Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PG/2015/726346
POR-FESR Emilia-Romagna, Italy
732678
H2020-ICT
PubMed
34771382
PubMed Central
PMC8588077
DOI
10.3390/polym13213825
PII: polym13213825
Knihovny.cz E-zdroje
- Klíčová slova
- 3D additive manufacturing, nanocomposites, polycaprolactone/hydroxyapatite scaffolds, superparamagnetic nanoparticles, tissue engineering,
- Publikační typ
- časopisecké články MeSH
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
BioDevice Systems Bulharská 10 Vršovice 996 20 10100 Praha Czech Republic
REGENHU Ltd Z 1 Le Vivier 22 1690 Villaz St Pierre Switzerland
SC Scienze e Tecnologie Chirurgiche IRCCS Istituto Ortopedico Rizzoli 40136 Bologna Italy
SSD Laboratorio RAMSES IRCCS Istituto Ortopedico Rizzoli 40136 Bologna Italy
Zobrazit více v PubMed
Li J.J., Kaplan D.L., Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J. Mater. Chem. B. 2014;2:7272–7306. doi: 10.1039/C4TB01073F. PubMed DOI
Jones A.C., Arns C.H., Sheppard A.P., Hutmacher D.W., Milthorpe B.K., Knackstedt M.A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–2504. doi: 10.1016/j.biomaterials.2007.01.046. PubMed DOI
Calori G.M., Mazza E., Colombo M., Ripamonti C. The use of bone-graft substitutes in large bone defects: Any specific needs? Injury. 2011;42:S56–S63. doi: 10.1016/j.injury.2011.06.011. PubMed DOI
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater. Sci. Eng. C. 2017;78:1246–1262. doi: 10.1016/j.msec.2017.05.017. PubMed DOI
Roddy E., Debaun M.R., Daoud A., Yunzhi G., Gardner M.J. Treatment of critical - sized bone defects: Clinical and tissue engineering perspectives. Eur. J. Orthop. Surg. Traumatol. 2018;28:351–362. doi: 10.1007/s00590-017-2063-0. PubMed DOI
Madrid A.P.M., Vrech S.M., Sanchez M.A., Rodriguez A.P. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C. 2019;100:631–644. doi: 10.1016/j.msec.2019.03.037. PubMed DOI
Schmitz J.P., Hollinger J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986;205:299–308. doi: 10.1097/00003086-198604000-00036. PubMed DOI
Giannoudis P.V., Dinopoulos H., Tsiridis E. Bone substitutes: An update. Injury. 2005;36:S20–S27. doi: 10.1016/j.injury.2005.07.029. PubMed DOI
Li J.J., Ebied M., Xu J., Zreiqat H. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering. Adv. Health Mater. 2018;7:1–8. doi: 10.1002/adhm.201701061. PubMed DOI
Kim H.D., Amirthalingam S., Kim S.L., Lee S.S., Rangasamy J., Hwang N.S. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv. Health Mater. 2017;6:1–18. doi: 10.1002/adhm.201700612. PubMed DOI
Langer R., Vacanti J.P. Tissue engineering. Science. 1993;260:920–926. doi: 10.1126/science.8493529. PubMed DOI
Iaquinta M.R., Mazzoni E., Bononi I., Rotondo J.C., Mazziotta C., Montesi M., Sprio S., Tampieri A., Tognon M., Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front. Cell Dev. Biol. 2019;7:1–15. doi: 10.3389/fcell.2019.00268. PubMed DOI PMC
Wubneh A., Tsekoura E.K., Ayranci C., Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1–30. doi: 10.1016/j.actbio.2018.09.031. PubMed DOI
Qu H., Fu H., Han Z., Sun Y. Biomaterials for bone tissue engineering scaffolds: A review. RSC Adv. 2019;9:26252–26262. doi: 10.1039/C9RA05214C. PubMed DOI PMC
Chan B.P., Leong K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008;17:467–479. doi: 10.1007/s00586-008-0745-3. PubMed DOI PMC
Bohner M. Resorbable biomaterials as bone graft substitutes. Mater. Today. 2010;13:24–30. doi: 10.1016/S1369-7021(10)70014-6. DOI
Yu X., Tang X., Gohil S.V., Laurencin C.T. Biomaterials for Bone Regenerative Engineering. Adv. Health Mater. 2015;4:1268–1285. doi: 10.1002/adhm.201400760. PubMed DOI PMC
Chocholata P., Kulda V., Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials. 2019;12:568. doi: 10.3390/ma12040568. PubMed DOI PMC
Stevens M.M. Biomaterials for bone tissue engineering. Mater. Today. 2008;11:18–25. doi: 10.1016/S1369-7021(08)70086-5. DOI
Zhou H., Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7:2769–2781. doi: 10.1016/j.actbio.2011.03.019. PubMed DOI
Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–4757. doi: 10.1016/j.biomaterials.2003.12.005. PubMed DOI
Cao H., Kuboyama N. A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone. 2010;46:386–395. doi: 10.1016/j.bone.2009.09.031. PubMed DOI
Weinand C., Pomerantseva I., Neville C.M., Gupta R., Weinberg E., Madisch I., Shapiro F., Abukawa H., Troulis M.J., Vacanti J.P. Hydrogel-β-TCP scaffolds and stem cells for tissue engineering bone. Bone. 2006;38:555–563. doi: 10.1016/j.bone.2005.10.016. PubMed DOI
Chen J., Yu Q., Zhang G., Yang S., Wu J., Zhang Q. Preparation and biocompatibility of nanohybrid scaffolds by in situ homogeneous formation of nano hydroxyapatite from bSPIONolymer polyelectrolyte complex for bone repair applications. Colloids Surf. B Biointerfaces. 2012;93:100–107. doi: 10.1016/j.colsurfb.2011.12.022. PubMed DOI
Xynos I.D., Hukkanen M.V.J., Batten J.J., Buttery L.D., Hench L.L., Polak J.M. Bioglass 45S5 Stimulates Osteoblast Turnover and Enhances Bone Formation In Vitro: Implications and Applications for Bone Tissue Engineering. Calcif. Tissue Int. 2000;67:321–329. doi: 10.1007/s002230001134. PubMed DOI
Wen Y., Xun S., Haoye M., Baichuan S., Peng C., Xuejian L., Kaihong Z., Xuan Y., Jiang P., Shibi L. 3D printed porous ceramic scaffolds for bone tissue engineering: A review. Biomater. Sci. 2017;5:1690–1698. doi: 10.1039/C7BM00315C. PubMed DOI
Vieira S., Vial S., Reis R.L., Oliveira J.M. Nanoparticles for bone tissue engineering. Biotechnol. Prog. 2017;33:590–611. doi: 10.1002/btpr.2469. PubMed DOI
Samavedi S., Whittington A.R., Goldstein A.S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 2013;9:8037–8045. doi: 10.1016/j.actbio.2013.06.014. PubMed DOI
Wang P., Zhao L., Liu J., Weir M.D., Zhou X., Xu H.H.K. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2015;2:14017. doi: 10.1038/boneres.2014.17. PubMed DOI PMC
Bejarano J., Boccaccini A.R., Covarrubias C., Palza H. Effect of Cu- and Zn-Doped Bioactive Glasses on the In Vitro Bioactivity, Mechanical and Degradation Behavior of Biodegradable PDLLA Scaffolds. Materials. 2020;13:2908. doi: 10.3390/ma13132908. PubMed DOI PMC
Liu Y., Lim J., Teoh S.H. Review: Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol. Adv. 2013;5:688–705. doi: 10.1016/j.biotechadv.2012.10.003. PubMed DOI
Kumar P., Saini M., Dehiya B.S., Sindhu A., Kumar V., Kumar R., Lamberti L., Pruncu C.I., Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials. 2020;10:2019. doi: 10.3390/nano10102019. PubMed DOI PMC
Gerhardt L.C., Boccaccini A.R. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–3910. doi: 10.3390/ma3073867. PubMed DOI PMC
Wahl D.A., Czernuszka J.T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006;11:43–56. doi: 10.22203/eCM.v011a06. PubMed DOI
Villa M.M., Wang L., Huang J., Rowe D.W., Wei M. Bone tissue engineering with a collagen-hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2015;103:243–253. doi: 10.1002/jbm.b.33225. PubMed DOI PMC
Wang H., Bongio M., Farbod K., Nijhuis A.W.G., van den Beucken J., Boerman O.C., van Hest J.C.M., Li Y., Jansen J.A., Leeuwenburgh S.C.G. Development of injectable organic/inorganic colloidal composite gels made of self-assembling gelatin nanospheres and calcium phosphate nanocrystals. Acta Biomater. 2014;10:508–519. doi: 10.1016/j.actbio.2013.08.036. PubMed DOI
Ben-David D., Kizhner T., Livne E., Srouji S. A tissue-like construct of human bone marrow MSCs composite scaffold support in vivo ectopic bone formation. J. Tissue Eng. Regen. Med. 2010;4:30–37. doi: 10.1002/term.213. PubMed DOI
Yan L.-P., Silva-Correia J., Correia C., Caridade S.G., Fernandes E.M., Sousa R.A., Mano J.F., Oliveira J.M., Oliveira A.L., Reis R.L. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine. 2013;8:359–378. doi: 10.2217/nnm.12.118. PubMed DOI
Kim H.J., Kim U.-J., Leisk G.G., Bayan C., Georgakoudi I., Kaplan D.L. Bone Regeneration on Macroporous Aqueous-Derived Silk 3-D Scaffolds. Macromol. Biosci. 2007;7:643–655. doi: 10.1002/mabi.200700030. PubMed DOI
Demirtaş T.T., Irmak G., Gümüşderelioǧlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 2017;9:035003. doi: 10.1088/1758-5090/aa7b1d. PubMed DOI
Li J., Liu X., Park S., Miller A.L., 2nd, Terzic A., Lu L. Strontium-substituted hydroxyapatite stimulates osteogenesis on poly(propylene fumarate) nanocomposite scaffolds. J. Biomed. Mater. Res. A. 2019;107:631–642. doi: 10.1002/jbm.a.36579. PubMed DOI PMC
Haimi S., Suuriniemi N., Haaparanta A.-M., Ellä V., Lindroos B., Huhtala H., Räty S., Kuokkanen H., Sándor G.K., Kellomäki M., et al. Growth and Osteogenic Differentiation of Adipose Stem Cells on PLA/Bioactive Glass and PLA/β-TCP Scaffolds. Tissue Eng. Part A. 2009;15:1473–1480. doi: 10.1089/ten.tea.2008.0241. PubMed DOI
Milan J.-L., Planell J.A., Lacroix D. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid–calcium phosphate glass scaffold. Biomaterials. 2009;30:4219–4226. doi: 10.1016/j.biomaterials.2009.04.026. PubMed DOI
Eshraghi S., Das S. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater. 2012;8:3138–3143. doi: 10.1016/j.actbio.2012.04.022. PubMed DOI PMC
Freeman F.E., Browe D.C., Diaz-Payno P.J., Nulty J., Von Euw S., Grayson W.L., Kelly D.J. Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Eur. Cells Mater. 2019;38:168–187. doi: 10.22203/eCM.v038a12. PubMed DOI
Huang B., Vyas C., Byun J.J., El-Newehy M., Huang Z., Bártolo P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Mater. Sci. Eng. C. 2020;108:110374. doi: 10.1016/j.msec.2019.110374. PubMed DOI
Marchiori G., Berni M., Boi M., Petretta M., Grigolo B., Bellucci D., Cannillo V., Garavelli C., Bianchi M. Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA. Med. Eng. Phys. 2019;69:92–99. doi: 10.1016/j.medengphy.2019.04.009. PubMed DOI
Wang W., Junior J.R.P., Nalesso P.R.L., Musson D., Cornish J., Mendonça F., Caetano G.F., Bártolo P. Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2019;100:759–770. doi: 10.1016/j.msec.2019.03.047. PubMed DOI
Roohani-Esfahani S.-I., Nouri-Khorasani S., Lu Z., Appleyard R., Zreiqat H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials. 2010;31:5498–5509. doi: 10.1016/j.biomaterials.2010.03.058. PubMed DOI
Ng J., Spiller K., Bernhard J., Vunjak-Novakovic G. Biomimetic Approaches for Bone Tissue Engineering. Tissue Eng.—Part B: Rev. 2017;23:480–493. doi: 10.1089/ten.teb.2016.0289. PubMed DOI PMC
Inzana J.A., Olvera D., Fuller S.M., Kelly J.P., Graeve O.A., Schwarz E.M., Kates S.L., Awad H.A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35:4026–4034. doi: 10.1016/j.biomaterials.2014.01.064. PubMed DOI PMC
Leukers B., Gülkan H., Irsen S.H., Milz S., Tille C., Schieker M., Seitz H. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 2005;16:1121–1124. doi: 10.1007/s10856-005-4716-5. PubMed DOI
Bose S., Vahabzadeh S., Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater. Today. 2013;16:496–504. doi: 10.1016/j.mattod.2013.11.017. DOI
Kang H.W., Lee S.J., Ko I.K., Kengla C., Yoo J.J., Atala A. A 3D bSPIONrinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 2016;34:312–319. doi: 10.1038/nbt.3413. PubMed DOI
Sharma A., Desando G., Petretta M., Chawla S., Bartolotti I., Manferdini C., Paolella F., Gabusi E., Trucco D., Ghosh S., et al. Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional BSPIONrinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells. ACS Biomater. Sci. Eng. 2019;5:1518–1533. doi: 10.1021/acsbiomaterials.8b01631. PubMed DOI
O′Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI
Goranov V., Shelyakova T., De Santis R., Haranava Y., Makhaniok A., Gloria A., Tampieri A., Russo A., Kon E., Marcacci M., et al. 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering. Sci. Rep. 2020;10:2289. doi: 10.1038/s41598-020-58738-5. PubMed DOI PMC
Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:R167–R181. doi: 10.1088/0022-3727/36/13/201. DOI
Furlani E.P. Magnetic Biotransport: Analysis and Applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. DOI
Cunha A.P., Henriques R., Cardoso S., Freitas P.P., Carvalho C.M. Rapid and multiplex detection of nosocomial pathogens on a phage-based magnetoresistive lab-on-chip platform. Biotechnol. Bioeng. 2021;118:3164–3174. doi: 10.1002/bit.27841. PubMed DOI
Wu K., Su D., Saha R., Liu J., Chugh V.K., Wang J.P. Magnetic Particle Spectroscopy: A Short Review of Applications Using Magnetic Nanoparticles. ACS Appl. Nano Mater. 2020;3:4972–4989. doi: 10.1021/acsanm.0c00890. DOI
Thiesen B., Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 2008;24:467–474. doi: 10.1080/02656730802104757. PubMed DOI
Russo T., Peluso V., Gloria A., Oliviero O., Rinaldi L., Improta G., De Santis R., D’antò V. Combination design of time-dependent magnetic field and magnetic nanocomposites to guide cell behavior. Nanomaterials. 2020;10:577. doi: 10.3390/nano10030577. PubMed DOI PMC
Gloria A., Russo T., D’Amora U., Zeppetelli S., D’Alessandro T., Sandri M., Bañobre-López M., Piñeiro-Redondo Y., Uhlarz M., Tampieri A., et al. Magnetic poly(1-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc. Interface. 2013;10:20120833. doi: 10.1098/rsif.2012.0833. PubMed DOI PMC
Bock N., Riminucci A., Dionigi C., Russo A., Tampieri A., Landi E., Goranov V.A., Marcacci M., Dediu V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI
De Santis R., Gloria A., Russo T., D’Amora U., Zeppetelli S., Tampieri A., Herrmannsdörfer T., Ambrosio L. A route toward the development of 3D magnetic scaffolds with tailored mechanical and morphological properties for hard tissue regeneration: Preliminary study. Virtual Phys. Prototyp. 2011;6:189–195. doi: 10.1080/17452759.2011.631324. DOI
Cavallo C., Desando G., Cattini L., Cavallo M., Buda R., Giannini S., Facchini A., Grigolo B. Bone marrow concentrated cell transplantation: Rationale for its use in the treatment of human osteochondral lesions. J. Biol. Regul. Homeost. Agents. 2013;27:165–175. PubMed
Manferdini C., Cavallo C., Grigolo B., Fiorini M., Nicoletti A., Gabusi E., Zini N., Pressato D., Facchini A., Lisignoli G. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. J. Tissue Eng. Regen. Med. 2016;10:374–391. doi: 10.1002/term.1723. PubMed DOI
Thomson T. 10—Magnetic properties of metallic thin films. In: Barmak K., Coffey K., editors. Metallic Films for Electronic, Optical and Magnetic Applications. Woodhead Publishing; Sawston, Cambridge, UK: 2014. pp. 454–546.
Lan Q., Haugstad G. Characterization of polymer morphology in polyurethane foams using atomic force microscopy. J. Appl. Polym. Sci. 2011;121:2644–2651. doi: 10.1002/app.34005. DOI
Ronca A., Ambrosio L., Grijpma D.W. Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater. 2013;9:5989–5996. doi: 10.1016/j.actbio.2012.12.004. PubMed DOI
Xia Y., Zhou P., Cheng X., Xie Y., Liang C., Li C., Xu S. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomed. 2013;8:4197–4213. doi: 10.2147/IJN.S50685. PubMed DOI PMC
Xu N., Ye X., Wei D., Zhong J., Chen Y., Xu G., He D. 3D Artificial Bones for Bone Repair Prepared by Computed Tomography-Guided Fused Deposition Modeling for Bone Repair. ACS Appl. Mater. Interfaces. 2014;6:14952–14963. doi: 10.1021/am502716t. PubMed DOI
Filippi M., Born G., Chaaban M., Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front. Bioeng. Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474. PubMed DOI PMC
Ferreira L. Nanoparticles as tools to study and control stem cells. J. Cell. Biochem. 2009;108:746–752. doi: 10.1002/jcb.22303. PubMed DOI
Li Y., Ye D., Li M., Ma M., Gu N. Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. ChemPhysChem. 2018;19:1965–1979. doi: 10.1002/cphc.201701294. PubMed DOI
Berry C.C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2009;42:224003. doi: 10.1088/0022-3727/42/22/224003. DOI
Hanxiao W., Marco D., Fabio S. Advanced mechanical and thermal characterization of 3D bioextruded poly(e-caprolactone)-based composites. Rapid Prototyp. J. 2018;24:731–738. doi: 10.1108/RPJ-10-2016-0165. DOI
Gambardella A., Bianchi M., Kaciulis S., Mezzi A., Brucale M., Cavallini M., Herrmannsdoerfer T., Chanda G., Uhlarz M., Cellini A., et al. Magnetic hydroxyapatite coatings as a new tool in medicine: A scanning probe investigation. Mater. Sci. Eng. C. 2016;62:444–449. doi: 10.1016/j.msec.2016.01.071. PubMed DOI
Chen X., Wang J., Chen Y., Cai H., Yang X., Zhu X., Fan Y., Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J. Mater. Chem. B. 2016;4:2280–2289. doi: 10.1039/C6TB00349D. PubMed DOI
Yun H.M., Lee E.S., Kim M.J., Kim J.J., Lee J.H., Lee H.H., Park K.R., Yi J.K., Kim H.W., Kim E.C. Magnetic nanocomposite scaffold-induced stimulation of migration and odontogenesis of human dental pulp cells through integrin signaling pathways. PLoS ONE. 2015;10:e0138614. doi: 10.1371/journal.pone.0138614. PubMed DOI PMC
Lavenus S., Pilet P., Guicheux J., Weiss P., Louarn G., Layrolle P. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater. 2011;7:1525–1534. doi: 10.1016/j.actbio.2010.12.033. PubMed DOI