3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32041994
PubMed Central
PMC7010825
DOI
10.1038/s41598-020-58738-5
PII: 10.1038/s41598-020-58738-5
Knihovny.cz E-zdroje
- MeSH
- biokompatibilní materiály chemie MeSH
- biologické modely MeSH
- chemické modely MeSH
- endoteliální buňky pupečníkové žíly (lidské) fyziologie MeSH
- fyziologická neovaskularizace fyziologie MeSH
- lidé MeSH
- magnetické nanočástice chemie MeSH
- magnetické pole MeSH
- mezenchymální kmenové buňky fyziologie MeSH
- nanomedicína metody MeSH
- osteogeneze fyziologie MeSH
- ověření koncepční studie MeSH
- počítačová simulace MeSH
- regenerace kostí MeSH
- testování materiálů MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- magnetické nanočástice MeSH
A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
1st Moscow State Medical University Moscow Russian Federation
BioDevice Systems Praha 10 Vršovice Bulharská 996 20 Czech Republic
Humanitas Clinical and Research Center Via Manzoni 56 20089 Rozzano Milan Italy
Humanitas University Department of Biomedical Sciences Via Manzoni 113 20089 Rozzano Milano Italy
Institute for Nanostructured Materials CNR ISMN Via Gobetti 101 40129 Bologna Italy
Institute of Science and Technology for Ceramics CNR ISTEC Via Granarolo 64 48018 Faenza Italy
IRCCS Istituto Ortopedico Rizzoli Via di Barbiano 1 10 40136 Bologna Italy
Zobrazit více v PubMed
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI
Kon E, et al. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg. Sports Traumatol. Arthrosc. 2009;17:1312. doi: 10.1007/s00167-009-0819-8. PubMed DOI PMC
Novosel EC, et al. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 2011;63:300–311. doi: 10.1016/j.addr.2011.03.004. PubMed DOI
Weinand C, et al. Conditions affecting cell seeding onto three-dimensional scaffolds for cellular‐based biodegradable implants. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91B:80–87. doi: 10.1002/jbm.b.31376. PubMed DOI
Wüst S, et al. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing. J. Funct. Biomater. 2011;2:119–154. doi: 10.3390/jfb2030119. PubMed DOI PMC
Chen FM, et al. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31:6279–6308. doi: 10.1016/j.biomaterials.2010.04.053. PubMed DOI
Guillame-Gentil O, et al. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures. Adv. Mater. 2010;22:5443–5462. doi: 10.1002/adma.201001747. PubMed DOI
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 2008;17:467–479. doi: 10.1007/s00586-008-0745-3. PubMed DOI PMC
Place ES, et al. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457–470. doi: 10.1038/nmat2441. PubMed DOI
Serbo JV, Gerecht S. Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res. Ther. 2013;4:8. doi: 10.1186/scrt156. PubMed DOI PMC
Varner VD, Nelson CM. Toward the Directed Self-Assembly of Engineered Tissues. Annu. Rev. Chem. Biomol. Eng. 2014;5:507–526. doi: 10.1146/annurev-chembioeng-060713-040016. PubMed DOI
Hannachi IE, et al. Cell sheet technology and cell patterning for biofabrication. Biofabrication. 2009;1:022002. doi: 10.1088/1758-5082/1/2/022002. PubMed DOI
Souza GR, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 2010;5:291–296. doi: 10.1038/nnano.2010.23. PubMed DOI PMC
Bock N, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI
Yi L, et al. Using magnetic nanoparticles to manipulate biological objects. Chin. Phys. B. 2013;22:097503. doi: 10.1088/1674-1056/22/9/097503. DOI
Lee EA, et al. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharm. Res. 2014;37:120–128. doi: 10.1007/s12272-013-0303-3. PubMed DOI
Gertz F, Khitun A. Biological cell manipulation by magnetic nanoparticles. AIP Advances. 2016;6:025308. doi: 10.1063/1.4942090. DOI
Fukuda J, et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials. 2006;27:1479–1486. doi: 10.1016/j.biomaterials.2005.09.015. PubMed DOI
Nelson SB, et al. Electrospinning of Polymeric Nanofibres for Tissue Engineering Applications: A Review. Tissue Eng. Part A. 2015;21:2480–2494. doi: 10.1089/ten.tea.2015.0098. PubMed DOI PMC
Fröhlich M, et al. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Stem Cell Res. Ther. 2008;3:254–264. doi: 10.2174/157488808786733962. PubMed DOI PMC
Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 2008;2:100–114. doi: 10.22203/eCM.v015a08. PubMed DOI
Keramaris NC, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr. Stem Cell Res. Ther. 2012;7:293–301. doi: 10.2174/157488812800793081. PubMed DOI
Kobayashi T, et al. A novel cell delivery system using magnetically labelled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008;24:69–76. doi: 10.1016/j.arthro.2007.08.017. PubMed DOI
Zucker RM, et al. Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry. 2010;77A:677–685. doi: 10.1002/cyto.a.20927. PubMed DOI
Xia J, et al. The relationship between internalization of magnetic nanoparticles and changes of cellular optical scatter signal. J. Nanosci. Nanotechnol. 2008;8:6310–6315. PubMed
Kostura L, et al. Feridex labeling of mesenchymal stem cells. NMR Biomed. 2004;17:513–517. doi: 10.1002/nbm.925. PubMed DOI
Negi H, et al. In Vitro Safety and Quality of Magnetically Labeled Human Mesenchymal Stem Cells. Tissue Engineering: Part C. 2019;25:324–333. doi: 10.1089/ten.tec.2019.0001. PubMed DOI
Bañobre-López M, et al. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 2011;10:07B313. doi: 10.1063/1.3561149. DOI
Gloria A, et al. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc. Interface. 2013;10:20120833. doi: 10.1098/rsif.2012.0833. PubMed DOI PMC
De Santis R, et al. Towards the Design of 3D Fibre-Deposited Poly(ε-caprolactone)/lron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration. J. Biomed. Nanotechnol. 2015;11:1236–46. doi: 10.1166/jbn.2015.2065. PubMed DOI
Furlani EP. Magnetic Biotransport: Analysis and Applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. PubMed DOI
Yamamoto Y, et al. Functional Evaluation of Artificial Skeletal Muscle Tissue Constructs Fabricated by a Magnetic Force-Based Tissue Engineering Technique. Tissue Eng. Part A. 2011;17:107–114. doi: 10.1089/ten.tea.2010.0312. PubMed DOI
Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–2547. doi: 10.1242/dev.003707. PubMed DOI
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models & Mech. 2011;4:165–178. doi: 10.1242/dmm.004077. PubMed DOI PMC
Martinez-Rivas A, et al. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications. Micromachines. 2017;8:347. doi: 10.3390/mi8120347. PubMed DOI PMC
Lee H, et al. Recent cell printing systems for tissue Engineering. Int. J. Bioprint. 2017;3:1–15. doi: 10.18063/IJB.2017.01.004. PubMed DOI PMC
Thery M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 2010;123:4201–4213. doi: 10.1242/jcs.075150. PubMed DOI
Richter C, et al. Spatially controlled cell adhesion on three-dimensional substrates. Biomed. Microdevices. 2010;12:787–795. doi: 10.1007/s10544-010-9433-2. PubMed DOI PMC
Nikkhah M, et al. Engineering microscale topographies to control the cell–substrate interface. Biomaterials. 2012;33:5230–5246. doi: 10.1016/j.biomaterials.2012.03.079. PubMed DOI PMC
Lu T, et al. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 2013;8:337–350. doi: 10.2147/IJN.S38635. PubMed DOI PMC
Bryant SJ, et al. Photo-patterning of Porous Hydrogels for Tissue Engineering. Biomaterials. 2007;28:2978–2986. doi: 10.1016/j.biomaterials.2006.11.033. PubMed DOI PMC
Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 2004;32:148–159. PubMed
Volkmer E, et al. Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone. Tissue Eng. Part A. 2008;14:1331–1340. doi: 10.1089/ten.tea.2007.0231. PubMed DOI
Kamei N, et al. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surgery, Sports Traumatology, Arthroscopy. 2018;26:3626–3635. doi: 10.1007/s00167-018-4898-2. PubMed DOI
Hon K, et al. Direct writing technology — advances and developments. CIRP Ann. — Manuf. Techn. 2008;57:601–620. doi: 10.1016/j.cirp.2008.09.006. DOI
Guillotin B, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055. PubMed DOI
Moon S, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C: Methods. 2010;16:157–166. doi: 10.1089/ten.tec.2009.0179. PubMed DOI PMC
Xu T, et al. Complex heterogeneous tissue constructs containing multiple cell types pre- pared by inkjet printing technology. Biomaterials. 2013;34:130–139. doi: 10.1016/j.biomaterials.2012.09.035. PubMed DOI
Calvert P, et al. Inkjet printing for materials and devices. Chem. Mater. 2001;13:3299–3305. doi: 10.1021/cm0101632. DOI
Ozbolat I, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 2013;60:691–699. doi: 10.1109/TBME.2013.2243912. PubMed DOI
Shim J, et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 2012;22:085014. doi: 10.1088/0960-1317/22/8/085014. DOI
Yu Y, et al. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 2013;135:091011. doi: 10.1115/1.4024575. PubMed DOI PMC