High-Pressure Depolymerization of Poly(lactic acid) (PLA) and Poly(3-hydroxybutyrate) (PHB) Using Bio-Based Solvents: A Way to Produce Alkyl Esters Which Can Be Modified to Polymerizable Monomers

. 2022 Dec 01 ; 14 (23) : . [epub] 20221201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36501628

The polyesters poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) used in various applications such as food packaging or 3D printing were depolymerized by biobased aliphatic alcohols-methanol and ethanol with the presence of para-toluenesulphonic acid (p-TSA) as a catalyst at a temperature of 151 °C. It was found that the fastest depolymerization is reached using methanol as anucleophile for the reaction with PLA, resulting in the value of reaction rate constant (k) of 0.0425 min-1 and the yield of methyl lactate of 93.8% after 120 min. On the other hand, the value of constant k for the depolymerization of PHB in the presence of ethanol reached 0.0064 min-1 and the yield of ethyl 3-hydroxybutyrate was of 76.0% after 240 min. A kinetics study of depolymerization was performed via LC-MS analysis of alkyl esters of lactic acid and 3-hydroxybutanoic acid. The structure confirmation of the products was performed via FT-IR, MS, 1H NMR, and 13C NMR. Synthesized alkyl lactates and 3-hydroxybutyrates were modified into polymerizable molecules using methacrylic anhydride as a reactant and potassium 2-ethylhexanoate as a catalyst at a temperature of 80 °C. All alkyl esters were methacrylated for 24 h, guaranteeing the quantitative yield (which in all cases reached values equal to or of more than 98%). The methacrylation rate constants (k') were calculated to compare the reaction kinetics of each alkyl ester. It was found that lactates reach afaster rate of reaction than 3-hydroxybutyrates. The value of k' for themethacrylated methyl lactate reached 0.0885 dm3/(mol·min). Opposite to this result, methacrylated ethyl 3-hydroxybutyrate's constant k' was 0.0075 dm3/(mol·min). The reaction rate study was conducted by the GC-FID method and the structures were confirmed via FT-IR, MS, 1H NMR, and 13C NMR.

Zobrazit více v PubMed

Beltrán F.R., Barrio I., Lorenzo V., Del Río B., Martínez Urreaga J., de La Orden M.U. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. J. A Sustain. Circ. Econ. 2019;37:135–141. doi: 10.1177/0734242X18798448. PubMed DOI

Arrieta M.P., Samper M.D., Aldas M., López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 2017;10:1008. doi: 10.3390/ma10091008. PubMed DOI PMC

Ray S.S., Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005;50:962–1079.

Hottel T., Bilec M., Landis A. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013;98:1898–1907. doi: 10.1016/j.polymdegradstab.2013.06.016. DOI

Reddy M.M., Vivekanandhan S., Misra M., Bhatia S.K., Mohanty A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013;38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006. DOI

Gough C.R., Callaway K., Spencer E., Leisy K., Jiang G., Yang S., Hu X. Biopolymer-Based Filtration Materials. ACS Omega. 2021;6:11804–11812. doi: 10.1021/acsomega.1c00791. PubMed DOI PMC

Beltrán F., Arrieta M., Moreno E., Gaspar G., Muneta L., Carrasco-Gallego R., Yáñez S., Hidalgo-Carvajal D., de la Orden M., Urreaga J.M. Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes. Polymers. 2021;13:1247. doi: 10.3390/polym13081247. PubMed DOI PMC

Moreno E., Beltrán F.R., Arrieta M.P., Gaspar G., Muneta L.M., Carrasco-Gallego R., Yáñez S., Hidalgo-Carvajal D., de la Orden M.U., Martínez Urreaga J. Technical Evaluation of Mechanical Recycling of PLA 3D Printing Wastes; Proceedings of the First International Conference on “Green” Polymer Materials; Basel, Switzerland. 4 November 2020; Basel, Switzerland: MDPI; 2021. p. 19. PubMed PMC

Leejarkpai T., Mungcharoen T., Suwanmanee U. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J. Clean. Prod. 2016;125:95–107. doi: 10.1016/j.jclepro.2016.03.029. DOI

Piemonte V., Gironi F. Kinetics of Hydrolytic Degradation of PLA. J. Polym. Environ. 2013;21:313–318. doi: 10.1007/s10924-012-0547-x. DOI

Castro-Aguirre E., Iniguez-Franco F., Samsudin H., Fang X., Auras R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016;107:333–366. doi: 10.1016/j.addr.2016.03.010. PubMed DOI

Papong S., Malakul P., Trungkavashirakun R., Wenunun P., Chom-in T., Nithitanakul M., Sarobol E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014;65:539–550. doi: 10.1016/j.jclepro.2013.09.030. DOI

Chen H., Chen F., Chen H., Liu H., Chen L., Yu L. Thermal degradation and combustion properties of most popular synthetic biodegradable polymers. Waste Manag. Res. J. A Sustain. Circ. Econ. 2022:0734242X221129054. doi: 10.1177/0734242X221129054. PubMed DOI PMC

Zhou Q., Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 2009;94:327–338. doi: 10.1016/j.polymdegradstab.2008.12.009. DOI

Uğur A., Şahin N., Beyatli Y. Accumulation of Poly-\beta-Hydroxybutyrate in Streptomyces Species During Growth with Different Nitrogen Sources. Turk. J. Biol. 2002;26:171–174.

Lenz R.W., Marchessault R.H. Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI

Arrieta M.P., Fortunati E., Dominici F., Rayón E., López J., Kenny J.M. Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydr. Polym. 2014;107:16–24. doi: 10.1016/j.carbpol.2014.02.044. PubMed DOI

Kervran M., Vagner C., Cochez M., Ponçot M., Saeb M.R., Vahabi H. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review. Polym. Degrad. Stab. 2022;201:109995. doi: 10.1016/j.polymdegradstab.2022.109995. DOI

Kontárová S., Přikryl R., Melčová V., Menčík P., Horálek M., Figalla S., Plavec R., Feranc J., Sadílek J., Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials. 2020;13:4736. doi: 10.3390/ma13214736. PubMed DOI PMC

Plavec R., Hlaváčiková S., Omaníková L., Feranc J., Vanovčanová Z., Tomanová K., Alexy P. Recycling possibilities of bioplastics based on PLA/PHB blends. Polym. Test. 2020;92:106880. doi: 10.1016/j.polymertesting.2020.106880. DOI

Elsawy M.A., Kim K.H., Park J.W., Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017;79:1346–1352. doi: 10.1016/j.rser.2017.05.143. DOI

Piemonte V., Sabatini S., Gironi F. Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI

Coszach P., Bogaert J.C., Willocq J. Chemical Recycling of PLA by Hydrolysis. No 8,431,683. U.S. Patent. 2013

Cosate de Andrade M.F., Souza P., Cavalett O., Morales A.R. Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J. Polym. Environ. 2016;24:372–384. doi: 10.1007/s10924-016-0787-2. DOI

McKeown P., Jones M.D. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020;1:1–22. doi: 10.3390/suschem1010001. DOI

Cristina A.M., Rosaria A., Sara F., Fausto G. AIP Conference Proceedings. AIP Publishing LLC; Melville, NY, USA: 2016. PLA Recycling by Hydrolysis at High Temperature; p. 020011.

Tsuji H., Daimon H., Fujie K. A New Strategy for Recycling and Preparation of Poly(l-lactic acid): Hydrolysis in the Melt. Biomacromolecules. 2003;4:835–840. doi: 10.1021/bm034060j. PubMed DOI

Li S.M., Rashkov I., Espartero J.L., Manolova N., Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly (l-lactic acid) blocks. Macromolecules. 1996;29:57–62. doi: 10.1021/ma950531l. DOI

Piemonte V., Gironi F. Lactic Acid Production by Hydrolysis of Poly(Lactic Acid) in Aqueous Solutions: An Experimental and Kinetic Study. J. Polym. Environ. 2013;21:275–279. doi: 10.1007/s10924-012-0468-8. DOI

Majgaonkar P., Hanich R., Malz F., Brüll R. Chemical Recycling of Post-Consumer PLA Waste for Sustainable Production of Ethyl Lactate. Chem. Eng. J. 2021;423:129952. doi: 10.1016/j.cej.2021.129952. DOI

Grewell D., Srinivasan G., Cochran E. Depolymerization of Post-Consumer Polylactic Acid Products. J. Renew. Mater. 2014;2:157–165. doi: 10.7569/JRM.2014.634112. DOI

Lee S.H., Song W.S. Enzymatic Hydrolysis of Polylactic Acid Fiber. Appl. Biochem. Biotechnol. 2011;164:89–102. doi: 10.1007/s12010-010-9117-7. PubMed DOI

Payne J., McKeown P., Jones M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019;165:170–181. doi: 10.1016/j.polymdegradstab.2019.05.014. DOI

Hirao K., Ohara H. Synthesis and Recycle of Poly(L-lactic acid) using Microwave Irradiation. Polym. Rev. 2011;51:1–22. doi: 10.1080/15583724.2010.537799. DOI

Hirao K., Nakatsuchi Y., Ohara H. Alcoholysis of Poly(l-lactic acid) under microwave irradiation. Polym. Degrad. Stab. 2010;95:925–928. doi: 10.1016/j.polymdegradstab.2010.03.027. DOI

Song X., Liu F., Wang H., Wang C., Yu S., Liu S. Methanolysis of microbial polyester poly(3-hydroxybutyrate) catalyzed by Brønsted-Lewis acidic ionic liquids as a new method towards sustainable development. Polym. Degrad. Stab. 2018;147:215–221. doi: 10.1016/j.polymdegradstab.2017.12.009. DOI

Song X., Wang H., Liu F., Yu S. Kinetics and mechanism of monomeric product from methanolysis of poly (3-hydroxybutyrate) catalyzed by acidic functionalized ionic liquids. Polym. Degrad. Stab. 2016;130:22–29. doi: 10.1016/j.polymdegradstab.2016.05.023. DOI

Siddiqui M.N., Redhwi H.H., Al-Arfaj A.A., Achilias D.S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability. 2021;13:10528. doi: 10.3390/su131910528. DOI

National Center for Biotechnology Information Methyl Lactate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-lactate.

National Center for Biotechnology Information Ethyl Lactate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-lactate.

National Center for Biotechnology Information Methyl 3-Hydroxybutyrate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-3-hydroxybutyrate.

National Center for Biotechnology Information Ethyl 3-Hydroxybutyrate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-3-hydroxybutyrate.

Amarasekara A.S., Owereh O.S. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun. 2010;11:1072–1075. doi: 10.1016/j.catcom.2010.05.012. DOI

Codari F., Lazzari S., Soos M., Storti G., Morbidelli M., Moscatelli D. Kinetics of the hydrolytic degradation of poly(lactic acid) Polym. Degrad. Stab. 2012;97:2460–2466. doi: 10.1016/j.polymdegradstab.2012.06.026. DOI

Hill C.A.S., Jones D., Strickland G., Cetin N.S. Kinetic and Mechanistic Aspects of the Acetylation of Wood with Acetic Anhydride. Holzforschung. 1998;52:623–629. doi: 10.1515/hfsg.1998.52.6.623. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...