Acetonitrile-assisted exfoliation of layered grey and black arsenic: contrasting properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36133055
PubMed Central
PMC9417731
DOI
10.1039/c9na00754g
PII: c9na00754g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In recent years, two-dimensional monoelemental nanostructures beyond graphene have received great attention due to their outstanding properties. Out of these elements, only arsenic is known to form different allotropes with a layered structure in the bulk form. Orthorhombic arsenic, also termed "black arsenic", is a metastable form of arsenic with a structure analogous to that of black phosphorus and rhombohedral arsenic is known as "grey arsenic". Here, we compare the exfoliation of black and grey arsenic in acetonitrile in high yield forming stable colloidal solutions of exfoliated materials. Together with the exfoliation procedure, detailed structural and chemical analyses are provided and potential applications in gas sensing and photothermal absorption are demonstrated for potential future arsenic-based devices.
Zobrazit více v PubMed
Novoselov K. S. Geim A. K. Morozov S. V. Jiang D. Zhang Y. Dubonos S. V. Grigorieva I. V. Firsov A. A. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI
Novoselov K. S. Geim A. K. Morozov S. V. Jiang D. Katsnelson M. I. Grigorieva I. V. Dubonos S. V. Firsov A. A. Nature. 2005;438:197–200. doi: 10.1038/nature04233. PubMed DOI
Zhang Y. B. Tan Y. W. Stromer H. L. Kim P. Nature. 2005;438:201–204. doi: 10.1038/nature04235. PubMed DOI
Coleman J. N. Lotya M. O'Neill A. Bergin S. D. King P. J. Khan U. Young K. Gaucher A. De S. Smith R. J. Shvets I. V. Arora S. K. Stanton G. Kim H. Y. Lee K. Kim G. T. Duesberg G. S. Hallam T. Boland J. J. Wang J. J. Donegan J. F. Grunlan J. C. Moriarty G. Shmeliov A. Nicholls R. J. Perkins J. M. Grieveson E. M. Theuwissen K. McComb D. W. Nellist P. D. Nicolosi V. Science. 2011;331:568–571. doi: 10.1126/science.1194975. PubMed DOI
Chen L. Liu B. Abbas A. Ma Y. Fang X. Liu Y. Zhou C. ACS Nano. 2014;8:11543–11551. doi: 10.1021/nn504775f. PubMed DOI
Radisavljevic B. Radenovic A. Brivio J. Giacometi V. Kis A. Nat. Nanotechnol. 2011;6:147–150. doi: 10.1038/nnano.2010.279. PubMed DOI
Zhang Y. Chang T. R. Zhou B. Cui Y. T. Yan H. Liu Z. K. Scmitt F. Lee J. Moore R. Chen Y. L. Lin H. Jeng H. T. Mo S. K. Hussain Z. Bansil A. Shen Z. X. Nat. Nanotechnol. 2014;9:111–115. doi: 10.1038/nnano.2013.277. PubMed DOI
Najmaei S. Liu Z. Zhou W. Zou X. L. Shi G. Lei S. D. Yakobson B. I. Idrobo J. C. Ajayan P. M. Lou J. Nat. Mater. 2013;12:754–759. doi: 10.1038/nmat3673. PubMed DOI
Liu B. Chen L. Liu G. Abbas A. Fathi M. Zhou C. Nat. Mater. 2014;8:5304–5314. PubMed
Li L. Yu Y. Ye G. J. Ge Q. Ou X. Wu H. Feng D. Chen X. H. Zhang Y. Nat. Nanotechnol. 2014;9:372–377. doi: 10.1038/nnano.2014.35. PubMed DOI
Xia F. Wang H. Jia Y. Nat. Commun. 2014;5:4458. doi: 10.1038/ncomms5458. PubMed DOI
Churchill H. O. H. Jarillo-Herrero P. Nat. Nanotechnol. 2014;9:330–331. doi: 10.1038/nnano.2014.85. PubMed DOI
Zhang Y. Rubio A. Le Lay G. J. Phys. D: Appl. Phys. 2017;50:053004. doi: 10.1088/1361-6463/aa4e8b. DOI
Geng D. Yang H. Y. Adv. Mater. 2018;30:e1800865. doi: 10.1002/adma.201800865. PubMed DOI
Brent J. R. Savjani N. Lewis E. A. Haigh S. J. Lewis D. J. O'Brien P. Chem. Commun. 2014;50:13338–13341. doi: 10.1039/C4CC05752J. PubMed DOI
Smith J. B. Hagaman D. Ji H.-F. Nanotechnology. 2016;27:215602. doi: 10.1088/0957-4484/27/21/215602. PubMed DOI
Koenig S. P. Doganov R. A. Schmidt H. Neto A. H. C. Ozyilmaz B. Appl. Phys. Lett. 2014;104:103106. doi: 10.1063/1.4868132. DOI
Ng A. Sutto T. E. Matis B. R. Deng Y. Ye P. D. Stroud R. M. Brintlinger T. H. Bassim N. D. Nanotechnology. 2017;28:155601. doi: 10.1088/1361-6528/aa62f6. PubMed DOI
Reis F. Li G. Dudy L. Bauernfeind M. Glass S. Hanke W. Thomale R. Schäfer J. Claessen R. Science. 2017;357:287–290. doi: 10.1126/science.aai8142. PubMed DOI
Liu M.-Y. Huang Y. Chen Q.-Y. Li Z.-Y. Cao C. He Y. RSC Adv. 2017;7:39546. doi: 10.1039/C7RA05787C. DOI
Wang G. Pandey R. Karna S. P. ACS Appl. Mater. Interfaces. 2015;7:11490–11496. doi: 10.1021/acsami.5b02441. PubMed DOI
Gusmão R. Sofer Z. Bouša D. Pumera M. Angew. Chem., Int. Ed. 2017;56:14417–14422. doi: 10.1002/anie.201706389. PubMed DOI
Cartz L. Srinivasa S. R. Riedner R. J. Jorgensen J. D. Worlton T. G. J. Chem. Phys. 1979;71:1718–1721. doi: 10.1063/1.438523. DOI
Mayer D. R. Kosmus W. Pogglitsch H. Mayer D. Beyer W. Biol. Trace Elem. Res. 1993;37:27–38. doi: 10.1007/BF02789399. PubMed DOI
Milnes A. G. Polyakov A. Y. Mater. Sci. Eng., B. 1993;18:237. doi: 10.1016/0921-5107(93)90140-I. DOI
Bagshaw N. E. J. Power Sources. 1995;53:25. doi: 10.1016/0378-7753(94)01973-Y. DOI
Bettendorff A. Liebigs Ann. Chem. 1867;144:110. doi: 10.1002/jlac.18671440115. DOI
Smith P. M. Leadbetter A. J. Apling A. J. Philos. Mag. 1975;31:57. doi: 10.1080/14786437508229285. DOI
Zhang S. Yan Z. Li Y. Chen Z. Zeng H. Angew. Chem., Int. Ed. 2015;54:3112–3115. doi: 10.1002/anie.201411246. PubMed DOI
Jones D. P. Thomas N. Phillips W. A. Philos. Mag. B. 1978;38:271.
Sharma S. Kumar S. Schwingensclögl U. Phys. Rev. Appl. 2017;8:044013. doi: 10.1103/PhysRevApplied.8.044013. DOI
Beladi-Mousavi S. M. Pourrahimi A. M. Sofer Z. Pumera M. Adv. Funct. Mater. 2018;29:1807004. doi: 10.1002/adfm.201807004. DOI
Greaves G. N. Elliott S. R. Davis E. A. Adv. Phys. 1979;28:49. doi: 10.1080/00018737900101355. DOI
Silas P. Yates J. R. Haynes P. D. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;78:174101. doi: 10.1103/PhysRevB.78.174101. DOI
Chen Y. Chen C. Kealhofer R. Liu H. Yuan Z. Jiang L. Suh J. Park J. Ko C. Choe H. S. Avila J. Zhong M. Wei Z. Li J. Gao H. Liu Y. Analytis J. Xia Q. Asensio M. C. Wu J. Adv. Mater. 2018;30:1800754. doi: 10.1002/adma.201800754. PubMed DOI
Chia H. L. Latiff N. M. Gusmão R. Sofer Z. Pumera M. Chem.–Eur. J. 2019;25:2242. doi: 10.1002/chem.201804336. PubMed DOI
Qi Z.-H. Hu Y. Jin Z. Ma J. Phys. Chem. Chem. Phys. 2019;21:12087–12090. doi: 10.1039/C9CP01052A. PubMed DOI
Del Rio Castillo A. E. Pellegrini V. Sun H. Buha J. Dinh D. A. Lago E. Ansaldo A. Capasso A. Manna L. Bonaccorso F. Chem. Mater. 2018;30:506–516. doi: 10.1021/acs.chemmater.7b04628. DOI
Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Klimeš J. Bowler D. R. Michaelides A. J. Phys.: Condens. Matter. 2010;22:022201. doi: 10.1088/0953-8984/22/2/022201. PubMed DOI
Klimeš J. Bowler D. R. Michaelides A. Phys. Rev. B: Condens. Matter Mater. Phys. 2011;83:195131. doi: 10.1103/PhysRevB.83.195131. DOI
Lazar P. Martincová J. Otyepka M. Phys. Rev. B: Condens. Matter Mater. Phys. 2015;92:224104. doi: 10.1103/PhysRevB.92.224104. DOI
Lazar P. Otyepková E. Pykal M. Čépe K. Otyepka M. Nanoscale. 2018;10:8979–8988. doi: 10.1039/C8NR00329G. PubMed DOI PMC
Sofer Z. Luxa J. Bouša D. Sedmidubský D. Lazar P. Hartman T. Hardtdegem H. Pumera M. Angew. Chem., Int. Ed. 2017;56:9891–9896. doi: 10.1002/anie.201705722. PubMed DOI
Togo A. Tanaka I. Scr. Mater. 2015;108:1–5. doi: 10.1016/j.scriptamat.2015.07.021. DOI
Samsonova E. V. Popov A. V. Vanetsev A. S. Keevend K. Orlovskaya E. O. Kiisk V. Lange S. Joost U. Kaldvee K. Mäeorg U. Glushkov N. A. Ryabova A. V. Sildos I. Osiko V. V. Steiner R. Loschenov V. B. Orlovskii Y. V. Phys. Chem. Chem. Phys. 2014;16:26806–26815. doi: 10.1039/C4CP03774J. PubMed DOI
Ghosh S. C. Biesinger M. C. LaPierre R. R. Kruse P. J. Appl. Phys. 2007;101:114322. doi: 10.1063/1.2743729. DOI
Pöttgen R. and Johrendt D., Intermetallics, Walter de Gruyter GmbH, Berlin/Boston, 2014
Island J. O. Steele G. A. van der Zant H. S. J. Castellanos-Gomez A. 2D Mater. 2015;2:01102. PubMed
Vishnoi P. Mazumder M. Pati S. K. Rao C. N. R. New J. Chem. 2018;42:14091–14095. doi: 10.1039/C8NJ03186J. DOI
Sugai S. Shirotani I. Solid State Commun. 1985;53:753–755. doi: 10.1016/0038-1098(85)90213-3. DOI
Wu J. Mao N. Xie L. Xu H. Zhang J. Angew. Chem., Int. Ed. 2015;54:2366–2369. doi: 10.1002/anie.201410108. PubMed DOI