High-Pressure Depolymerization of Poly(lactic acid) (PLA) and Poly(3-hydroxybutyrate) (PHB) Using Bio-Based Solvents: A Way to Produce Alkyl Esters Which Can Be Modified to Polymerizable Monomers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36501628
PubMed Central
PMC9739185
DOI
10.3390/polym14235236
PII: polym14235236
Knihovny.cz E-zdroje
- Klíčová slova
- alcoholysis, depolymerization, kinetics, methacrylation, poly(3-hydroxybutyrate), poly(lactic acid), polymerizable monomers,
- Publikační typ
- časopisecké články MeSH
The polyesters poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) used in various applications such as food packaging or 3D printing were depolymerized by biobased aliphatic alcohols-methanol and ethanol with the presence of para-toluenesulphonic acid (p-TSA) as a catalyst at a temperature of 151 °C. It was found that the fastest depolymerization is reached using methanol as anucleophile for the reaction with PLA, resulting in the value of reaction rate constant (k) of 0.0425 min-1 and the yield of methyl lactate of 93.8% after 120 min. On the other hand, the value of constant k for the depolymerization of PHB in the presence of ethanol reached 0.0064 min-1 and the yield of ethyl 3-hydroxybutyrate was of 76.0% after 240 min. A kinetics study of depolymerization was performed via LC-MS analysis of alkyl esters of lactic acid and 3-hydroxybutanoic acid. The structure confirmation of the products was performed via FT-IR, MS, 1H NMR, and 13C NMR. Synthesized alkyl lactates and 3-hydroxybutyrates were modified into polymerizable molecules using methacrylic anhydride as a reactant and potassium 2-ethylhexanoate as a catalyst at a temperature of 80 °C. All alkyl esters were methacrylated for 24 h, guaranteeing the quantitative yield (which in all cases reached values equal to or of more than 98%). The methacrylation rate constants (k') were calculated to compare the reaction kinetics of each alkyl ester. It was found that lactates reach afaster rate of reaction than 3-hydroxybutyrates. The value of k' for themethacrylated methyl lactate reached 0.0885 dm3/(mol·min). Opposite to this result, methacrylated ethyl 3-hydroxybutyrate's constant k' was 0.0075 dm3/(mol·min). The reaction rate study was conducted by the GC-FID method and the structures were confirmed via FT-IR, MS, 1H NMR, and 13C NMR.
Zobrazit více v PubMed
Beltrán F.R., Barrio I., Lorenzo V., Del Río B., Martínez Urreaga J., de La Orden M.U. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. J. A Sustain. Circ. Econ. 2019;37:135–141. doi: 10.1177/0734242X18798448. PubMed DOI
Arrieta M.P., Samper M.D., Aldas M., López J. On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 2017;10:1008. doi: 10.3390/ma10091008. PubMed DOI PMC
Ray S.S., Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 2005;50:962–1079.
Hottel T., Bilec M., Landis A. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013;98:1898–1907. doi: 10.1016/j.polymdegradstab.2013.06.016. DOI
Reddy M.M., Vivekanandhan S., Misra M., Bhatia S.K., Mohanty A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013;38:1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006. DOI
Gough C.R., Callaway K., Spencer E., Leisy K., Jiang G., Yang S., Hu X. Biopolymer-Based Filtration Materials. ACS Omega. 2021;6:11804–11812. doi: 10.1021/acsomega.1c00791. PubMed DOI PMC
Beltrán F., Arrieta M., Moreno E., Gaspar G., Muneta L., Carrasco-Gallego R., Yáñez S., Hidalgo-Carvajal D., de la Orden M., Urreaga J.M. Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes. Polymers. 2021;13:1247. doi: 10.3390/polym13081247. PubMed DOI PMC
Moreno E., Beltrán F.R., Arrieta M.P., Gaspar G., Muneta L.M., Carrasco-Gallego R., Yáñez S., Hidalgo-Carvajal D., de la Orden M.U., Martínez Urreaga J. Technical Evaluation of Mechanical Recycling of PLA 3D Printing Wastes; Proceedings of the First International Conference on “Green” Polymer Materials; Basel, Switzerland. 4 November 2020; Basel, Switzerland: MDPI; 2021. p. 19. PubMed PMC
Leejarkpai T., Mungcharoen T., Suwanmanee U. Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes. J. Clean. Prod. 2016;125:95–107. doi: 10.1016/j.jclepro.2016.03.029. DOI
Piemonte V., Gironi F. Kinetics of Hydrolytic Degradation of PLA. J. Polym. Environ. 2013;21:313–318. doi: 10.1007/s10924-012-0547-x. DOI
Castro-Aguirre E., Iniguez-Franco F., Samsudin H., Fang X., Auras R. Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 2016;107:333–366. doi: 10.1016/j.addr.2016.03.010. PubMed DOI
Papong S., Malakul P., Trungkavashirakun R., Wenunun P., Chom-in T., Nithitanakul M., Sarobol E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014;65:539–550. doi: 10.1016/j.jclepro.2013.09.030. DOI
Chen H., Chen F., Chen H., Liu H., Chen L., Yu L. Thermal degradation and combustion properties of most popular synthetic biodegradable polymers. Waste Manag. Res. J. A Sustain. Circ. Econ. 2022:0734242X221129054. doi: 10.1177/0734242X221129054. PubMed DOI PMC
Zhou Q., Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 2009;94:327–338. doi: 10.1016/j.polymdegradstab.2008.12.009. DOI
Uğur A., Şahin N., Beyatli Y. Accumulation of Poly-\beta-Hydroxybutyrate in Streptomyces Species During Growth with Different Nitrogen Sources. Turk. J. Biol. 2002;26:171–174.
Lenz R.W., Marchessault R.H. Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules. 2005;6:1–8. doi: 10.1021/bm049700c. PubMed DOI
Arrieta M.P., Fortunati E., Dominici F., Rayón E., López J., Kenny J.M. Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydr. Polym. 2014;107:16–24. doi: 10.1016/j.carbpol.2014.02.044. PubMed DOI
Kervran M., Vagner C., Cochez M., Ponçot M., Saeb M.R., Vahabi H. Thermal degradation of polylactic acid (PLA)/polyhydroxybutyrate (PHB) blends: A systematic review. Polym. Degrad. Stab. 2022;201:109995. doi: 10.1016/j.polymdegradstab.2022.109995. DOI
Kontárová S., Přikryl R., Melčová V., Menčík P., Horálek M., Figalla S., Plavec R., Feranc J., Sadílek J., Pospíšilová A. Printability, Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate)-Poly(Lactic Acid)-Plasticizer Blends for Three-Dimensional (3D) Printing. Materials. 2020;13:4736. doi: 10.3390/ma13214736. PubMed DOI PMC
Plavec R., Hlaváčiková S., Omaníková L., Feranc J., Vanovčanová Z., Tomanová K., Alexy P. Recycling possibilities of bioplastics based on PLA/PHB blends. Polym. Test. 2020;92:106880. doi: 10.1016/j.polymertesting.2020.106880. DOI
Elsawy M.A., Kim K.H., Park J.W., Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017;79:1346–1352. doi: 10.1016/j.rser.2017.05.143. DOI
Piemonte V., Sabatini S., Gironi F. Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? J. Polym. Environ. 2013;21:640–647. doi: 10.1007/s10924-013-0608-9. DOI
Coszach P., Bogaert J.C., Willocq J. Chemical Recycling of PLA by Hydrolysis. No 8,431,683. U.S. Patent. 2013
Cosate de Andrade M.F., Souza P., Cavalett O., Morales A.R. Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. J. Polym. Environ. 2016;24:372–384. doi: 10.1007/s10924-016-0787-2. DOI
McKeown P., Jones M.D. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020;1:1–22. doi: 10.3390/suschem1010001. DOI
Cristina A.M., Rosaria A., Sara F., Fausto G. AIP Conference Proceedings. AIP Publishing LLC; Melville, NY, USA: 2016. PLA Recycling by Hydrolysis at High Temperature; p. 020011.
Tsuji H., Daimon H., Fujie K. A New Strategy for Recycling and Preparation of Poly(l-lactic acid): Hydrolysis in the Melt. Biomacromolecules. 2003;4:835–840. doi: 10.1021/bm034060j. PubMed DOI
Li S.M., Rashkov I., Espartero J.L., Manolova N., Vert M. Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly (l-lactic acid) blocks. Macromolecules. 1996;29:57–62. doi: 10.1021/ma950531l. DOI
Piemonte V., Gironi F. Lactic Acid Production by Hydrolysis of Poly(Lactic Acid) in Aqueous Solutions: An Experimental and Kinetic Study. J. Polym. Environ. 2013;21:275–279. doi: 10.1007/s10924-012-0468-8. DOI
Majgaonkar P., Hanich R., Malz F., Brüll R. Chemical Recycling of Post-Consumer PLA Waste for Sustainable Production of Ethyl Lactate. Chem. Eng. J. 2021;423:129952. doi: 10.1016/j.cej.2021.129952. DOI
Grewell D., Srinivasan G., Cochran E. Depolymerization of Post-Consumer Polylactic Acid Products. J. Renew. Mater. 2014;2:157–165. doi: 10.7569/JRM.2014.634112. DOI
Lee S.H., Song W.S. Enzymatic Hydrolysis of Polylactic Acid Fiber. Appl. Biochem. Biotechnol. 2011;164:89–102. doi: 10.1007/s12010-010-9117-7. PubMed DOI
Payne J., McKeown P., Jones M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019;165:170–181. doi: 10.1016/j.polymdegradstab.2019.05.014. DOI
Hirao K., Ohara H. Synthesis and Recycle of Poly(L-lactic acid) using Microwave Irradiation. Polym. Rev. 2011;51:1–22. doi: 10.1080/15583724.2010.537799. DOI
Hirao K., Nakatsuchi Y., Ohara H. Alcoholysis of Poly(l-lactic acid) under microwave irradiation. Polym. Degrad. Stab. 2010;95:925–928. doi: 10.1016/j.polymdegradstab.2010.03.027. DOI
Song X., Liu F., Wang H., Wang C., Yu S., Liu S. Methanolysis of microbial polyester poly(3-hydroxybutyrate) catalyzed by Brønsted-Lewis acidic ionic liquids as a new method towards sustainable development. Polym. Degrad. Stab. 2018;147:215–221. doi: 10.1016/j.polymdegradstab.2017.12.009. DOI
Song X., Wang H., Liu F., Yu S. Kinetics and mechanism of monomeric product from methanolysis of poly (3-hydroxybutyrate) catalyzed by acidic functionalized ionic liquids. Polym. Degrad. Stab. 2016;130:22–29. doi: 10.1016/j.polymdegradstab.2016.05.023. DOI
Siddiqui M.N., Redhwi H.H., Al-Arfaj A.A., Achilias D.S. Chemical Recycling of PET in the Presence of the Bio-Based Polymers, PLA, PHB and PEF: A Review. Sustainability. 2021;13:10528. doi: 10.3390/su131910528. DOI
National Center for Biotechnology Information Methyl Lactate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-lactate.
National Center for Biotechnology Information Ethyl Lactate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-lactate.
National Center for Biotechnology Information Methyl 3-Hydroxybutyrate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-3-hydroxybutyrate.
National Center for Biotechnology Information Ethyl 3-Hydroxybutyrate. [(accessed on 30 October 2022)]; PubChem Compound Database. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ethyl-3-hydroxybutyrate.
Amarasekara A.S., Owereh O.S. Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal. Commun. 2010;11:1072–1075. doi: 10.1016/j.catcom.2010.05.012. DOI
Codari F., Lazzari S., Soos M., Storti G., Morbidelli M., Moscatelli D. Kinetics of the hydrolytic degradation of poly(lactic acid) Polym. Degrad. Stab. 2012;97:2460–2466. doi: 10.1016/j.polymdegradstab.2012.06.026. DOI
Hill C.A.S., Jones D., Strickland G., Cetin N.S. Kinetic and Mechanistic Aspects of the Acetylation of Wood with Acetic Anhydride. Holzforschung. 1998;52:623–629. doi: 10.1515/hfsg.1998.52.6.623. DOI