Biomaterials functionalized with magnetic nanoparticles for tissue engineering: Between advantages and challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39297073
PubMed Central
PMC11409007
DOI
10.1016/j.bbiosy.2024.100100
PII: S2666-5344(24)00013-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biosystems, Cells, Magnetic nanoparticles, Magnetic scaffold, Magnetically-responsive biomaterial, Tissue precursor,
- Publikační typ
- časopisecké články MeSH
The integration of magnetic nanoparticles (MNPs) into biomaterials offers exciting opportunities for tissue engineering as they enable better control over cell guidance, release of bioactive factors and tissue maturation. Despite their potential, challenges such as the heterogeneity of MNPs, their cytotoxicity and the need for precise control of MNP`s properties hinder their widespread application. Overcoming these challenges will require new interdisciplinary efforts and technological advances, including the development of mathematical tools and additional elaborations to ensure the biocompatibility of MNPs.
Zobrazit více v PubMed
Ito A, Ino K, Hayashida M, Kobayashi T, Matsunuma H, Kagami H, Ueda M, Honda H. Novel methodology for fabrication of tissue-engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005;11(9-10):1553–1561. PubMed
Ceylan H, Yasa IC, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano. 2019;13(3):3353–3362. PubMed PMC
Tolouei AE, Dülger N, Ghatee R, Kennedy S. A magnetically responsive biomaterial system for flexibly regulating the duration between pro- and anti-inflammatory cytokine deliveries. Adv Healthc Mater. 2018;7(12) PubMed PMC
Gloria A, Russo T, d'Amora U, Zeppetelli S, d'Alessandro T, Sandri M, De Santis R. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface. 2013;10(80) PubMed PMC
Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, Dediu V. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6(3):786–796. PubMed
Lodi MB, Fanti A, editors. Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. 2019. Biomedical applications of biomaterials functionalized with magnetic nanoparticles. DOI
Mousa SA, Bawa R, Audette GF, editors. The road from nanomedicine to precision medicine. CRC Press; 2020. editors. DOI
Chen H, Sun J, Wang Z, Zhou Y, Lou Z, Chen B, Zhang F. Magnetic cell–scaffold interface constructed by superparamagnetic IONP enhanced osteogenesis of adipose-derived stem cells. ACS Appl Mater Interfaces. 2018;10(51):44279–44289. PubMed
Pourmanouchehri Z, Jafarzadeh M, Kakaei S, Khameneh ES. Magnetic nanocarrier containing 68Ga–DTPA complex for targeted delivery of doxorubicin. J Inorgan Organometal Polym Mater. 2018;28:1980–1990. doi: 10.1007/s10904-018-0826-7. DOI
Prakash M, Chandraprabha MN, Krishna RH, Satish H, Kumar SG. Iron oxide nanoparticles for inflammatory bowel disease: Recent advances in diagnosis and targeted drug therapy. Appl Surf Sci Adv. 2024;19:203–217. doi: 10.1016/j.apsadv.2023.100540. DOI
Demri N, Dumas S, Nguyen ML, Gropplero G, Abou-Hassan A, Descroix S, Wilhelm C. Remote magnetic microengineering and alignment of spheroids into 3D cellular fibers. Adv Funct Mater. 2022;32(50)
Bharti B, Fameau AL, Rubinstein M, Velev OD. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nat Mater. 2015;14(11):1104–1109. PubMed PMC
Hu K, Sun J, Guo Z, Wang P, Chen Q, Ma M, Gu N. A novel magnetic hydrogel with aligned magnetic colloidal assemblies showing controllable enhancement of magnetothermal effect in the presence of alternating magnetic field. Adv Mater. 2015;27(15):2507–2514. PubMed
Fan F, Sun J, Chen B, Li Y, Hu K, Wang P, Gu N. Rotating magnetic field-controlled fabrication of magnetic hydrogel with spatially disk-like microstructures. Sci China Mater. 2018;61(8):1112–1122.
Lu M, Cohen MH, Rieves D, report Pazdur R.FDA. Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol. 2010;85(5):315–319. doi: 10.1002/ajh.21656. PubMed DOI
Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Viovy JL. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci. 2010;107(33):14524–14529. PubMed PMC
Kralj S, Makovec D. Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles. ACS Nano. 2015;9(10):9700–9707. PubMed
Betsch M, Cristian C, Lin Y Y, Blaeser A, Schöneberg J, Vogt M, Buhl EM, Fischer H, Duarte Campos D.F. Incorporating 4D into bioprinting: Real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7(21) PubMed
Tognato R, Armiento AR, Bonfrate V, Levato R, Malda J, Alini M, Eglin D, Giancane G, Serra T. A stimuli-responsive nanocomposite for 3D anisotropic cell-guidance and magnetic soft robotics. Adv Funct Mater. 2019;29(9)
Sun J, Fan F, Wang P, Ma S, Song L, Gu N. Orientation-Dependent Thermogenesis of Assembled Magnetic Nanoparticles in the Presence of an Alternating Magnetic Field. ChemPhysChem. 2016;17(21):3377–3384. PubMed
Yang D, Xiao J, Wang B, Li L, Kong X, Liao J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater Sci Eng C. 2019;104 PubMed
Hanot CC, Choi YS, Anani TB, Soundarrajan D, David AE. Effects of iron-oxide nanoparticle surface chemistry on uptake kinetics and cytotoxicity in CHO-K1 cells. Int J Mol Sci. 2015;17(1):54. PubMed PMC
Chen K, Han H, Tuguntaev RG, Wang P, Guo W, Huang J, Gong X, Liang XJ. Applications and regulatory of nanotechnology-based innovative in vitro diagnostics. View. 2021;2(2)
Ito A, Hayashida M, Honda H, Hata KI, Kagami H, Ueda M, Kobayashi T. Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng. 2004;10:873. PubMed
Goranov V, Shelyakova T, De Santis R, Haranava Y, Makhaniok A, Gloria A, Tampieri A, Russo A, Kon E, Marcacci M, Ambrosio L, Dediu VA. 3D Patterning of cells in magnetic scaffolds for tissue engineering . Sci Rep. 2020;10:2289. doi: 10.1038/s41598-020-58738-5. PubMed DOI PMC
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/nanosystems for magnetic targeted delivery of bioagents. Pharmaceutics. 2022;14(6):1132. PubMed PMC
Zhao Y, Fan T, Chen J, Su J, Zhi X, Pan P, Zou L, Zhang Q. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Colloids Surf B Biointerfaces. 2019;174:70–79. PubMed
Eslami P, Albino M, Scavone F, Chiellini F, Morelli A, Baldi G, Cappiello L, Doumett S, Lorenzi G, Ravagli C, Caneschi A, Laurenzana A, Sangregorio C. Smart magnetic nanocarriers for multi-stimuli on-demand drug delivery. Nanomaterials. 2022;12(3):303. PubMed PMC
Maitz MF, Freudenberg U, Tsurkan MV, Fischer M, Beyrich T, Werner C. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat Commun. 2013;4:2168. PubMed PMC
Dionigi C, Lungaro L, Goranov V, Riminucci A, Pineiro-Redondo Y, Bañobre-López M, Rivas J, Dediu V. Smart magnetic poly(N-isopropylacrylamide) to control the release of bio-active molecules. J Mater Sci Mater Med. 2014;25:2365–2371. PubMed
An Y, Yang R, Wang X, Han Y, Jia G, Hu C, Zhang Z, Liu D, Tang Q. Facile assembly of thermosensitive liposomes for active targeting imaging and synergetic chemo-/magnetic hyperthermia therapy. Front Bioeng Biotechnol. 2021;9 PubMed PMC
Labusca L, Herea DD, Danceanu CM, Minuti AE, Stavila C, Grigoras M, Gherca D, Stoian G, Ababei G, Chiriac H, Lupu N. The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells. Mater Sci Eng C. 2020;109 PubMed
Dobson J, Cartmell SH, Keramane A, El Haj AJ. Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans Nanobiosci. 2006;5(3):173–177. PubMed
Seo D, Southard KM, Kim JW, Lee HJ, Farlow J, Lee JU, Litt DB, Haas T, Alivisatos AP, Cheon J, Gartner ZJ. Jun YW. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell. 2016;165(6):1507–1518. PubMed PMC
Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: Insights into mechanism of physical stimulation. Nanoscale. 2016;8(6):3386–3399. PubMed PMC
Markides H, McLaren JS, El Haj AJ. Overcoming translational challenges–The delivery of mechanical stimuli in vivo. Int J Biochem Cell Biol. 2015;69:162–172. PubMed
Samal SK, Goranov V, Dash V, Russo A, Shelyakova T, Graziosi P, Lungaro L, Riminucci A, Uhlarz M, Bañobre-López M, Rivas J, Herrmannsdörfer T, Rajadas J, De Smedt S, Braeckmans K, Kaplan DL, Dediu VA. Multilayered magnetic gelatin membrane scaffolds. ACS Appl Mater Interfaces. 2015;7(41):23098–23109. PubMed PMC
Park S, Kim J, Lee MK, Park C, Jung HD, Kim HE, Jang TS. Fabrication of strong, bioactive vascular grafts with PCL/collagen and PCL/silica bilayers for small-diameter vascular applications. Mater Des. 2019;181
Ramos-Rodriguez H, Leach JK. Biomaterials are the key to unlock spheroid function and therapeutic potential. Biomater Biosyst. 2023 PubMed PMC
Mattix A, Olsen TR, Gu Y, Casco M, Herbst A, Simionescu DT, Visconti RP, Kornev KG, Alexis F. Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater. 2014;10(2):623–629. PubMed PMC
Simińska-Stanny J, Nizioł M, Szymczyk-Ziółkowska P, Brożyna M, Junka A, Shavandi A, Podstawczyk D. 4D printing of patterned multimaterial magnetic hydrogel actuators. Addit Manuf. 2022;49
Van de Walle A, Perez JE, Wilhelm C. Magnetic bioprinting of stem cell-based tissues. Bioprinting. 2023:e00265.
Teijeiro-Valiño C, Gómez MG, Yáñez S, Acevedo PG, Prieto AA, Belderbos S, Gsell W, Himmelreich U, Piñeiro Y, Rivas J. Biocompatible magnetic gelatin nanoparticles with enhanced MRI contrast performance prepared by single-step desolvation method. Nano Express. 2021;2(2)
Yuet KP, Hwang DK, Haghgooie R, Doyle PS. Multifunctional superparamagnetic Janus particles. Langmuir. 2010;26:4281–4287. PubMed
Ragelle H, Danhier F, Préat V, Langer R, Anderson DG. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017;14(7):851–864. PubMed
Yan S, Hu K, Zhang M, Sheng J, Xu X, Tang S, Li Y, Yang S, Si G, Mao Y, Zhang Y, Zhang F, Gu N. Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact Mater. 2023;19:418–428. PubMed PMC
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-printed magnetic polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2021;13(21):3825. PubMed PMC
Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ. Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci U S A. 2011;108(1):67–72. doi: 10.1073/pnas.1007862108. PubMed DOI PMC
Emi TT, Barnes T, Orton E, Reisch A, Tolouei AE, Madani SZM, Kennedy SM. Pulsatile chemotherapeutic delivery profiles using magnetically responsive hydrogels. ACS Biomater Sci Eng. 2018;4(7):2412–2423. doi: 10.1021/acsbiomaterials.8b00372. PubMed DOI PMC
Xue L, Sun J. Magnetic hydrogels with ordered structure for biomedical applications. Front Chem. 2022;10 doi: 10.3389/fchem.2022.1040492. PubMed DOI PMC
Feng Q, Li D, Li Q, Cao X, Dong H. Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioact Mater. 2022;9:105–119. doi: 10.1016/j.bioactmat.2022.01.001. PubMed DOI PMC
Yue K, Guduru R, Hong J, Liang P, Nair M, Khizroev S. Magneto-electric nano-particles for non-invasive brain stimulation. PLoS One. 2012;7(9):e44040. PubMed PMC
Makhaniok A, Haranava Y, Goranov V, Panseri S, Semerikhina S, Russo A, Marcacci M, Dediu V. In silico prediction of the cell proliferation in porous scaffold using model of effective pore. Biosystems. 2013;114(3):227–237. doi: 10.1016/j.biosystems2013-07-002. PubMed DOI
Makhaniok A, Goranov V, Dediu V. Determination of the protein layer thickness on the surface of polydisperse nanoparticles from the distribution of their concentration along a measuring channel. J Eng Phys Thermophys. 2019;92:19–28. doi: 10.1007/s10891-019-0203-4. DOI
Van de Walle A, Kolosnjaj-Tabi J, Lalatonne Y, Wilhelm C. Ever-evolving identity of magnetic nanoparticles within human cells: The interplay of endosomal confinement, degradation, storage, and neocrystallization. Acc Chem Res. 2020;53(10):2212–2224. doi: 10.1021/acs.accounts0c00123. PubMed DOI
Makhaniok A, Siutsou I, Vrana E, Goranov V. Materials of 11th World Biomaterials Congress. 2020. Mathematical model for estimation biomaterial toxicity in cell systems; p. 3968. 11th–15th December.
Goranov V, Makhaniok A. Software for evaluation of immune cell activation (Application note) Biosystems. 2024:235. doi: 10.1016/j.biosystems.2023.105092. PubMed DOI
Byrne HJ, Maher MA. Numerically modelling time and dose dependent cytotoxicity. Comput. Toxicol. 2019;12
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomed. 2024:7547–7566. PubMed PMC
Rashidi L. Analytical Applications of Functionalized Magnetic Nanoparticles. 2021. Chapter 21: Functionalized Magnetic Nanoparticles (MNPs): Toxicity, Safety and Legal Aspects of Functionalized MNPs. DOI
Rarokar N, Yadav S, Saoji S, Bramhe P, Agade R, Gurav S, Kumarasamy V. Magnetic nanosystem a tool for targeted delivery and diagnostic application: Current challenges and recent advancement. Int J Pharmac: X. 2024 PubMed PMC
Zhang W, Zhang S, Xu W, Zhang M, Zhou Q, Chen W. The function and magnetic resonance imaging of immature dendritic cells under ultrasmall superparamagnetic iron oxide (USPIO)-labeling. Biotechnol Lett. 2017;39:1079–1089. PubMed
Polo E, Collado M, Pelaz B, Del Pino P. Advances toward more efficient targeted delivery of nanoparticles in vivo: understanding interactions between nanoparticles and cells. ACS Nano. 2017;11(3):2397–2402. PubMed
Goranov V, Kostal Y. Evaluation of hysto-hematic barriers permeability for magnetic nanoparticles. Proce Nat. Acad. Sci. Belarus. Biol Series. 2024;70(4):217–231. in press.
Elsen R, Nayak S. Artificial intelligence-based 3d printing strategies for bone scaffold fabrication and its application in preclinical and clinical investigations. ACS Biomater Sci Eng. 2024 doi: 10.1021/acsbiomaterials.3c01368. PubMed DOI
Materón M, Miyazaki CM, Carr O, Joshi N, Picciani PHS, Dalmaschio CJ, Davis F, Shimizu FM. Magnetic nanoparticles in biomedical applications: A review. Appl Surf Sci Adv. 2021;6 doi: 10.1016/j.apsusc.2021.100163. DOI