3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering

. 2020 Feb 10 ; 10 (1) : 2289. [epub] 20200210

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32041994
Odkazy

PubMed 32041994
PubMed Central PMC7010825
DOI 10.1038/s41598-020-58738-5
PII: 10.1038/s41598-020-58738-5
Knihovny.cz E-zdroje

A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.

Zobrazit více v PubMed

O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95. doi: 10.1016/S1369-7021(11)70058-X. DOI

Kon E, et al. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg. Sports Traumatol. Arthrosc. 2009;17:1312. doi: 10.1007/s00167-009-0819-8. PubMed DOI PMC

Novosel EC, et al. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 2011;63:300–311. doi: 10.1016/j.addr.2011.03.004. PubMed DOI

Weinand C, et al. Conditions affecting cell seeding onto three-dimensional scaffolds for cellular‐based biodegradable implants. J. Biomed. Mater. Res. B Appl. Biomater. 2009;91B:80–87. doi: 10.1002/jbm.b.31376. PubMed DOI

Wüst S, et al. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing. J. Funct. Biomater. 2011;2:119–154. doi: 10.3390/jfb2030119. PubMed DOI PMC

Chen FM, et al. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010;31:6279–6308. doi: 10.1016/j.biomaterials.2010.04.053. PubMed DOI

Guillame-Gentil O, et al. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures. Adv. Mater. 2010;22:5443–5462. doi: 10.1002/adma.201001747. PubMed DOI

Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 2008;17:467–479. doi: 10.1007/s00586-008-0745-3. PubMed DOI PMC

Place ES, et al. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009;8:457–470. doi: 10.1038/nmat2441. PubMed DOI

Serbo JV, Gerecht S. Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res. Ther. 2013;4:8. doi: 10.1186/scrt156. PubMed DOI PMC

Varner VD, Nelson CM. Toward the Directed Self-Assembly of Engineered Tissues. Annu. Rev. Chem. Biomol. Eng. 2014;5:507–526. doi: 10.1146/annurev-chembioeng-060713-040016. PubMed DOI

Hannachi IE, et al. Cell sheet technology and cell patterning for biofabrication. Biofabrication. 2009;1:022002. doi: 10.1088/1758-5082/1/2/022002. PubMed DOI

Souza GR, et al. Three-dimensional tissue culture based on magnetic cell levitation. Nat. Nanotechnol. 2010;5:291–296. doi: 10.1038/nnano.2010.23. PubMed DOI PMC

Bock N, et al. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI

Yi L, et al. Using magnetic nanoparticles to manipulate biological objects. Chin. Phys. B. 2013;22:097503. doi: 10.1088/1674-1056/22/9/097503. DOI

Lee EA, et al. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharm. Res. 2014;37:120–128. doi: 10.1007/s12272-013-0303-3. PubMed DOI

Gertz F, Khitun A. Biological cell manipulation by magnetic nanoparticles. AIP Advances. 2016;6:025308. doi: 10.1063/1.4942090. DOI

Fukuda J, et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials. 2006;27:1479–1486. doi: 10.1016/j.biomaterials.2005.09.015. PubMed DOI

Nelson SB, et al. Electrospinning of Polymeric Nanofibres for Tissue Engineering Applications: A Review. Tissue Eng. Part A. 2015;21:2480–2494. doi: 10.1089/ten.tea.2015.0098. PubMed DOI PMC

Fröhlich M, et al. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Stem Cell Res. Ther. 2008;3:254–264. doi: 10.2174/157488808786733962. PubMed DOI PMC

Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell Mater. 2008;2:100–114. doi: 10.22203/eCM.v015a08. PubMed DOI

Keramaris NC, et al. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) in bone healing. Curr. Stem Cell Res. Ther. 2012;7:293–301. doi: 10.2174/157488812800793081. PubMed DOI

Kobayashi T, et al. A novel cell delivery system using magnetically labelled mesenchymal stem cells and an external magnetic device for clinical cartilage repair. Arthroscopy. 2008;24:69–76. doi: 10.1016/j.arthro.2007.08.017. PubMed DOI

Zucker RM, et al. Detection of TiO2 nanoparticles in cells by flow cytometry. Cytometry. 2010;77A:677–685. doi: 10.1002/cyto.a.20927. PubMed DOI

Xia J, et al. The relationship between internalization of magnetic nanoparticles and changes of cellular optical scatter signal. J. Nanosci. Nanotechnol. 2008;8:6310–6315. PubMed

Kostura L, et al. Feridex labeling of mesenchymal stem cells. NMR Biomed. 2004;17:513–517. doi: 10.1002/nbm.925. PubMed DOI

Negi H, et al. In Vitro Safety and Quality of Magnetically Labeled Human Mesenchymal Stem Cells. Tissue Engineering: Part C. 2019;25:324–333. doi: 10.1089/ten.tec.2019.0001. PubMed DOI

Bañobre-López M, et al. Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J. Appl. Phys. 2011;10:07B313. doi: 10.1063/1.3561149. DOI

Gloria A, et al. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J. R. Soc. Interface. 2013;10:20120833. doi: 10.1098/rsif.2012.0833. PubMed DOI PMC

De Santis R, et al. Towards the Design of 3D Fibre-Deposited Poly(ε-caprolactone)/lron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration. J. Biomed. Nanotechnol. 2015;11:1236–46. doi: 10.1166/jbn.2015.2065. PubMed DOI

Furlani EP. Magnetic Biotransport: Analysis and Applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. PubMed DOI

Yamamoto Y, et al. Functional Evaluation of Artificial Skeletal Muscle Tissue Constructs Fabricated by a Magnetic Force-Based Tissue Engineering Technique. Tissue Eng. Part A. 2011;17:107–114. doi: 10.1089/ten.tea.2010.0312. PubMed DOI

Ingber DE, Levin M. What lies at the interface of regenerative medicine and developmental biology? Development. 2007;134:2541–2547. doi: 10.1242/dev.003707. PubMed DOI

Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Models & Mech. 2011;4:165–178. doi: 10.1242/dmm.004077. PubMed DOI PMC

Martinez-Rivas A, et al. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications. Micromachines. 2017;8:347. doi: 10.3390/mi8120347. PubMed DOI PMC

Lee H, et al. Recent cell printing systems for tissue Engineering. Int. J. Bioprint. 2017;3:1–15. doi: 10.18063/IJB.2017.01.004. PubMed DOI PMC

Thery M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 2010;123:4201–4213. doi: 10.1242/jcs.075150. PubMed DOI

Richter C, et al. Spatially controlled cell adhesion on three-dimensional substrates. Biomed. Microdevices. 2010;12:787–795. doi: 10.1007/s10544-010-9433-2. PubMed DOI PMC

Nikkhah M, et al. Engineering microscale topographies to control the cell–substrate interface. Biomaterials. 2012;33:5230–5246. doi: 10.1016/j.biomaterials.2012.03.079. PubMed DOI PMC

Lu T, et al. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 2013;8:337–350. doi: 10.2147/IJN.S38635. PubMed DOI PMC

Bryant SJ, et al. Photo-patterning of Porous Hydrogels for Tissue Engineering. Biomaterials. 2007;28:2978–2986. doi: 10.1016/j.biomaterials.2006.11.033. PubMed DOI PMC

Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 2004;32:148–159. PubMed

Volkmer E, et al. Hypoxia in Static and Dynamic 3D Culture Systems for Tissue Engineering of Bone. Tissue Eng. Part A. 2008;14:1331–1340. doi: 10.1089/ten.tea.2007.0231. PubMed DOI

Kamei N, et al. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surgery, Sports Traumatology, Arthroscopy. 2018;26:3626–3635. doi: 10.1007/s00167-018-4898-2. PubMed DOI

Hon K, et al. Direct writing technology — advances and developments. CIRP Ann. — Manuf. Techn. 2008;57:601–620. doi: 10.1016/j.cirp.2008.09.006. DOI

Guillotin B, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31:7250–7256. doi: 10.1016/j.biomaterials.2010.05.055. PubMed DOI

Moon S, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C: Methods. 2010;16:157–166. doi: 10.1089/ten.tec.2009.0179. PubMed DOI PMC

Xu T, et al. Complex heterogeneous tissue constructs containing multiple cell types pre- pared by inkjet printing technology. Biomaterials. 2013;34:130–139. doi: 10.1016/j.biomaterials.2012.09.035. PubMed DOI

Calvert P, et al. Inkjet printing for materials and devices. Chem. Mater. 2001;13:3299–3305. doi: 10.1021/cm0101632. DOI

Ozbolat I, Yu Y. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 2013;60:691–699. doi: 10.1109/TBME.2013.2243912. PubMed DOI

Shim J, et al. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J. Micromech. Microeng. 2012;22:085014. doi: 10.1088/0960-1317/22/8/085014. DOI

Yu Y, et al. Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J. Biomech. Eng. 2013;135:091011. doi: 10.1115/1.4024575. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...