Application of Sol-Gels Modified with Natural Plants Extracts as Stationary Phases in Open-Tubular Capillary Electrochromatography
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-03899S
Czech Science Foundation
PubMed
35448099
PubMed Central
PMC9029637
DOI
10.3390/gels8040198
PII: gels8040198
Knihovny.cz E-zdroje
- Klíčová slova
- biologically important compounds, electrochromatography, non-covalent interactions, plant extracts, sol–gel stationary phases,
- Publikační typ
- časopisecké články MeSH
Ethanol extracts of three widely growing plants were added to silica sol-gel solutions, which were subsequently applied as wall surface modifiers in inner quartz capillaries. Modified capillaries were used for open-tubular capillary electrochromatographic separation of nucleotides and amino groups containing biological compounds (neurotransmitters, amino acids and oligopeptides). The experiments were performed at physiological pH 7.40, and eventual changes of effective mobilities were calculated. Specific compounds characteristic for each plant were tested as sol-gel additives as well, and thus-modified capillaries were used for the separations of the same analytes under identical conditions. The aim of this study was to find out possible interactions between physiological compounds and extracts of freely available plants anchorded in the sol-gel stationary phase in the flowing system. Even though the amount of the modifier in each capillary is very small, basic statistical evaluation showed some not negligible changes in effective mobility of tested analytes. These changes were bigger than ±5% for separations of nucleotides in capillaries with curcuma, Moringa or the mixture of synthetic additives as the sol-gel aditive, and for separations of amino compounds where these changes varying by additive, analyte by analyte.
Zobrazit více v PubMed
Hu L.-F., Yin S.-J., Zhang H., Yang F.-Q. Recent development of monolithic and open-tubular capillary electrochromatography (2017–2019) J. Sep. Sci. 2020;43:1942–1966. doi: 10.1002/jssc.201901168. PubMed DOI
Mao Z., Chen Z. Advances in capillary electro-chromatography. J. Pharm. Anal. 2019;9:227–237. doi: 10.1016/j.jpha.2019.05.002. PubMed DOI PMC
Deshmukh K., Kovařík T., Křenek T., Docheva D., Stich T., Pola J. Recent advances and future perspectives of sol-gel derived porous active glasses: A review. RSC Adv. 2020;10:33782. doi: 10.1039/D0RA04287K. PubMed DOI PMC
Lei Q., Guo J., Noureddine A., Wang A., Wuttke S., Brinker C.J., Zhu W. Sol-gel based advanced porous silica materials for biomedical applications. Adv. Funct. Mater. 2020;30:1909539. doi: 10.1002/adfm.201909539. DOI
Gonçalves M.C. Sol-gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules. 2018;23:2021. doi: 10.3390/molecules23082021. PubMed DOI PMC
Ruiz-Hitzky E., Darder M., Aranda P., Ariga K. Advances in Biomimetic and Nanostructured Biohybrid materials. Adv. Mater. 2010;22:323–336. doi: 10.1002/adma.200901134. PubMed DOI
Gill I., Ballesteros A. Bioencapsulation within synthetic polymers (Part 1): Sol-gel encapsulated biologicals. Trends Biotechnol. 2000;18:282–296. doi: 10.1016/S0167-7799(00)01457-8. PubMed DOI
Andreani T., Silva A.M., Souto B. Silica-based matrices: State of the art and new perspectives for therapeutic drug delivery. Biotechnol. Appl. Chem. 2015;62:754–764. doi: 10.1002/bab.1322. PubMed DOI
Gupta R., Chaudhury N.K. Entrapment of biomolecules in sol-gel matrix for applications in biosensors: Problems and future prospects. Biosens. Bioelectron. 2007;22:2387–2399. doi: 10.1016/j.bios.2006.12.025. PubMed DOI
Lacatusu I., Badea N., Meghea A. In: Biocompatible Nanomaterials: Synthesis, Characterization and Applications. Kumar S.A., Thiagarajan S., Wang S.-F., editors. Nova Science Publishers; New York, NY, USA: 2010. pp. 41–115.
Svobodová J., Mikšík I. Open-tubular capillary electrochromatographic application of a sol-gel matrix with chilli peppers, garlic, or synthetic additives. J. Sep. Sci. 2020;43:3691–3701. doi: 10.1002/jssc.202000515. PubMed DOI
Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008;75:787–809. doi: 10.1016/j.bcp.2007.08.016. PubMed DOI
Raduly F.M., Raditoiu V., Raditoiu A., Purcar V. Curcumin: Modern Applications for a Versatile Additive. Coatings. 2021;11:519. doi: 10.3390/coatings11050519. DOI
Mehla J., Gupta P., Pahuja M., Diwan D., Diksha D. Indian Medicinal Herbs and Formulations for Alzheimer’s Disease, from Traditional Knowledge to Scientific Assessment. Brain Sci. 2020;10:964. doi: 10.3390/brainsci10120964. PubMed DOI PMC
Tabeshpour J., Banaeeyeh S., Eisvand F., Sathyapalan T., Hashemzaei M., Sahebkar A. Effects of Curcumin on Ion Channels and Pumps: A Review. IUBMB Life. 2019;71:812–820. doi: 10.1002/iub.2054. PubMed DOI
Gupta S.C., Prasad S., Kim J.H., Patchva S., Webb L.J., Priyadarsini I.K., Aggarwal B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011;28:1937–1955. doi: 10.1039/c1np00051a. PubMed DOI PMC
Ahmad K., Ansari V.A., Singh K., Kushwaha P., Akhtar J. Curcuma longa: Boon for Health Care System with its Biomedical Application. Int. J. Pharm. Sci. Res. (IJPSR) 2015;6:4168–4173.
Zhang X., Chen Q., Wang Y., Peng W., Cai H. Effects of curcumin on ion channels and transporters. Front. Physiol. Ren. Epithel. Physiol. 2014;5:94. doi: 10.3389/fphys.2014.00094. PubMed DOI PMC
Razis A.F.A., Ibrahim M.D., Kntayya S.B. Health benefits of Moringa Oleifera. Asian Pac. J. Cancer Prev. 2014;15:8571–8576. doi: 10.7314/APJCP.2014.15.20.8571. PubMed DOI
Anwar F., Latif S., Ashraf M., Gilani A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007;21:17–25. doi: 10.1002/ptr.2023. PubMed DOI
Saucedo-Pompa S., Torres-Castillo J.A., Castro-López C., Rojas R., Sánchez-Alejo E.J., Ngangyo-Heya M., Martínez-Ávila G.C.G. Moringa plants: Bioactive compounds and promising applications in food products. Food Res. Int. 2018;111:438–450. doi: 10.1016/j.foodres.2018.05.062. PubMed DOI
Chhikara N., Kaur A., Mann S., Garg M.K., Sofi S.A., Panghal A. Bioactive compounds, associated health benefits and safety consideration of Moringa oleifera L.: An updated review. Nutr. Food Sci. 2021;51:255–277. doi: 10.1108/NFS-03-2020-0087. DOI
The Amazing Moringa Oleifera Tree. Freely Accesible. [(accessed on 20 September 2021)]. Available online: www.moringatrees.org.
Meireles D., Gomez J., Lopes L., Hinzmann M., Machalo J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 2020;20:495–515. doi: 10.1007/s13596-020-00468-0. DOI
Vergara-Jimenez M., Almatrafi M.M., Fernandez M.L. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease. Antioxidants. 2017;6:91. doi: 10.3390/antiox6040091. PubMed DOI PMC
Vongsak B., Sithisarn P., Gritsanapan W. Bioactive contents and free radical scavenging activity of Moringa oleifera leaf extract under different storage conditions. Ind. Crops Prod. 2013;49:419–421. doi: 10.1016/j.indcrop.2013.05.018. DOI
Velingkar V.S., Gupta G.L., Hegde N.B. A current update on phytochemistry, pharmacology and herb–drug interactions of Hypericum perforatum. Phytochem. Rev. 2017;16:725–744. doi: 10.1007/s11101-017-9503-7. DOI
Zirak N., Shafiee M., Soltani G., Mirzaei M., Sahebkar A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol. 2019;234:8496–8508. doi: 10.1002/jcp.27781. PubMed DOI
Müller W.E. Current St. John’s wort research from mode of action to clinical efficacy. Pharmacol. Res. 2003;47:101–109. doi: 10.1016/S1043-6618(02)00266-9. PubMed DOI
Russo E., Scicchitano F., Whalley B.J., Mazzitello C., Ciriaco M., Esposito S., Patanè M., Upton R., Pugliese M., Chimirri S., et al. Hypericum perforatum: Pharmacokinetic, Mechanism of Action, Tolerability, and Clinical Drug–Drug Interactions. Phytother. Res. 2014;28:643–655. doi: 10.1002/ptr.5050. PubMed DOI
Saddiqe Z., Naeem I., Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J. Ethnopharmacol. 2010;131:511–521. doi: 10.1016/j.jep.2010.07.034. PubMed DOI
Barnes J., Anderson L.A., Phillipson J.D. St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001;53:583–600. doi: 10.1211/0022357011775910. PubMed DOI
Asgarpanah J. Phytochemistry, pharmacology and medicinal properties of Hypericum perforatum L. Afr. J. Pharm. Pharmacol. 2012;6:1387–1394. doi: 10.5897/AJPP12.248. DOI
Shrivastava M., Dwivedi L.K. Therapeutic potential of Hypericum Perforatum: A Review. IJPSR. 2015;6:4982–4988.
Oliveira A.I., Pinho C., Sarmento B., Dias A.C.P. Neuroprotective Activity of Hypericum perforatum and Its Major Components. Front. Plant Sci. 2016;7:1004. doi: 10.3389/fpls.2016.01004. PubMed DOI PMC
Galeotti N. Hypericum perforatum (St John’s wort) beyond depression: A therapeutic perspective for pain conditions. J. Ethnopharmacol. 2017;200:136–146. doi: 10.1016/j.jep.2017.02.016. PubMed DOI