A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35335267
PubMed Central
PMC8949261
DOI
10.3390/molecules27061898
PII: molecules27061898
Knihovny.cz E-zdroje
- Klíčová slova
- biodegradable plastics, evolved gas analysis, micro-bioplastics, microplastics, soil,
- MeSH
- biodegradace MeSH
- plastické hmoty * chemie MeSH
- plyny MeSH
- polyestery MeSH
- půda * chemie MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- plastické hmoty * MeSH
- plyny MeSH
- poly(lactide) MeSH Prohlížeč
- polyestery MeSH
- půda * MeSH
- uhlík MeSH
Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.
Zobrazit více v PubMed
Hartmann N.B., Hüffer T., Thompson R.C., Hassellöv M., Verschoor A., Daugaard A.E., Rist S., Karlsson T.M., Brennholt N., Cole M., et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019;53:1039–1047. doi: 10.1021/acs.est.8b05297. PubMed DOI
Huang Y., Liu Q., Jia W., Yan C., Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020;260:114096. doi: 10.1016/j.envpol.2020.114096. PubMed DOI
Wu J., Jiang Z., Liu Y., Zhao X., Liang Y., Lu W., Song J. Microplastic contamination assessment in water and economic fishes in different trophic guilds from an urban water supply reservoir after flooding. J. Environ. Manag. 2021;299:113667. doi: 10.1016/j.jenvman.2021.113667. PubMed DOI
Torres-Agullo A., Karanasiou A., Moreno T., Lacorte S. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Sci. Total Environ. 2021;800:149555. doi: 10.1016/j.scitotenv.2021.149555. PubMed DOI PMC
Chýlek R., Kudela L., Pospíšil J., Šnajdárek L. Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments. J. Clean. Prod. 2019;237:117790. doi: 10.1016/j.jclepro.2019.117790. DOI
de Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C.A.O. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018;24:1405–1416. doi: 10.1111/gcb.14020. PubMed DOI PMC
Steinmetz Z., Wollmann C., Schaefer M., Buchmann C., David J., Tröger J., Muñoz K., Frör O., Schaumann G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016;550:690–705. doi: 10.1016/j.scitotenv.2016.01.153. PubMed DOI
Cao L., Wu D., Liu P., Hu W., Xu L., Sun Y., Wu Q., Tian K., Huang B., Yoon S.J., et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Sci. Total Environ. 2021;794:148694. doi: 10.1016/j.scitotenv.2021.148694. PubMed DOI
Nakao S., Akita K., Ozaki A., Masumoto K., Okuda T. Circulation of fibrous microplastic (microfiber) in sewage and sewage sludge treatment processes. Sci. Total Environ. 2021;795:148873. doi: 10.1016/j.scitotenv.2021.148873. PubMed DOI
Yang J., Li L., Li R., Xu L., Shen Y., Li S., Tu C., Wu L., Christie P., Luo Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021;289:117943. doi: 10.1016/j.envpol.2021.117943. PubMed DOI
Steinmetz Z., Löffler P., Eichhöfer S., David J., Muñoz K., Schaumann G.E. Are agricultural plastic covers a source of plastic debris in soil? A first screening study. Soil. 2022;8:31–47. doi: 10.5194/soil-8-31-2022. DOI
Baensch-Baltruschat B., Kocher B., Stock F., Reifferscheid G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020;733:137823. doi: 10.1016/j.scitotenv.2020.137823. PubMed DOI
Baensch-Baltruschat B., Kocher B., Kochleus C., Stock F., Reifferscheid G. Tyre and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2020;752:141939. doi: 10.1016/j.scitotenv.2020.141939. PubMed DOI
Kwak J.I., An Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2020;402:124034. doi: 10.1016/j.jhazmat.2020.124034. PubMed DOI
Kim S.W., An Y.-J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019;126:699–706. doi: 10.1016/j.envint.2019.02.067. PubMed DOI
Jiang X., Chen H., Liao Y., Ye Z., Li M., Klobučar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019;250:831–838. doi: 10.1016/j.envpol.2019.04.055. PubMed DOI
Qi Y., Yang X., Pelaez A.M., Lwanga E.H., Beriot N., Gertsen H., Garbeva P., Geissen V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018;645:1048–1056. doi: 10.1016/j.scitotenv.2018.07.229. PubMed DOI
Yi M., Zhou S., Zhang L., Ding S. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ. Res. 2020;93:24–32. doi: 10.1002/wer.1327. PubMed DOI
Yu H., Qi W., Cao X., Hu J., Li Y., Peng J., Hu C., Qu J. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environ. Int. 2021;156:106708. doi: 10.1016/j.envint.2021.106708. PubMed DOI
de Souza Machado A.A., Lau C.W., Kloas W., Bergmann J., Bachelier J.B., Faltin E., Becker R., Görlich A.S., Rillig M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019;53:6044–6052. doi: 10.1021/acs.est.9b01339. PubMed DOI
Rillig M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012;46:6453–6454. doi: 10.1021/es302011r. PubMed DOI
de Souza Machado A.A., Lau C.W., Till J., Kloas W., Lehmann A., Becker R., Rillig M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018;52:9656–9665. doi: 10.1021/acs.est.8b02212. PubMed DOI PMC
Zhang G., Zhang F., Li X. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019;670:1–7. doi: 10.1016/j.scitotenv.2019.03.149. PubMed DOI
Wan Y., Wu C., Xue Q., Hui X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2018;654:576–582. doi: 10.1016/j.scitotenv.2018.11.123. PubMed DOI
Rillig M.C. Microplastic Disguising As Soil Carbon Storage. Environ. Sci. Technol. 2018;52:6079–6080. doi: 10.1021/acs.est.8b02338. PubMed DOI PMC
Sintim H., Bary A.I., Hayes D., English M.E., Schaeffer S., Miles C.A., Zelenyuk A., Suski K., Flury M. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci. Total Environ. 2019;675:686–693. doi: 10.1016/j.scitotenv.2019.04.179. PubMed DOI
Fojt J., David J., Přikryl R., Řezáčová V., Kučerík J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci. Total Environ. 2020;745:140975. doi: 10.1016/j.scitotenv.2020.140975. PubMed DOI
Qin M., Chen C., Song B., Shen M., Cao W., Yang H., Zeng G., Gong J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021;312:127816. doi: 10.1016/j.jclepro.2021.127816. DOI
Harmaen A.S., Khalina A., Ali H.M., Azowa I.N. Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate) Int. J. Polym. Sci. 2016;2016:1–8. doi: 10.1155/2016/3230109. DOI
Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007;7:255–277. doi: 10.1002/mabi.200600168. PubMed DOI
Jeszeová L., Puškárová A., Bučková M., Kraková L., Grivalský T., Danko M., Mosnáčková K., Chmela Š., Pangallo D. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World J. Microbiol. Biotechnol. 2018;34:101. doi: 10.1007/s11274-018-2483-y. PubMed DOI
Dilkes-Hoffman L., Ashworth P., Laycock B., Pratt S., Lant P. Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resour. Conserv. Recycl. 2019;151:104479. doi: 10.1016/j.resconrec.2019.104479. DOI
Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2018;58:50–62. doi: 10.1002/anie.201805766. PubMed DOI
Zimmermann L., Göttlich S., Oehlmann J., Wagner M., Völker C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 2020;267:115392. doi: 10.1016/j.envpol.2020.115392. PubMed DOI
Serrano-Ruiz H., Martín-Closas L., Pelacho A. Application of an in vitro plant ecotoxicity test to unused biodegradable mulches. Polym. Degrad. Stab. 2018;158:102–110. doi: 10.1016/j.polymdegradstab.2018.10.016. DOI
González-Pleiter M., Tamayo-Belda M., Pulido-Reyes G., Amariei G., Leganés F., Rosal R., Fernández-Piñas F. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano. 2019;6:1382–1392. doi: 10.1039/C8EN01427B. DOI
Torres F.G., Dioses-Salinas D.C., Pizarro-Ortega C.I., De-La-Torre G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2020;757:143875. doi: 10.1016/j.scitotenv.2020.143875. PubMed DOI
Grubelnik A., Wiesli L., Furrer P., Rentsch D., Hany R., Meyer V.R. A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. J. Sep. Sci. 2008;31:1739–1744. doi: 10.1002/jssc.200800033. PubMed DOI
Arcos-Hernandez M.V., Gurieff N., Pratt S., Magnusson P., Werker A., Vargas A., Lant P. Rapid quantification of intracellular PHA using infrared spectroscopy. J. Biotechnol. 2010;150:372–379. doi: 10.1016/j.jbiotec.2010.09.939. PubMed DOI
Krishnan S., Chinnadurai G.S., Perumal P. Polyhydroxybutyrate by Streptomyces sp.: Production and characterization. Int. J. Biol. Macromol. 2017;104:1165–1171. doi: 10.1016/j.ijbiomac.2017.07.028. PubMed DOI
Chien Y.-C., Liang C., Yang S.-H. Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmos. Environ. 2011;45:123–127. doi: 10.1016/j.atmosenv.2010.09.035. DOI
Kopinke F.-D., Remmler M., Mackenzie K., Möder M., Wachsen O. Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid) Polym. Degrad. Stab. 1996;53:329–342. doi: 10.1016/0141-3910(96)00102-4. DOI
Mamat M.R.Z., Ariffin H., Hassan M.A., Zahari M.A.K.M. Bio-based production of crotonic acid by pyrolysis of poly(3-hydroxybutyrate) inclusions. J. Clean. Prod. 2014;83:463–472. doi: 10.1016/j.jclepro.2014.07.064. DOI
Khang T.U., Kim M.-J., Yoo J.I., Sohn Y.J., Jeon S.G., Park S.J., Na J.-G. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS) Int. J. Biol. Macromol. 2021;174:449–456. doi: 10.1016/j.ijbiomac.2021.01.108. PubMed DOI
Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018;242:855–862. doi: 10.1016/j.envpol.2018.07.051. PubMed DOI
Thomas D., Schütze B., Heinze W., Steinmetz Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability. 2020;12:9074. doi: 10.3390/su12219074. DOI
He D., Luo Y., Lu S., Liu M., Song Y. Microplastics in soils. Trends Anal. Chem. 2018;109:163–172. doi: 10.1016/j.trac.2018.10.006. DOI
Bläsing M., Amelung W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018;612:422–435. doi: 10.1016/j.scitotenv.2017.08.086. PubMed DOI
Silva A.B., Bastos A.S., Justino C.I., da Costa J.P., Duarte A.C., Rocha-Santos T.A. Microplastics in the environment: Challenges in analytical chemistry—A review. Anal. Chim. Acta. 2018;1017:1–19. doi: 10.1016/j.aca.2018.02.043. PubMed DOI
Liu M., Lu S., Chen Y., Cao C., Bigalke M., He D. Analytical Methods for Microplastics in Environments: Current Advances and Challenges. Handb. Environ. Chem. 2020;95:3–24. doi: 10.1007/698_2019_436. DOI
Erni-Cassola G., Gibson M.I., Thompson R.C. Lost, but Found with Nile Red. Environ. Sci. Technol. 2017;51:13641–13648. doi: 10.1021/acs.est.7b04512. PubMed DOI
Sun J., Dai X., Wang Q., van Loosdrecht M.C., Ni B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019;152:21–37. doi: 10.1016/j.watres.2018.12.050. PubMed DOI
Ivleva N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021;121:11886–11936. doi: 10.1021/acs.chemrev.1c00178. PubMed DOI
Primpke S., Christiansen S.H., Cowger C.W., De Frond H., Deshpande A., Fischer M., Holland E.B., Meyns M., O'Donnell B.A., Ossmann B.E., et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020;74:1012–1047. doi: 10.1177/0003702820921465. PubMed DOI
Käppler A., Fischer M., Scholz-Böttcher B.M., Oberbeckmann S., Labrenz M., Fischer D., Eichhorn K.-J., Voit B. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal. Bioanal. Chem. 2018;410:5313–5327. doi: 10.1007/s00216-018-1185-5. PubMed DOI
David J., Steinmetz Z., Kučerík J., Schaumann G.E. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry. Anal. Chem. 2018;90:8793–8799. doi: 10.1021/acs.analchem.8b00355. PubMed DOI
Dümichen E., Barthel A.-K., Braun U., Bannick C.G., Brand K., Jekel M., Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–457. doi: 10.1016/j.watres.2015.09.002. PubMed DOI
Dümichen E., Eisentraut P., Bannick C.G., Barthel A.-K., Senz R., Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–584. doi: 10.1016/j.chemosphere.2017.02.010. PubMed DOI
Goßmann I., Halbach M., Scholz-Böttcher B.M. Car and truck tire wear particles in complex environmental samples—A quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 2021;773:145667. doi: 10.1016/j.scitotenv.2021.145667. PubMed DOI
Wang L., Zhang J., Hou S., Sun H. A Simple Method for Quantifying Polycarbonate and Polyethylene Terephthalate Microplastics in Environmental Samples by Liquid Chromatography–Tandem Mass Spectrometry. Environ. Sci. Technol. Lett. 2017;4:530–534. doi: 10.1021/acs.estlett.7b00454. DOI
Nelson T.F., Remke S.C., Kohler H.-P.E., McNeill K., Sander M. Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environ. Sci. Technol. 2019;54:266–275. doi: 10.1021/acs.est.9b05863. PubMed DOI
Melčová V., Svoradová K., Menčík P., Kontárová S., Rampichová M., Hedvičáková V., Sovková V., Přikryl R., Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers. 2020;12:2806. doi: 10.3390/polym12122806. PubMed DOI PMC
Arrieta M.P., Parres F., López J., Jiménez A. Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. J. Anal. Appl. Pyrolysis. 2013;101:150–155. doi: 10.1016/j.jaap.2013.01.017. DOI
Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., Braun U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017;231:1256–1264. doi: 10.1016/j.envpol.2017.08.074. PubMed DOI
Schindler A., Neumann G., Rager A., Fuglein E., Blumm J., Denner T. A novel direct coupling of simultaneous thermal analysis (STA) and Fourier transform-infrared (FT-IR) spectroscopy. J. Therm. Anal. 2013;113:1091–1102. doi: 10.1007/s10973-013-3072-9. DOI
Steinmetz Z., Kintzi A., Muñoz K., Schaumann G.E. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis. 2020;147:104803. doi: 10.1016/j.jaap.2020.104803. DOI
Boschmans B., Van Royen P., Van Vaeck L. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 2005;19:2517–2527. doi: 10.1002/rcm.2089. PubMed DOI
Law K.-H., Leung Y.-C., Lawford H., Chua H., Lo W.-H., Yu P.H. Production of Polyhydroxybutyrate by Bacillus Species Isolated from Municipal Activated Sludge. Appl. Biochem. Biotechnol. 2001;91–93:515–524. doi: 10.1385/ABAB:91-93:1-9:515. PubMed DOI
Dharmalingam S., Hayes D.G., Wadsworth L.C., Dunlap R.N., Debruyn J.M., Lee J., Wszelaki A.L. Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches. J. Polym. Environ. 2015;23:302–315. doi: 10.1007/s10924-015-0716-9. DOI