A Simple Method for Quantification of Polyhydroxybutyrate and Polylactic Acid Micro-Bioplastics in Soils by Evolved Gas Analysis

. 2022 Mar 15 ; 27 (6) : . [epub] 20220315

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35335267

Conventional plastics are being slowly replaced by biodegradable ones to prevent plastic pollution. However, in the natural environment, the biodegradation of plastics is usually slow or incomplete due to unfavorable conditions and leads to faster micro-bioplastic formation. Many analytical methods were developed to determine microplastics, but micro-bioplastics are still overlooked. This work presents a simple method for determining poly-3-hydroxybutyrate and polylactic acid micro-bioplastics in soil based on the thermogravimetry-mass spectrometry analysis of low molecular gases evolved during pyrolysis. For the method development, model soils containing different soil organic carbon contents were spiked with micro-bioplastics. Specific gaseous pyrolysis products of the analytes were identified, while the ratio of their amounts appeared to be constant above the level of detection of the suggested method. The constant ratio was explained as a lower soil influence on the evolution of the gaseous product, and it was suggested as an additional identification parameter. The advantages of the presented method are no sample pretreatment, presumably no need for an internal standard, low temperature needed for the transfer of gaseous products and the possibility of using its principles with other, cheaper detectors. The method can find application in the verification of biodegradation tests and in the monitoring of soils after the application of biodegradable products.

Zobrazit více v PubMed

Hartmann N.B., Hüffer T., Thompson R.C., Hassellöv M., Verschoor A., Daugaard A.E., Rist S., Karlsson T.M., Brennholt N., Cole M., et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019;53:1039–1047. doi: 10.1021/acs.est.8b05297. PubMed DOI

Huang Y., Liu Q., Jia W., Yan C., Wang J. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ. Pollut. 2020;260:114096. doi: 10.1016/j.envpol.2020.114096. PubMed DOI

Wu J., Jiang Z., Liu Y., Zhao X., Liang Y., Lu W., Song J. Microplastic contamination assessment in water and economic fishes in different trophic guilds from an urban water supply reservoir after flooding. J. Environ. Manag. 2021;299:113667. doi: 10.1016/j.jenvman.2021.113667. PubMed DOI

Torres-Agullo A., Karanasiou A., Moreno T., Lacorte S. Overview on the occurrence of microplastics in air and implications from the use of face masks during the COVID-19 pandemic. Sci. Total Environ. 2021;800:149555. doi: 10.1016/j.scitotenv.2021.149555. PubMed DOI PMC

Chýlek R., Kudela L., Pospíšil J., Šnajdárek L. Fine particle emission during fused deposition modelling and thermogravimetric analysis for various filaments. J. Clean. Prod. 2019;237:117790. doi: 10.1016/j.jclepro.2019.117790. DOI

de Souza Machado A.A., Kloas W., Zarfl C., Hempel S., Rillig M.C.A.O. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018;24:1405–1416. doi: 10.1111/gcb.14020. PubMed DOI PMC

Steinmetz Z., Wollmann C., Schaefer M., Buchmann C., David J., Tröger J., Muñoz K., Frör O., Schaumann G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016;550:690–705. doi: 10.1016/j.scitotenv.2016.01.153. PubMed DOI

Cao L., Wu D., Liu P., Hu W., Xu L., Sun Y., Wu Q., Tian K., Huang B., Yoon S.J., et al. Occurrence, distribution and affecting factors of microplastics in agricultural soils along the lower reaches of Yangtze River, China. Sci. Total Environ. 2021;794:148694. doi: 10.1016/j.scitotenv.2021.148694. PubMed DOI

Nakao S., Akita K., Ozaki A., Masumoto K., Okuda T. Circulation of fibrous microplastic (microfiber) in sewage and sewage sludge treatment processes. Sci. Total Environ. 2021;795:148873. doi: 10.1016/j.scitotenv.2021.148873. PubMed DOI

Yang J., Li L., Li R., Xu L., Shen Y., Li S., Tu C., Wu L., Christie P., Luo Y. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: A field study. Environ. Pollut. 2021;289:117943. doi: 10.1016/j.envpol.2021.117943. PubMed DOI

Steinmetz Z., Löffler P., Eichhöfer S., David J., Muñoz K., Schaumann G.E. Are agricultural plastic covers a source of plastic debris in soil? A first screening study. Soil. 2022;8:31–47. doi: 10.5194/soil-8-31-2022. DOI

Baensch-Baltruschat B., Kocher B., Stock F., Reifferscheid G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020;733:137823. doi: 10.1016/j.scitotenv.2020.137823. PubMed DOI

Baensch-Baltruschat B., Kocher B., Kochleus C., Stock F., Reifferscheid G. Tyre and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2020;752:141939. doi: 10.1016/j.scitotenv.2020.141939. PubMed DOI

Kwak J.I., An Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 2020;402:124034. doi: 10.1016/j.jhazmat.2020.124034. PubMed DOI

Kim S.W., An Y.-J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019;126:699–706. doi: 10.1016/j.envint.2019.02.067. PubMed DOI

Jiang X., Chen H., Liao Y., Ye Z., Li M., Klobučar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019;250:831–838. doi: 10.1016/j.envpol.2019.04.055. PubMed DOI

Qi Y., Yang X., Pelaez A.M., Lwanga E.H., Beriot N., Gertsen H., Garbeva P., Geissen V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018;645:1048–1056. doi: 10.1016/j.scitotenv.2018.07.229. PubMed DOI

Yi M., Zhou S., Zhang L., Ding S. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ. Res. 2020;93:24–32. doi: 10.1002/wer.1327. PubMed DOI

Yu H., Qi W., Cao X., Hu J., Li Y., Peng J., Hu C., Qu J. Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environ. Int. 2021;156:106708. doi: 10.1016/j.envint.2021.106708. PubMed DOI

de Souza Machado A.A., Lau C.W., Kloas W., Bergmann J., Bachelier J.B., Faltin E., Becker R., Görlich A.S., Rillig M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019;53:6044–6052. doi: 10.1021/acs.est.9b01339. PubMed DOI

Rillig M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012;46:6453–6454. doi: 10.1021/es302011r. PubMed DOI

de Souza Machado A.A., Lau C.W., Till J., Kloas W., Lehmann A., Becker R., Rillig M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018;52:9656–9665. doi: 10.1021/acs.est.8b02212. PubMed DOI PMC

Zhang G., Zhang F., Li X. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Sci. Total Environ. 2019;670:1–7. doi: 10.1016/j.scitotenv.2019.03.149. PubMed DOI

Wan Y., Wu C., Xue Q., Hui X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2018;654:576–582. doi: 10.1016/j.scitotenv.2018.11.123. PubMed DOI

Rillig M.C. Microplastic Disguising As Soil Carbon Storage. Environ. Sci. Technol. 2018;52:6079–6080. doi: 10.1021/acs.est.8b02338. PubMed DOI PMC

Sintim H., Bary A.I., Hayes D., English M.E., Schaeffer S., Miles C.A., Zelenyuk A., Suski K., Flury M. Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Sci. Total Environ. 2019;675:686–693. doi: 10.1016/j.scitotenv.2019.04.179. PubMed DOI

Fojt J., David J., Přikryl R., Řezáčová V., Kučerík J. A critical review of the overlooked challenge of determining micro-bioplastics in soil. Sci. Total Environ. 2020;745:140975. doi: 10.1016/j.scitotenv.2020.140975. PubMed DOI

Qin M., Chen C., Song B., Shen M., Cao W., Yang H., Zeng G., Gong J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021;312:127816. doi: 10.1016/j.jclepro.2021.127816. DOI

Harmaen A.S., Khalina A., Ali H.M., Azowa I.N. Thermal, Morphological, and Biodegradability Properties of Bioplastic Fertilizer Composites Made of Oil Palm Biomass, Fertilizer, and Poly(hydroxybutyrate-co-valerate) Int. J. Polym. Sci. 2016;2016:1–8. doi: 10.1155/2016/3230109. DOI

Kale G., Kijchavengkul T., Auras R., Rubino M., Selke S.E., Singh S.P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007;7:255–277. doi: 10.1002/mabi.200600168. PubMed DOI

Jeszeová L., Puškárová A., Bučková M., Kraková L., Grivalský T., Danko M., Mosnáčková K., Chmela Š., Pangallo D. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World J. Microbiol. Biotechnol. 2018;34:101. doi: 10.1007/s11274-018-2483-y. PubMed DOI

Dilkes-Hoffman L., Ashworth P., Laycock B., Pratt S., Lant P. Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resour. Conserv. Recycl. 2019;151:104479. doi: 10.1016/j.resconrec.2019.104479. DOI

Haider T.P., Völker C., Kramm J., Landfester K., Wurm F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2018;58:50–62. doi: 10.1002/anie.201805766. PubMed DOI

Zimmermann L., Göttlich S., Oehlmann J., Wagner M., Völker C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ. Pollut. 2020;267:115392. doi: 10.1016/j.envpol.2020.115392. PubMed DOI

Serrano-Ruiz H., Martín-Closas L., Pelacho A. Application of an in vitro plant ecotoxicity test to unused biodegradable mulches. Polym. Degrad. Stab. 2018;158:102–110. doi: 10.1016/j.polymdegradstab.2018.10.016. DOI

González-Pleiter M., Tamayo-Belda M., Pulido-Reyes G., Amariei G., Leganés F., Rosal R., Fernández-Piñas F. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ. Sci. Nano. 2019;6:1382–1392. doi: 10.1039/C8EN01427B. DOI

Torres F.G., Dioses-Salinas D.C., Pizarro-Ortega C.I., De-La-Torre G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2020;757:143875. doi: 10.1016/j.scitotenv.2020.143875. PubMed DOI

Grubelnik A., Wiesli L., Furrer P., Rentsch D., Hany R., Meyer V.R. A simple HPLC-MS method for the quantitative determination of the composition of bacterial medium chain-length polyhydroxyalkanoates. J. Sep. Sci. 2008;31:1739–1744. doi: 10.1002/jssc.200800033. PubMed DOI

Arcos-Hernandez M.V., Gurieff N., Pratt S., Magnusson P., Werker A., Vargas A., Lant P. Rapid quantification of intracellular PHA using infrared spectroscopy. J. Biotechnol. 2010;150:372–379. doi: 10.1016/j.jbiotec.2010.09.939. PubMed DOI

Krishnan S., Chinnadurai G.S., Perumal P. Polyhydroxybutyrate by Streptomyces sp.: Production and characterization. Int. J. Biol. Macromol. 2017;104:1165–1171. doi: 10.1016/j.ijbiomac.2017.07.028. PubMed DOI

Chien Y.-C., Liang C., Yang S.-H. Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmos. Environ. 2011;45:123–127. doi: 10.1016/j.atmosenv.2010.09.035. DOI

Kopinke F.-D., Remmler M., Mackenzie K., Möder M., Wachsen O. Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid) Polym. Degrad. Stab. 1996;53:329–342. doi: 10.1016/0141-3910(96)00102-4. DOI

Mamat M.R.Z., Ariffin H., Hassan M.A., Zahari M.A.K.M. Bio-based production of crotonic acid by pyrolysis of poly(3-hydroxybutyrate) inclusions. J. Clean. Prod. 2014;83:463–472. doi: 10.1016/j.jclepro.2014.07.064. DOI

Khang T.U., Kim M.-J., Yoo J.I., Sohn Y.J., Jeon S.G., Park S.J., Na J.-G. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS) Int. J. Biol. Macromol. 2021;174:449–456. doi: 10.1016/j.ijbiomac.2021.01.108. PubMed DOI

Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018;242:855–862. doi: 10.1016/j.envpol.2018.07.051. PubMed DOI

Thomas D., Schütze B., Heinze W., Steinmetz Z. Sample Preparation Techniques for the Analysis of Microplastics in Soil—A Review. Sustainability. 2020;12:9074. doi: 10.3390/su12219074. DOI

He D., Luo Y., Lu S., Liu M., Song Y. Microplastics in soils. Trends Anal. Chem. 2018;109:163–172. doi: 10.1016/j.trac.2018.10.006. DOI

Bläsing M., Amelung W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018;612:422–435. doi: 10.1016/j.scitotenv.2017.08.086. PubMed DOI

Silva A.B., Bastos A.S., Justino C.I., da Costa J.P., Duarte A.C., Rocha-Santos T.A. Microplastics in the environment: Challenges in analytical chemistry—A review. Anal. Chim. Acta. 2018;1017:1–19. doi: 10.1016/j.aca.2018.02.043. PubMed DOI

Liu M., Lu S., Chen Y., Cao C., Bigalke M., He D. Analytical Methods for Microplastics in Environments: Current Advances and Challenges. Handb. Environ. Chem. 2020;95:3–24. doi: 10.1007/698_2019_436. DOI

Erni-Cassola G., Gibson M.I., Thompson R.C. Lost, but Found with Nile Red. Environ. Sci. Technol. 2017;51:13641–13648. doi: 10.1021/acs.est.7b04512. PubMed DOI

Sun J., Dai X., Wang Q., van Loosdrecht M.C., Ni B.-J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019;152:21–37. doi: 10.1016/j.watres.2018.12.050. PubMed DOI

Ivleva N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021;121:11886–11936. doi: 10.1021/acs.chemrev.1c00178. PubMed DOI

Primpke S., Christiansen S.H., Cowger C.W., De Frond H., Deshpande A., Fischer M., Holland E.B., Meyns M., O'Donnell B.A., Ossmann B.E., et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020;74:1012–1047. doi: 10.1177/0003702820921465. PubMed DOI

Käppler A., Fischer M., Scholz-Böttcher B.M., Oberbeckmann S., Labrenz M., Fischer D., Eichhorn K.-J., Voit B. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal. Bioanal. Chem. 2018;410:5313–5327. doi: 10.1007/s00216-018-1185-5. PubMed DOI

David J., Steinmetz Z., Kučerík J., Schaumann G.E. Quantitative Analysis of Poly(ethylene terephthalate) Microplastics in Soil via Thermogravimetry–Mass Spectrometry. Anal. Chem. 2018;90:8793–8799. doi: 10.1021/acs.analchem.8b00355. PubMed DOI

Dümichen E., Barthel A.-K., Braun U., Bannick C.G., Brand K., Jekel M., Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–457. doi: 10.1016/j.watres.2015.09.002. PubMed DOI

Dümichen E., Eisentraut P., Bannick C.G., Barthel A.-K., Senz R., Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–584. doi: 10.1016/j.chemosphere.2017.02.010. PubMed DOI

Goßmann I., Halbach M., Scholz-Böttcher B.M. Car and truck tire wear particles in complex environmental samples—A quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 2021;773:145667. doi: 10.1016/j.scitotenv.2021.145667. PubMed DOI

Wang L., Zhang J., Hou S., Sun H. A Simple Method for Quantifying Polycarbonate and Polyethylene Terephthalate Microplastics in Environmental Samples by Liquid Chromatography–Tandem Mass Spectrometry. Environ. Sci. Technol. Lett. 2017;4:530–534. doi: 10.1021/acs.estlett.7b00454. DOI

Nelson T.F., Remke S.C., Kohler H.-P.E., McNeill K., Sander M. Quantification of Synthetic Polyesters from Biodegradable Mulch Films in Soils. Environ. Sci. Technol. 2019;54:266–275. doi: 10.1021/acs.est.9b05863. PubMed DOI

Melčová V., Svoradová K., Menčík P., Kontárová S., Rampichová M., Hedvičáková V., Sovková V., Přikryl R., Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers. 2020;12:2806. doi: 10.3390/polym12122806. PubMed DOI PMC

Arrieta M.P., Parres F., López J., Jiménez A. Development of a novel pyrolysis-gas chromatography/mass spectrometry method for the analysis of poly(lactic acid) thermal degradation products. J. Anal. Appl. Pyrolysis. 2013;101:150–155. doi: 10.1016/j.jaap.2013.01.017. DOI

Elert A.M., Becker R., Duemichen E., Eisentraut P., Falkenhagen J., Sturm H., Braun U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017;231:1256–1264. doi: 10.1016/j.envpol.2017.08.074. PubMed DOI

Schindler A., Neumann G., Rager A., Fuglein E., Blumm J., Denner T. A novel direct coupling of simultaneous thermal analysis (STA) and Fourier transform-infrared (FT-IR) spectroscopy. J. Therm. Anal. 2013;113:1091–1102. doi: 10.1007/s10973-013-3072-9. DOI

Steinmetz Z., Kintzi A., Muñoz K., Schaumann G.E. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis. 2020;147:104803. doi: 10.1016/j.jaap.2020.104803. DOI

Boschmans B., Van Royen P., Van Vaeck L. Use of monoatomic and polyatomic projectiles for the characterisation of polylactic acid by static secondary ion mass spectrometry. Rapid Commun. Mass Spectrom. 2005;19:2517–2527. doi: 10.1002/rcm.2089. PubMed DOI

Law K.-H., Leung Y.-C., Lawford H., Chua H., Lo W.-H., Yu P.H. Production of Polyhydroxybutyrate by Bacillus Species Isolated from Municipal Activated Sludge. Appl. Biochem. Biotechnol. 2001;91–93:515–524. doi: 10.1385/ABAB:91-93:1-9:515. PubMed DOI

Dharmalingam S., Hayes D.G., Wadsworth L.C., Dunlap R.N., Debruyn J.M., Lee J., Wszelaki A.L. Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches. J. Polym. Environ. 2015;23:302–315. doi: 10.1007/s10924-015-0716-9. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...