doi: 10.1039/C4RA01276C. DOI

Kolhar P. Anselmo A. C. Gupta V. Pant K. Prabhakarpandian B. Ruoslahti E. Mitragotri S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U. S. A. 2013;110:10753–10758. doi: 10.1073/pnas.1308345110. PubMed DOI PMC

Colquhoun R. Tanner K. E. Mechanical behaviour of degradable phosphate glass fibres and composites: a review. Biomed. Mater. 2015;11:14105. doi: 10.1088/1748-6041/11/1/014105. PubMed DOI

Li Y. Chen X. Ning C. Yuan B. Hu Q. Facile synthesis of mesoporous bioactive glasses with controlled shapes. Mater. Lett. 2015;161:605–608. doi: 10.1016/j.matlet.2015.09.057. DOI

El-Meliegy E. Mabrouk M. El-Sayed S. A. M. Abd El-Hady B. M. Shehata M. R. Hosny W. M. Novel Fe2O3-doped glass/chitosan scaffolds for bone tissue replacement. Ceram. Int. 2018;44:9140–9151. doi: 10.1016/j.ceramint.2018.02.122. DOI

El-Sayed S. A. M. Mabrouk M. Khallaf M. E. Abd El-Hady B. M. El-Meliegy E. Shehata M. R. Antibacterial, drug delivery, and osteoinduction abilities of bioglass/chitosan scaffolds for dental applications. J. Drug Delivery Sci. Technol. 2020;57:101757. doi: 10.1016/j.jddst.2020.101757. DOI

Baino F. Fiume E. Miola M. Leone F. Onida B. Verne E. Fe-doped bioactive glass-derived scaffolds produced by sol–gel foaming. Mater. Lett. 2019;235:207–211. doi: 10.1016/j.matlet.2018.10.042. DOI

Charoensuk T. Sirisathitkul C. Boonyang U. Macha I. J. Santos J. Grossin D. Ben-Nissan B. In vitro bioactivity and stem cells attachment of three-dimensionally ordered macroporous bioactive glass incorporating iron oxides. J. Non-Cryst. Solids. 2016;452:62–73. doi: 10.1016/j.jnoncrysol.2016.08.019. DOI

Mesquita-Guimarães J. Ramos L. Detsch R. Henriques B. Fredel M. C. Silva F. S. Boccaccini A. R. Evaluation of in vitro properties of 3D micro–macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. J. Eur. Ceram. Soc. 2019;39:2545–2558. doi: 10.1016/j.jeurceramsoc.2019.01.029. DOI

Ni S. Li X. Yang P. Ni S. Hong F. Webster T. J. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO–SiO2–Ag2O bioactive materials. Mater. Sci. Eng., C. 2016;58:700–708. doi: 10.1016/j.msec.2015.09.011. PubMed DOI

Yazdimamaghani M. Vashae D. Assefa S. Walker K. J. Madihally S. V. Kohler G. A. Tayebi L. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J. Biomed. Nanotechnol. 2014;10(6):911–931. doi: 10.1166/jbn.2014.1783. PubMed DOI

Sharifianjazi F. Parvin N. Tahriri M. Synthesis and characteristics of sol–gel bioactive SiO2–P2O5–CaO–Ag2O glasses. J. Non-Cryst. Solids. 2017;476:108–113. doi: 10.1016/j.jnoncrysol.2017.09.035. DOI

Jalise S. Z. Baheiraei N. Bagheri F. The effects of strontium incorporation on a novel gelatin/bioactive glass bone graft: in vitro and in vivo characterization. Ceram. Int. 2018;44:14217–14227. doi: 10.1016/j.ceramint.2018.05.025. DOI

Shaltooki M. Dini G. Mehdikhani M. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng., C. 2019;105:110138. doi: 10.1016/j.msec.2019.110138. PubMed DOI

Amudha S. Ramya J. R. Arul K. T. Deepika A. Sathiamurthi P. Mohana B. Asokan K. Dong C. L. Kalkura S. N. Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Composites, Part B. 2020;196:108099. doi: 10.1016/j.compositesb.2020.108099. DOI

Zamani D. Moztarzadeh F. Bizari D. Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Int. J. Biol. Macromol. 2019;137:1256–1267. doi: 10.1016/j.ijbiomac.2019.06.182. PubMed DOI

Hong Y. Chen X. Jing X. Fan H. Gu Z. Zhang X. Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers. Adv. Funct. Mater. 2010;20:1503–1510. doi: 10.1002/adfm.200901627. DOI

Poologasundarampillai G. Wang D. Li S. Nakamura J. Bradley R. Lee P. D. Stevens M. M. McPhail D. S. Kasuga T. Jones J. R. Cotton–wool-like bioactive glasses for bone regeneration. Acta Biomater. 2014;10:3733–3746. doi: 10.1016/j.actbio.2014.05.020. PubMed DOI

Baino F. Novajra G. Miguez-Pacheco V. Boccaccini A. R. Vitale-Bovarone C. Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids. 2016;432:15–30. doi: 10.1016/j.jnoncrysol.2015.02.015. DOI

Rabie S. M. Nazparvar N. Azizian M. Vashaee D. Tayebi L. Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 2015;41:7241–7251. doi: 10.1016/j.ceramint.2015.02.140. DOI

Faure J. Drevet R. Lemelle A. Jaber N. B. Tara A. El Btaouri H. Benhayoune H. A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater. Sci. Eng., C. 2015;47:407–412. doi: 10.1016/j.msec.2014.11.045. PubMed DOI

Lopes J. H. Bueno O. M. V. M. Mazali I. O. Bertran C. A. Investigation of citric acid-assisted sol–gel synthesis coupled to the self-propagating combustion method for preparing bioactive glass with high structural homogeneity. Mater. Sci. Eng., C. 2019;97:669–678. doi: 10.1016/j.msec.2018.12.022. PubMed DOI

Thibault M. H. Comeau C. Vienneau G. Robichaud J. Brown D. Bruening R. Martin L. J. Djaoued Y. Assessing the potential of boronic acid/chitosan/bioglass composite. Mater. Sci. Eng., C. 2020;110:110674. doi: 10.1016/j.msec.2020.110674. PubMed DOI

Hench L. L. The story of bioglass. J. Mater. Sci.: Mater. Med. 2006;17:967–978. doi: 10.1007/s10856-006-0432-z. PubMed DOI

Baino F. Bioactive glass – when glass science and technology meet regenerative medicine. Ceram. Int. 2018;44:14953–14966. doi: 10.1016/j.ceramint.2018.05.180. DOI

Hupa L., Composition–property relations of bioactive silicate glasses, in Bioactive glasses: materials properties and applications, ed. H. Ylanen, Woodhead Publishing, 2nd edn, 2018, pp. 1–36

Deliormanli A. M. Liu X. Rahaman M. N. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model. J. Biomater. Appl. 2014;28:643–653. doi: 10.1177/0885328212470013. PubMed DOI

Shah F. A. Brauer D. S. Desai N. Hill R. G. Hing K. A. Fluoride-containing bioactive glasses and Bioglass® 45S5 form apatite in low pH cell culture medium. Mater. Lett. 2014;119:96–99. doi: 10.1016/j.matlet.2013.12.102. DOI

Andersson O. H. Liu G. Karlsson K. H. Niemi L. Miettinen J. Juhanoja J. In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J. Mater. Sci.: Mater. Med. 1990;1:219–227. doi: 10.1007/BF00701080. DOI

Brink M. Turunen T. Happonen R. P. Yli-Urpo A. Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 1997;37:114–121. doi: 10.1002/(SICI)1097-4636(199710)37:1<114::AID-JBM14>3.0.CO;2-G. PubMed DOI

Lusvardi G. Malavasi G. Menabue L. Menziani M. C. Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B. 2002;106:9753–9760. doi: 10.1021/jp020321s. DOI

Wren A. W. Coughlan A. Smith C. M. Hudson S. P. Laffir F. R. Towler M. R. Investigating the solubility and cytocompatibility of CaO–Na2O–SiO2/TiO2 bioactive glasses. J. Biomed. Mater. Res., Part A. 2015;103:709–720. doi: 10.1002/jbm.a.35223. PubMed DOI

Pourshahrestani S. Zeimaran E. Kadri N. A. Gargiulo N. Samuel S. Naveen S. V. Kamarul T. Towler M. R. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J. Mater. Chem. B. 2016;4:71–86. doi: 10.1039/C5TB02062J. PubMed DOI

Kaur G. Pandey O. P. Singh K. Homa D. Scott B. Pickrell G. A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res., Part A. 2014;102:254–274. doi: 10.1002/jbm.a.34690. PubMed DOI

Goudouri O. M. Kontonasaki E. Lohbauer U. Boccaccini A. R. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater. 2014;10:3795–3810. doi: 10.1016/j.actbio.2014.03.028. PubMed DOI

Li X. Wang X. He D. Shi J. Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem. 2008;18:4103–4109. doi: 10.1039/B805114C. DOI

Verne E. Nunzio S. D. Bosetti M. Appendino P. Brovarone C. V. Maina G. Cannas M. Surface characterization of silver-doped bioactive glass. Biomaterials. 2005;26:5111–5119. doi: 10.1016/j.biomaterials.2005.01.038. PubMed DOI

Yamaguchi M. Role of zinc in bone metabolism and preventive effect on bone disorder. Biomed. Res. Trace Elem. 2007;18:346–366.

Boyd D. Clarkin O. M. Wren A. W. Towler M. R. Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties. Acta Biomater. 2008;4:425–431. doi: 10.1016/j.actbio.2007.07.010. PubMed DOI

Zreqat H. Valenzuela S. M. Nissan B. B. Roest R. Knabe C. Radlanski R. J. Renz H. Evans P. J. The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. J. Biomed. Mater. Res. 2002;62:175–184. doi: 10.1002/jbm.10270. PubMed DOI

Arima Y. Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:4079–4087. doi: 10.1016/j.biomaterials.2007.03.013. PubMed DOI

Hasan A. Pattanayek S. K. Pandey L. M. Effect of functional groups of self assembled monolayers on protein adsorption and initial cell adhesion. ACS Biomater. Sci. Eng. 2018;4:3224–3233. doi: 10.1021/acsbiomaterials.8b00795. PubMed DOI

Duan K. Wang R. Z. Surface modifications of bone implants through wet chemistry. J. Mater. Chem. 2006;16:2309–2321. doi: 10.1039/B517634D. DOI

Chang J. and Zhou Y. L., Surface modification of bioactive glasses, in Bioactive glasses: materials properties and applications, ed. H. Ylanen, Woodhead Publishing, 2017, pp. 119–143

Kargozar S. Kermani F. Beidokhti S. M. Hamzehlou S. Verne E. Ferraris S. Baino F. Functionalization and surface modification of bioactive glasses (BGs): tailoring the biological response working on the outermost surface layer. Materials. 2019;12:3696. doi: 10.3390/ma12223696. PubMed DOI PMC

Ferraris S. and Verne E., Surface functionalization of bioactive glasses: reactive groups, biomolecules, and drugs on bioactive surfaces for smart and functional biomaterials, in Bioactive glasses: fundamentals, technology and applications, ed. A. R. Boccaccini, D. S. Brauer and L. Hupa, The Royal Society of Chemistry, 2018, pp. 221–235

Qiu Z. Y. Chen C. Wang X. M. Lee I. S. Advances in the surface modification techniques of bone-related implants for last 10 years. Regener. Biomater. 2014;1:67–79. doi: 10.1093/rb/rbu007. PubMed DOI PMC

Stanic V., Variation in properties of bioactive glasses after surface modification, in Clinical applications of biomaterials, ed. G. Kaur, Springer International Publishing AG, 2017, pp. 35–63

Towarfe G. K. Composto R. J. Shapiro I. M. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials. 2006;27:631–642. doi: 10.1016/j.biomaterials.2005.06.017. PubMed DOI

Zucca P. Sanjust E. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 2014;19:14139–14194. doi: 10.3390/molecules190914139. PubMed DOI PMC

Aina V. Magistris C. Cerrato G. Martra G. Viscardi G. Lusvardi G. Malavasi G. Menabue L. New formulation of functionalized bioactive glasses to be used as carriers for the development of pH-stimuli responsive biomaterials for bone diseases. Langmuir. 2014;30:4703–4715. doi: 10.1021/la5003989. PubMed DOI

Verne E. Vitale-Brovarone C. Bui E. Bianchi C. L. Boccaccini A. R. Surface functionalization of bioactive glasses. J. Biomed. Mater. Res., Part A. 2009;90(4):981–992. doi: 10.1002/jbm.a.32153. PubMed DOI

Ferraris S. Vitale-Brovarone C. Bretcanu O. Cassinelli C. Verne E. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro. Appl. Surf. Sci. 2013;271:412–420. doi: 10.1016/j.apsusc.2013.02.002. DOI

Chen Q. Z. Rezwan K. Francon V. Armitage D. Nazhat S. N. Jones F. H. Boccaccini A. R. Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 2007;3:551–562. doi: 10.1016/j.actbio.2007.01.008. PubMed DOI

Lopez-Noriega A. Arcos D. Vallet-Regi M. Functionalizing mesoporous bioglasses for long-term anti-osteoporotic drug delivery. Chem.–Eur. J. 2010;16:10879–10886. doi: 10.1002/chem.201000137. PubMed DOI

El-Fiqi A. Lee J. H. Lee E. J. Kim H. W. Collagen hydrogels incorporated with surface-aminated mesoporous nanobioactive glass: improvement of physicochemical stability and mechanical properties is effective for hard tissue engineering. Acta Biomater. 2013;9:9503–9521. doi: 10.1016/j.actbio.2013.07.036. PubMed DOI

Verne E. Ferraris S. Vitale-Brovarone C. Spriano S. Bianchi C. L. Naldoni A. Morra M. Cassinelli C. Alkaline phosphatase grafting on bioactive glasses and glass ceramics. Acta Biomater. 2010;6:229–240. doi: 10.1016/j.actbio.2009.06.025. PubMed DOI

Lusvardi G. Malavasi G. Menabue L. Shruti S. Gallium-containing phosphosilicate glasses: functionalization and in vitro bioactivity. Mater. Sci. Eng., C. 2013;33:3190–3196. doi: 10.1016/j.msec.2013.03.046. PubMed DOI

Chen Q. Z. Rezwan K. Armitage D. Nazhat S. N. Boccaccini A. R. The surface functionalization of 45S5 Bioglass®-based glass–ceramic scaffolds and its impact on bioactivity. J. Mater. Sci.: Mater. Med. 2006;17:979–987. doi: 10.1007/s10856-006-0433-y. PubMed DOI

Chen Q. Z. Ahmed I. Knowles J. C. Nazhat S. N. Boccaccini A. R. Rezwan K. Collagen release kinetics of surface functionalized 45S5 Bioglass®-based porous scaffolds. J. Biomed. Mater. Res., Part A. 2008;86:987–995. doi: 10.1002/jbm.a.31718. PubMed DOI

Gruian C. Vanea E. Simon S. Simon V. FTIR and XPS studies of protein adsorption onto functionalized bioactive glass. Biochim. Biophys. Acta. 2012;1824:873–881. doi: 10.1016/j.bbapap.2012.04.008. PubMed DOI

Ainar V. Malavasi G. Magistris C. Cerrato G. Martra G. Viscardi G. Menabue L. Lusvardi G. Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. J. Mater. Sci.: Mater. Med. 2014;25:2243–2253. doi: 10.1007/s10856-014-5206-4. PubMed DOI

Sun J. Li Y. Li L. Zhao W. Li L. Gao J. Ruan M. Shi J. Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J. Non-Cryst. Solids. 2008;354:3799–3805. doi: 10.1016/j.jnoncrysol.2008.05.001. DOI

Zhang X. Zeng D. Li N. Wen J. Jiang X. Liu C. Li Y. Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci. Rep. 2016;6:19361. doi: 10.1038/srep19361. PubMed DOI PMC

Misra S. K. Mohn D. Brunner T. J. Stark W. J. Philip S. E. Roy I. Salih V. Knowles J. C. Boccaccini A. R. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass® composites. Biomaterials. 2008;25:1750–1761. doi: 10.1016/j.biomaterials.2007.12.040. PubMed DOI

Maquet V. Boccaccini A. R. Pravata L. Notingher I. Jerome R. Porous poly(α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterization. Biomaterials. 2004;25:4185–4194. doi: 10.1016/j.biomaterials.2003.10.082. PubMed DOI

Jiang G. Evans M. E. Jones I. A. Rudd C. D. Scotchford C. A. Walker G. S. Preparation of poly(ε-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant. Biomaterials. 2005;26:2281–2288. doi: 10.1016/j.biomaterials.2004.07.042. PubMed DOI

Silva G. A. Costa F. J. Coutinho O. P. Radin S. Ducheyne P. Reis R. L. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles. J. Biomed. Mater. Res., Part A. 2004;70:442–449. doi: 10.1002/jbm.a.30099. PubMed DOI

Roether J. A. Boccaccini A. R. Hench L. L. Maquet V. Gautier S. Jerome R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials. 2002;23:3871–3878. doi: 10.1016/S0142-9612(02)00131-X. PubMed DOI

Zhou Z. Liu L. Liu Q. Yi Q. Zeng W. Zhao Y. Effect of surface modification of bioactive glass on properties of poly-l-lactide composite materials. J. Macromol. Sci., Part B: Phys. 2012;51:1637–1646. doi: 10.1080/00222348.2012.672295. DOI

Ducker R. E. Montague M. T. Leggett G. J. A comparative investigation of methods for protein immobilization on self-assembled monolayers using glutaraldehyde, carbodiimide, and anhydride reagents. Biointerphases. 2008;3:59–65. doi: 10.1116/1.2976451. PubMed DOI

Gruian C. Vulpoi A. Steinhoff H. J. Simon S. Structural changes of methemoglobin after adsorption on bioactive glass, as a function of surface functionalization and salt concentration. J. Mol. Struct. 2012;1015:20–26. doi: 10.1016/j.molstruc.2012.01.045. DOI

Gruian C. Vulpoi A. Vanea E. Oprea B. Steinhoff H. J. Simon S. The attachment affinity of hemoglobin toward silver-containing bioactive glass functionalized with glutaraldehyde. J. Phys. Chem. B. 2013;117:16558–16564. doi: 10.1021/jp408830t. PubMed DOI

Wang K. Zhou C. Hong Y. Zhang X. A review of protein adsorption on bioceramics. Interface Focus. 2012;2:259–277. doi: 10.1098/rsfs.2012.0012. PubMed DOI PMC

Long Q. Da-Li Z. Zhang X. Jia-Bei Z. Surface modification of apatite–wollastonite glass ceramic by synthetic coupling agent. Front. Mater. Sci. 2014;8:157–164. doi: 10.1007/s11706-014-0244-x. DOI

Aina V. Marchis T. Laurenti E. Diana E. Lusvardi G. Malavasi G. Menabue L. Cerrato G. Morterra C. Functionalization of sol gel bioactive glasses carrying Au nanoparticles: selective Au affinity for amino and thiol ligand groups. Langmuir. 2010;26:18600–18605. doi: 10.1021/la1036647. PubMed DOI

Leonor I. B. Alves C. M. Azevedo H. S. Reis R. L. Effects of protein incorporation on calcium phosphate coating. Mater. Sci. Eng., C. 2009;29:913–918. doi: 10.1016/j.msec.2008.08.003. DOI

Zhu M. Zhang J. Tao C. He X. Zhu Y. Design of mesoporous bioactive glass/hydroxyapatite composites for controllable co-delivery of chemotherapeutic drugs and proteins. Mater. Lett. 2014;115:194–197. doi: 10.1016/j.matlet.2013.10.058. DOI

Schickle K. Zurlinden K. Bergmann C. Lindner M. Kirsten A. Laub M. Telle R. Jennissen H. Fischer H. Synthesis of novel tricalcium phosphate–bioactive glass composite and functionalization with rhBMP-2. J. Mater. Sci.: Mater. Med. 2011;22:763. doi: 10.1007/s10856-011-4252-4. PubMed DOI

Hattar S. Asselin A. Greenspan D. Oboeuf M. Berdal A. Sautier J. M. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials. 2005;26:839–848. doi: 10.1016/j.biomaterials.2004.03.026. PubMed DOI

Lenza R. F. S. Jones J. R. Vasconcelos W. L. Hench L. L. In vitro release kinetics of proteins from bioactive foams. J. Biomed. Mater. Res., Part A. 2003;67:121–129. doi: 10.1002/jbm.a.10042. PubMed DOI

Xia W. Chang J. Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J. Non-Cryst. Solids. 2008;354:1338–1341. doi: 10.1016/j.jnoncrysol.2006.10.084. DOI

Xia W. Chang J. Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J. Controlled Release. 2006;110:522–530. doi: 10.1016/j.jconrel.2005.11.002. PubMed DOI

Zhao L. Yan X. Zhou L. Wang H. Tang J. Yu C. Mesoporous bioactive glasses for controlled drug release. Microporous Mesoporous Mater. 2008;109:210–215. doi: 10.1016/j.micromeso.2007.04.041. DOI

Baino F. Fiorilli S. Mortera R. Onida B. Saino E. Visai L. Verne E. Vitale-Brovarone C. Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release. J. Appl. Biomater. Funct. Mater. 2012;10:12–21. PubMed

Verne E. Miola M. Ferraris S. Bianchi C. L. Naldoni A. Maina G. Bretcanu O. Surface activation of a ferrimagnetic glass-ceramic for antineoplastic drugs grafting. Adv. Biomater. 2010;12:B309–B319.

Boanini E. Panseri S. Arroyo F. Montesi M. Rubini K. Tampieri A. Covarrubias C. Bigi A. Alendronate functionalized mesoporous bioactive glass nanospheres. Materials. 2016;9:135. doi: 10.3390/ma9030135. PubMed DOI PMC

Malavasi G. Ferrari E. Gigliola L. Valentina A. Francesca F. Claudio M. Francesca P. Monica S. Ledi M. The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. J. Mater. Chem. 2011;21:5027–5037. doi: 10.1039/C0JM03421E. DOI

Zhang X. Ferraris S. Prenesti E. Verne E. Surface functionalization of bioactive glasses with natural molecules of biological significance, Part I: gallic acid as model molecule. Appl. Surf. Sci. 2013;287:329–340. doi: 10.1016/j.apsusc.2013.09.151. DOI

Ferraris S. Zhang X. Prenesti E. Corazzari I. Turci F. Tomatis M. Verne E. Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic. J. Non-Cryst. Solids. 2016;432:167–175. doi: 10.1016/j.jnoncrysol.2015.05.023. PubMed DOI

Zhao S. Zhang J. Zhu M. Zhang Y. Liu Z. Ma Y. Zhu Y. Zhang C. Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J. Mater. Chem. B. 2015;3:1612–1623. doi: 10.1039/C4TB01287A. PubMed DOI

Olmo N. Marti A. I. Salinas A. J. Turnay J. Vallet-Regi M. Lizarbe M. A. Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials. 2003;24:3383–3393. doi: 10.1016/S0142-9612(03)00200-X. PubMed DOI

Sanz-Herrera J. A. Boccaccini A. R. Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int. J. Solids Struct. 2011;48:257–268. doi: 10.1016/j.ijsolstr.2010.09.025. DOI

Wu C. Zhang Y. Zhu Y. Friis T. Xiao Y. Structure–property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31:3429–3438. doi: 10.1016/j.biomaterials.2010.01.061. PubMed DOI

Amini A. R. Wallace J. S. Nukavarapu S. P. Short-term and long-term effects of orthopedic biodegradable implants. J. Long-Term Eff. Med. Implants. 2011;21:93–122. doi: 10.1615/JLongTermEffMedImplants.v21.i2.10. PubMed DOI PMC

Solgi S. Khakbiz M. Shahrezaee M. Zamanian A. Tahriri M. Keshtkari S. Raz M. Khoshroo K. Moghadas S. Rajabnejad A. Synthesis, characterization and in vitro biological evaluation of sol–gel derived Sr-containing nano bioactive glass. Silicon. 2017;9:535–542. doi: 10.1007/s12633-015-9291-x. DOI

Valliant E. M. Romer F. Wang D. McPhail D. S. Smith M. E. Hanna J. V. Jones J. R. Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater. 2013;9:7662–7671. doi: 10.1016/j.actbio.2013.04.037. PubMed DOI

Sepulveda P. Jones J. R. Hench L. L. In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J. Biomed. Mater. Res. 2002;61:301–311. doi: 10.1002/jbm.10207. PubMed DOI

Varila L. Fagerlund S. Lehtonen T. Tuominen J. Hupa L. Surface reactions of bioactive glasses in buffered solutions. J. Eur. Ceram. Soc. 2012;32:2757–2763. doi: 10.1016/j.jeurceramsoc.2012.01.025. DOI

Fernandes H. R. Gaddam A. Rebelo A. Brazete D. Stan G. E. Ferreira J. M. F. Bioactive glasses and glass ceramics for healthcare applications in bone regeneration and tissue engineering. Materials. 2018;11:2530. doi: 10.3390/ma11122530. PubMed DOI PMC

Kokubo T. Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI

Luz G. M. Mano J. F. Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology. 2011;22:494014–494025. doi: 10.1088/0957-4484/22/49/494014. PubMed DOI

Turdean-Ionescu C. Stevensson B. Izquierdo-Barba I. Garcia A. Arcos D. Vallet-Regi M. Eden M. Surface reactions of mesoporous bioactive glasses monitored by solid state NMR: concentration effects in simulated body fluid. J. Phys. Chem. C. 2016;120:4961–4974. doi: 10.1021/acs.jpcc.5b12490. DOI

Vallet-Regi M. Salinas A. J. Martinez A. Izquierdo-Barba I. Perez-Pariente J. Textural properties of CaO–SiO2 glasses for use in implants. Solid State Ionics. 2004;172:441–444. doi: 10.1016/j.ssi.2004.04.037. DOI

De Oliveira A. A. R. De Souza A. A. Dias L. L. S. De Carvalho S. M. Mansur H. S. Pereira M. D. M. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed. Mater. 2011;8:025011. doi: 10.1088/1748-6041/8/2/025011. PubMed DOI

Kokubo T. Design of bioactive bone substitutes based on biomineralization process. Mater. Sci. Eng., C. 2005;25:97–104. doi: 10.1016/j.msec.2005.01.002. DOI

Vitale-Brovarone C. Baino F. Tallia F. Gervasio C. Verne E. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J. Mater. Sci.: Mater. Med. 2012;23:2369–2380. doi: 10.1007/s10856-012-4643-1. PubMed DOI

Lopez-Noriego A. D. Arcos D. Izquierdo-Barba I. Sakamoto Y. Terasaki O. Vallet-Regi M. Ordered mesoporous bioactive glasses for bone tissue regeneration. Chem. Mater. 2006;18:3137–3144. doi: 10.1021/cm060488o. DOI

Vallet-Regi M., Garcia M. M. and Colilla M., Biocompatible and bioactive mesoporous ceramics, in Biomedical applications of mesoporous ceramics: drug delivery, smart materials and bone tissue engineering, CRC Press, Boca Raton, FL, USA, 2012, p. 40

Salinas A. J., Vallet-Regi M. and Heikkila J., Use of bioactive glasses as bone substitutes in orthopedics and traumatology, in Bioactive glasses: materials, properties and applications, ed. H. Ylanen, 2018, pp. 337–364

Pereira M. M. Hench L. L. Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J. Sol-Gel Sci. Technol. 1996;7:59–68. doi: 10.1007/BF00401884. DOI

Cacciotti I. Lombardi M. Bianco A. Ravaglioli A. Montanaro L. Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J. Mater. Sci.: Mater. Med. 2012;23:1849–1866. doi: 10.1007/s10856-012-4667-6. PubMed DOI

Bunker B. C. Molecular mechanisms for corrosion of silica and silicate glasses. J. Non-Cryst. Solids. 1994;179:300–308. doi: 10.1016/0022-3093(94)90708-0. DOI

Bunker B. C. Arnold G. W. Wilder J. A. Phosphate glass dissolution in aqueous solutions. J. Non-Cryst. Solids. 1984;64:291–316. doi: 10.1016/0022-3093(84)90184-4. DOI

Paris J. L. Colilla M. Izquierdo-Barba I. Manzano M. Vallet-Regi M. Tuning mesoporous silica dissolution in physiological environment: a review. J. Mater. Sci. 2017;52:8761–8771. doi: 10.1007/s10853-017-0787-1. DOI

Etou M. Tsuji Y. Somiya K. Okaue Y. Yokoyama T. The dissolution of amorphous silica in the presence of tropolone under acidic conditions. Clays Clay Miner. 2014;62:235–242. doi: 10.1346/CCMN.2014.0620307. DOI

Uo M. Mizuno M. Kuboki Y. Makishima A. Watari F. Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glass. Biomaterials. 1998;19:2277–2284. doi: 10.1016/S0142-9612(98)00136-7. PubMed DOI

Woignier T. Phalippou J. Mechanical strength of silica aerogels. J. Non-Cryst. Solids. 1988;100:404–408. doi: 10.1016/0022-3093(88)90054-3. DOI

Calas S. Despetis F. Woignier T. Phalippou J. Mechanical strength evaluation from aerogel to silica glass. J. Porous Mater. 1997;4:211–217. doi: 10.1023/A:1009671118838. DOI

Baino F. Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J. Biomed. Mater. Res., Part A. 2011;97:514–535. doi: 10.1002/jbm.a.33072. PubMed DOI

Klein L. C., Sol–gel optics: processing and applications, Springer Science and Business Media, New York, 1994

Li H. C. Wang D. G. Hu J. H. Chen C. Z. Effect of various additives on microstructure, mechanical properties and invitro bioactivity of sodium oxide–calcium oxide–silica–phosphorous pentoxide glass ceramics. J. Colloid Interface Sci. 2013;405:296–304. doi: 10.1016/j.jcis.2013.04.046. PubMed DOI

Martin R. A. Moss R. M. Lakar N. J. Knowles J. C. Cuello G. J. Smith M. E. Hanna J. V. Newport R. J. Structural characterization of titanium doped bioglass using isotopic substitution neutron diffraction. Phys. Chem. Chem. Phys. 2012;14:15807–15815. doi: 10.1039/C2CP43032K. PubMed DOI

Rabie S. M. Ravarian R. Mehmanchi M. Khoshakhlagh P. Azizian M. Effect of alumina on microstructure and compressive strength of a porous silicate hydroxyapatite. J. Appl. Biomater. Funct. Mater. 2012;12:102–106. PubMed

Arepalli S. K. Tripathi H. Vyas V. K. Jain S. Suman S. K. Pyare R. Singh S. P. Influence of barium substitution on bioactivity, thermal and physio-mechanical properties of bioactive glass. Mater. Sci. Eng., C. 2015;49:549–559. doi: 10.1016/j.msec.2015.01.049. PubMed DOI

Castano O. Sachot N. Xuriguera E. Engel E. Planell J. A. Park J. H. Jin G. Z. Kim T. H. Kim J. H. Kim H. W. Angiogenesis in bone regeneration: tailored calcium release in hybrid fibrous scaffolds. ACS Appl. Mater. Interfaces. 2014;6:7512–7522. doi: 10.1021/am500885v. PubMed DOI

Yang X. Zhang L. Chen X. Sun X. Yang G. GuO X. Yang H. Gao C. GuO Z. Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low temperature co-fired porous glass ceramics. J. Non-Cryst. Solids. 2012;358:1171–1179. doi: 10.1016/j.jnoncrysol.2012.02.005. DOI

Ben Arfa B. A. E. Neto S. Salvado I. M. M. Pullar R. C. Ferreira J. M. F. Robocasting of Cu2+ & La3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: compressive strength up to 14 MPa. Acta Biomater. 2019;87:265–272. doi: 10.1016/j.actbio.2019.01.048. PubMed DOI

Carter D. R. Schwab G. H. Spengler D. M. Tensile fracture of cancellous bone. Acta Orthop. Scand. 1980;51:733–741. doi: 10.3109/17453678008990868. PubMed DOI

Lin C. C. Chen S. F. Leung K. S. Shen P. Effects of CaO/P2O5 ratio on the structure and elastic properties of SiO2–CaO–Na2O–P2O5 bioglass. J. Mater. Sci.: Mater. Med. 2012;23:245–258. doi: 10.1007/s10856-011-4504-3. PubMed DOI

Poologasundarampillai G. Lee P. D. Lam C. Kourkouta A. M. Jones J. R. Compressive strength of bioactive sol–gel glass foam scaffolds. Int. J. Appl. Glass Sci. 2016;7:229–237. doi: 10.1111/ijag.12211. DOI

Chen Q. Thouas G. A. Fabrication and characterization of sol–gel derived 45S5 bioglass ceramic scaffolds. Acta Biomater. 2011;7:3616–3626. doi: 10.1016/j.actbio.2011.06.005. PubMed DOI

Jones J. R. Ehrenfried L. M. Hench L. L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–973. doi: 10.1016/j.biomaterials.2005.07.017. PubMed DOI

Vallet-Regi M. Roman J. Padilla S. Doadrio J. C. Gil F. J. Bioactivity and mechanical properties of SiO2–CaO–P2O5 glass ceramics. J. Mater. Chem. 2005;15:1353–1359. doi: 10.1039/B415134H. DOI

Li N. Wang C. Zhu S. Li Q. Wang R. Preparation and evaluation of macroporous sol–gel bioglass with high mechanical strength. Key Eng. Mater. 2005;280–283:1585–1588.

Karp J. M. Dalton P. D. Shoichet M. S. Scaffolds for tissue engineering. MRS Bull. 2003;28:301–306. doi: 10.1557/mrs2003.85. DOI

Boccaccini A. R. Blaker J. J. Maquet V. Day R. M. Jerome R. Preparation and characterisation of poly(lactide-co-glycolide) (PLGA) and PLGA/Bioglass® composite tubular foam scaffolds for tissue engineering applications. Mater. Sci. Eng., C. 2005;25:23–31. doi: 10.1016/j.msec.2004.03.002. DOI

Zhang K. Wang Y. Hillmyer M. A. Francis L. F. Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials. 2004;25:2489–2500. doi: 10.1016/j.biomaterials.2003.09.033. PubMed DOI

Poologasundarampillai G. Yu B. Tsigkou O. Valliant E. Yue S. Lee P. D. Hamilton R. W. Stevens M. M. Kasuga T. Jones J. R. Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter. 2012;8:4822–4832. doi: 10.1039/C2SM00033D. DOI

Hench L. L. West J. K. Biological applications of bioactive glasses. Life Chem. Rep. 1996;13:187–241.

Li A. Shen H. Ren H. Wu D. Martin R. A. Qiu D. Bioactive organic/inorganic hybrids with improved mechanical performance. J. Mater. Chem. B. 2015;3:1379–1390. doi: 10.1039/C4TB01776E. PubMed DOI

Bossard C. Granel H. Wittrant Y. Jallot E. Lao J. Vial C. Tiainen H. Polycaprolactone/bioactive glass hybrid scaffolds for bone regeneration. Biomed. Glas. 2018;4(1):108–122.

Gibson L. J. Biomechanics of cellular solids. J. Biomech. 2005;38:377–399. doi: 10.1016/j.jbiomech.2004.09.027. PubMed DOI

Kopperdahl D. L. Keaveny T. M. Yield strain behavior of trabecular bone. J. Biomech. 1998;31:601–608. doi: 10.1016/S0021-9290(98)00057-8. PubMed DOI

Engelberg I. Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials. 1991;12:292–304. doi: 10.1016/0142-9612(91)90037-B. PubMed DOI

Vandel de Velde K. Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 2002;21:433–442. doi: 10.1016/S0142-9418(01)00107-6. DOI

Currey J. D., Ontogenetic changes in compact bone material properties, in Bone mechanics handbook, ed. S. C. Cowin, Boca Raton, FL, Informa Healthcare, CRC Press, 2001, ch. 19, pp. 5–9

Guo X. E., Mechanical properties of cortical bone and cancellous bone tissue, in Bone mechanics handbook, ed. S. C. Cowin, Informa Healthcare, CRC Press, Boca Raton, FL, 2001, ch. 10, pp. 4–11

Chung J. J. Li S. Stevens M. M. Georgiou T. K. Jones J. R. Tailoring mechanical properties of sol–gel hybrids for bone regeneration through polymer structure. Chem. Mater. 2016;28:6127–6135. doi: 10.1021/acs.chemmater.6b01941. DOI

Babensee J. E. McIntire L. V. Mikos A. G. Growth factor delivery for tissue engineering. Pharm. Res. 2000;17:497–504. doi: 10.1023/A:1007502828372. PubMed DOI

Mahoney M. J. Saltzman W. M. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nat. Biotechnol. 2001;19:934–939. doi: 10.1038/nbt1001-934. PubMed DOI

Pina S. Ribeiro V. P. Marques C. F. Maia F. R. Silva T. H. Reis R. L. Oliveira J. M. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12:1824. doi: 10.3390/ma12111824. PubMed DOI PMC

Yang S. Leong K. F. Du Z. Chua C. K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679–689. doi: 10.1089/107632701753337645. PubMed DOI

Hutmacher D. W. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J. Biomater. Sci., Polym. Ed. 2001;12:107–124. doi: 10.1163/156856201744489. PubMed DOI

Miguez-Pacheco V. Hench L. L. Boccaccini A. R. Bioactive glass beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 2015;13:1–15. doi: 10.1016/j.actbio.2014.11.004. PubMed DOI

Handbook of bioactive ceramics, ed. T. Yamamuro, L. L. Hench and J. Wilson, CRC Press, Boca Raton, FL, 1990, vol. 1 and 2

Rahaman M. N. Brown R. F. Bal B. S. Day D. E. Bioactive glasses for nonbearing applications in total joint replacement. Semin. Arthroplasty. 2007;17:102–112. doi: 10.1053/j.sart.2006.09.003. DOI

Kargozar S. Hamsehlou S. Baino F. Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater. Sci. Eng., C. 2019;97:1009–1020. doi: 10.1016/j.msec.2019.01.028. PubMed DOI

Albrektsson T. Johansson C. Osteoinduction, osteoconduction and osteointegration. Eur. Spine J. 2001;10:S96–S101. doi: 10.1007/s005860100282. PubMed DOI PMC

Karageorgiou V. Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Anselme K. Davidson P. Popa A. M. Giazzon M. Liley M. Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 2010;6:3824–3846. doi: 10.1016/j.actbio.2010.04.001. PubMed DOI

Wang S. Kowal T. J. Marei M. K. Falk M. M. Jain H. Nanoporosity significantly enhances the biological performance of engineered glass tissue scaffolds. Tissue Eng., Part A. 2013;9:1632–1640. doi: 10.1089/ten.tea.2012.0585. PubMed DOI PMC

Hutmacher D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–2543. doi: 10.1016/S0142-9612(00)00121-6. PubMed DOI

Jones J. R. and Boccaccini A. R., Cellular ceramics in biomedical applications: tissue engineering, in Cellular ceramics: structure, manufacturing, processing and applications, ed. M. Scheffler and P. Colombo, Wiley-VCH Verlag GmbH & Co., Wenheim, 2005, pp. 550–573

Ribbas R. G. Schatkoksi V. M. Montanheiro T. L. D. A. de Menezes B. R. C. Stegemann C. Leite D. M. G. Thim G. P. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram. Int. 2019;45:21051–21061. doi: 10.1016/j.ceramint.2019.07.096. DOI

Griffith L. G. Polymeric biomaterials. Acta Mater. 2000;48:263–277. doi: 10.1016/S1359-6454(99)00299-2. DOI

Lee K. Y. Mooney D. J. Hydrogels for tissue engineering. Chem. Rev. 2001;101:1869–1880. doi: 10.1021/cr000108x. PubMed DOI

Porter B. D. Oldham J. B. He S. L. Zobitz M. E. Payne R. G. An K. N. Currier B. L. Mikos A. G. Yaszemski M. J. Mechanical properties of a biodegradable bone regeneration scaffold. J. Biomech. Eng. 2000;122:286–288. doi: 10.1115/1.429659. PubMed DOI

Yu H. Mathew H. W. Wooley P. H. Yang S. Y. Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone–hydroxyapatite composites. J. Biomed. Mater. Res., Part B. 2008;86:541–547. doi: 10.1002/jbm.b.31054. PubMed DOI

Thomson R. C. Yaszemski M. J. Powers J. M. Mikos A. G. Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–1943. doi: 10.1016/S0142-9612(98)00097-0. PubMed DOI

Kim S. S. Ahn K. M. Park M. S. Lee J. H. Choi C. Y. Kim B. S. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J. Biomed. Mater. Res., Part A. 2007;80:206–215. doi: 10.1002/jbm.a.30836. PubMed DOI

Chen Q. Miyata N. Kokubo T. Nakamura T. Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol–gel process. J. Biomed. Mater. Res. 2000;51:605–611. doi: 10.1002/1097-4636(20000915)51:4<605::AID-JBM8>3.0.CO;2-U. PubMed DOI

Lu H. H. El-Amin S. F. Scott K. D. Laurencrin C. T. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J. Biomed. Mater. Res., Part A. 2003;64:465–474. doi: 10.1002/jbm.a.10399. PubMed DOI

Baino F. Fiorilli S. Vitale-Brovone C. Bioactive glass based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater. 2016;42:18–32. doi: 10.1016/j.actbio.2016.06.033. PubMed DOI

Goudourni O. M. Vogel C. Grunewald A. Detsch R. Kontonasaki E. Boccaccini A. R. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J. Biomater. Appl. 2016;30:740–749. doi: 10.1177/0885328215584887. PubMed DOI

Murphy C. M. Obrien F. J. Understanding the effect of mean pore size on cell activity in collagen–glycosaminoglycan scaffolds. Cell Adhes. Migr. 2010;4:377–381. doi: 10.4161/cam.4.3.11747. PubMed DOI PMC

Obrien F. J. Harley B. A. Waller M. A. Yannas I. V. Gibson L. J. Prendergast P. J. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care. 2007;15:3–17. PubMed

Yannas I. V. Tissue regeneration by use of collagen–glycosaminoglycan copolymers. Clin. Mater. 1992;9:179–187. doi: 10.1016/0267-6605(92)90098-E. PubMed DOI

Izquierdo-Barba I. Arcos D. Sakamoto Y. Terasaki O. Lopez-Noriega A. Vallet-Regi M. High-performance mesoporous bioceramics mimicking bone mineralization. Chem. Mater. 2008;20:3191–3198. doi: 10.1021/cm800172x. DOI

Salgado A. J. Coutinho O. P. Reis R. L. Bone tissue engineering: state of the art and future trends. Macromol. Biosci. 2004;4:743–765. doi: 10.1002/mabi.200400026. PubMed DOI

Salinas A. J. Vallet-Regi M. Glasses in bone regeneration: a multiscale issue. J. Non-Cryst. Solids. 2016;432:9–14. doi: 10.1016/j.jnoncrysol.2015.03.025. DOI

Wu C. Zhou Y. Chang J. Xiao Y. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 2013;9:9159–9168. doi: 10.1016/j.actbio.2013.06.026. PubMed DOI

Yun H. Kim S. E. Hyun Y. T. Heo S. J. Shin J. W. Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. J. Biomed. Mater. Res., Part B. 2008;87:374–380. doi: 10.1002/jbm.b.31114. PubMed DOI

Zhu Y. Wu C. Ramaswamy Y. Kockrick E. Simon P. Kaskel S. Zreiqat H. Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2008;112:494–503. doi: 10.1016/j.micromeso.2007.10.029. DOI

Li X. Shi J. Dong X. Zhang L. Zeng H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J. Biomed. Mater. Res., Part A. 2008;84:84–91. PubMed

Wu C. Ramaswamy Y. Zhu Y. Zheng R. Appleyard R. Howard A. Zreiqat H. The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials. 2009;30:2199–2208. doi: 10.1016/j.biomaterials.2009.01.029. PubMed DOI

Zhu Y. Zhang Y. Wu C. Fang Y. Yang J. Wang S. The effect of zirconium incorporation on the physiochemical and biological properties of mesoporous bioactive glasses scaffolds. Microporous Mesoporous Mater. 2011;143:311–319. doi: 10.1016/j.micromeso.2011.03.007. DOI

Wu C. Miron R. Sculean A. Kaskel S. Doert T. Schulze R. Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011;32:7068–7078. doi: 10.1016/j.biomaterials.2011.06.009. PubMed DOI

Wu C. Fan W. Gelinsky M. Xiao Y. Simon P. Schulze R. Doert T. Luo Y. Cuniberti G. Bioactive SrO–SiO2 glass with well-ordered mesopores: characterization, physiochemistry and biological properties. Acta Biomater. 2011;7:1797–1806. doi: 10.1016/j.actbio.2010.12.018. PubMed DOI

Wu C. Fan W. Zhu Y. Gelinsky M. Chang J. Cuniberti G. Albrecht V. Friis T. Xiao Y. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater. 2011;7:3563–3572. doi: 10.1016/j.actbio.2011.06.028. PubMed DOI

Wu C. Chang J. Xiao Y. Mesoporous bioactive glasses as drug delivery and bone tissue engineering platforms. Ther. Delivery. 2011;2:1189–1198. doi: 10.4155/tde.11.84. PubMed DOI

Jones J. R. Poologasundarampillai G. Atwood R. C. Bernard D. Lee P. D. Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials. 2007;28:1404–1413. doi: 10.1016/j.biomaterials.2006.11.014. PubMed DOI

Martin R. A. Yue S. Hanna J. V. Lee P. D. Newport R. J. Smith M. E. Jones J. R. Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Trans. R. Soc., A. 2012;370:1422–1443. doi: 10.1098/rsta.2011.0308. PubMed DOI

Jones J. R. Lin S. Yue S. Bioactive glass scaffolds for bone regeneration and their hierarchical characterization. Proc. Inst. Mech. Eng., Part H. 2010;224:1373–1387. doi: 10.1243/09544119JEIM836. PubMed DOI

Jones J. R., Sol–gel materials for biomedical applications, in The sol–gel handbook: synthesis, characterization and application, ed. L. David and Z. Marcos., Wiley-VCH Verlag GmbH, 1st edn, 2015, pp. 1345–1369

Jones J. R. Hench L. L. Effect of surfactant concentration and composition on the structure and properties of sol–gel-derived bioactive glass foam scaffolds for tissue engineering. J. Mater. Sci. 2003;38:3783–3790. doi: 10.1023/A:1025988301542. DOI

Jones J. R. Hench L. L. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J. Biomed. Mater. Res., Part B. 2004;68:36–44. doi: 10.1002/jbm.b.10071. PubMed DOI

Sepulveda P. Jones J. R. Hench L. L. Bioactive sol–gel foams for tissue repair. J. Biomed. Mater. Res. 2002;59:340–348. doi: 10.1002/jbm.1250. PubMed DOI

Gough J. E. Jones J. R. Hench L. L. Nodule formation and mineralization of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials. 2004;25:2039–2046. doi: 10.1016/j.biomaterials.2003.07.001. PubMed DOI

Crook R. J., 58S sol–gel bioglass: a study of osteoproductive interfacial and handling properties using new microscopic techniques, PhD thesis, University of London, 2013

Valerio P. Guimaraes M. H. R. Pereira M. M. Leite M. F. Goes A. M. Primary osteoblast cell response to sol–gel derived bioactive glass foams. J. Mater. Sci.: Mater. Med. 2005;16:851–856. doi: 10.1007/s10856-005-3582-5. PubMed DOI

Jones J. R. Tsigkou O. Coates E. E. Steven M. M. Polak J. M. Hench L. L. Extracellular matrix formation and mineralization on a phosphate free porous bioactive glass scaffold using primary human osteoblasts (HOB) cells. Biomaterials. 2007;28:1653–1663. doi: 10.1016/j.biomaterials.2006.11.022. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...