A Study of Isosorbide Synthesis from Sorbitol for Material Applications Using Isosorbide Dimethacrylate for Enhancement of Bio-Based Resins

. 2023 Sep 04 ; 15 (17) : . [epub] 20230904

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37688269

Bio-based cross-linkers can fulfill the role of enhancing additives in bio-sourced curable materials that do not compare with artificial resin precursors. Isosorbide dimethacrylate (ISDMMA) synthesized from isosorbide (ISD) can serve as a cross-linker from renewable sources. Isosorbide is a bicyclic carbon molecule produced by the reaction modification of sorbitol and the optimal conditions of this reaction were studied in this work. The reaction temperature of 130 °C and 1% w/w amount of para-toluenesulfonic acid (p-TSA) were determined as optimal and resulted in a yield of 81.9%. Isosorbide dimethacrylate was synthesized via nucleophilic substitution with methacrylic anhydride (MAA) with the conversion of 94.1% of anhydride. Formed ISD and ISDMMA were characterized via multiple verification methods (FT-IR, MS, 1H NMR, and XRD). Differential scanning calorimetry (DSC) proved the curability of ISDMMA (activation energy Ea of 146.2 kJ/mol) and the heat-resistant index of ISDMMA (Ts reaching value of 168.9) was determined using thermogravimetric analysis (TGA). Characterized ISDMMA was added to the precursor mixture containing methacrylated alkyl 3-hydroxybutyrates (methyl ester M3HBMMA and ethyl ester E3HBMMA), and the mixtures were cured via photo-initiation. The amount of ISDMMA cross-linker increased all measured parameters obtained via dynamic mechanical analysis (DMA), such as storage modulus (E') and glass transition temperature (Tg), and the calculated cross-linking densities (νe). Therefore, the enhancement influence of bio-based ISDMMA on resins from renewable sources was confirmed.

Zobrazit více v PubMed

Ternel J., Lopes A., Sauthier M., Buffe C., Wiatz V., Bricout H., Tilloy S., Monflier E. Reductive Hydroformylation of Isosorbide Diallyl Ether. Molecules. 2021;26:7322. doi: 10.3390/molecules26237322. PubMed DOI PMC

Marie B., Clark R., Gillece T., Ozkan S., Jaffe M., Ravindra N.M. Hydrophobically Modified Isosorbide Dimethacrylates as a Bisphenol-A (Bpa)-Free Dental Filling Material. Materials. 2021;14:2139. doi: 10.3390/ma14092139. PubMed DOI PMC

Fortunati E., Puglia D., Iannoni A., Terenzi A., Kenny J.M., Torre L. Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials. 2017;10:809. doi: 10.3390/ma10070809. PubMed DOI PMC

Duan Q., Chen Y., Yu L., Xie F. Chitosan–Gelatin Films: Plasticizers/Nanofillers Affect Chain Interactions and Material Properties in Different Ways. Polymers. 2022;14:3797. doi: 10.3390/polym14183797. PubMed DOI PMC

Gómez-López R.A., Montilla-Buitrago C.E., Villada-Castillo H.S., Sáenz-Galindo A., Avalos-Belmontes F., Serna-Cock L. Co-Plasticization of Starch with Glycerol and Isosorbide: Effect on Retrogradation in Thermo-Plastic Cassava Starch Films. Polymers. 2023;15:2104. doi: 10.3390/polym15092104. PubMed DOI PMC

Song Z., Xu F., Wang H., Zhang Z., Feng M., Zhang Y., Yang Z., Xie J., Su D., Li T. Design and Synthesis of Isosorbide-Based Copolycarbonates with High Transparency and Low Hygroscopicity for Optical Applications. J. Appl. Polym. Sci. 2023;140:e54009. doi: 10.1002/app.54009. DOI

Chen M., Pan X., Tian Y., Li J., Tan Q., Jin M., Ren J. Synthesis of Renewable Isosorbide-Based Polyurethane Acrylate Resins for Uv-Cured Coating with Adjustable Properties. Prog. Org. Coat. 2023;182:107695. doi: 10.1016/j.porgcoat.2023.107695. DOI

Hu C., Bourbigot S., Delaunay T., Collinet M., Marcille S., Fontaine G. Synthesis of Isosorbide Based Flame Retardants: Application for Polybutylene Succinate. Polym. Degrad. Stab. 2019;164:9–17. doi: 10.1016/j.polymdegradstab.2019.03.016. DOI

Mauldin T.C., Zammarano M., Gilman J.W., Shields J.R., Boday D.J. Synthesis and Characterization of Isosorbide-Based Polyphosphonates as Biobased Flame-Retardants. Polym. Chem. 2014;5:5139–5146. doi: 10.1039/C4PY00591K. DOI

Daniel Y.G., Howell B.A. Flame Retardant Properties of Isosorbide Bis-Phosphorus Esters. Polym. Degrad. Stab. 2017;140:25–31. doi: 10.1016/j.polymdegradstab.2017.04.005. DOI

Polaert I., Felix M.C., Fornasero M., Marcotte S., Buvat J.-C., Estel L. A Greener Process for Isosorbide Production: Kinetic Study of the Catalytic Dehydration of Pure Sorbitol under Microwave. Chem. Eng. J. 2013;222:228–239. doi: 10.1016/j.cej.2013.02.043. DOI

Redina E., Tkachenko O., Salmi T. Recent Advances in C5 And C6 Sugar Alcohol Synthesis By Hydrogenation of Monosaccharides and Cellulose Hydrolytic Hydrogenation over Non-Noble Metal Catalysts. Molecules. 2022;27:1353. doi: 10.3390/molecules27041353. PubMed DOI PMC

Jeong S., Jeon K.-J., Park Y.-K., Kim B.-J., Chung K.-H., Jung S.-C. Catalytic Properties of Microporous Zeolite Catalysts in Synthesis of Isosorbide from Sorbitol by Dehydration. Catalysts. 2020;10:148. doi: 10.3390/catal10020148. DOI

Weng Y., Qiu S., Ma L., Liu Q., Ding M., Zhang Q., Zhang Q., Wang T. Jet-Fuel Range Hydrocarbons from Biomass-Derived Sorbitol Over Ni-Hzsm-5/Sba-15 Catalyst. Catalysts. 2015;5:2147–2160. doi: 10.3390/catal5042147. DOI

Patiño Y., Faba L., Peláez R., Cueto J., Marín P., Díaz E., Ordóñez S. The Role of Ion Exchange Resins for Solving Biorefinery Catalytic Processes Challenges. Catalysts. 2023;13:999. doi: 10.3390/catal13060999. DOI

Brandi F., Al-Naji M. Sustainable Sorbitol Dehydration to Isosorbide Using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System. ChemSusChem. 2022;15:e202102525. doi: 10.1002/cssc.202102525. PubMed DOI PMC

Ginés-Molina M.J., Moreno-Tost R., Santamaría-González J., Maireles-Torres P. Dehydration of Sorbitol to Isosorbide over Sulfonic Acid Resins under Solvent-Free Conditions. Appl. Catal. A Gen. 2017;537:66–73. doi: 10.1016/j.apcata.2017.03.006. DOI

Durand M., Zhu Y., Molinier V., Féron T., Aubry J.-M. Solubilizing and Hydrotropic Properties of Isosorbide Monoalkyl- and Dimethyl-Ethers. J. Surfactants Deterg. 2009;12:371–378. doi: 10.1007/s11743-009-1128-4. DOI

Ochoa-Gómez J.R., Lorenzo-Ibarreta L., Diñeiro-García C., Gómez-Jiménez-Aberasturi O. Isosorbide Bis(Methyl Carbonate) Synthesis from Isosorbide and Dimethyl Carbonate: The Key Role of Dual Basic–Nucleophilic Catalysts. RSC Adv. 2020;10:18728–18739. doi: 10.1039/D0RA03552A. PubMed DOI PMC

Sadler J.M., Toulan F.R., Nguyen A.-P.T., Kayea R.V., Ziaee S., Palmese G.R., La Scala J.J. Isosorbide as the Structural Component of Bio-Based Unsaturated Polyesters for Use as Thermosetting Resins. Carbohydr. Polym. 2014;100:97–106. doi: 10.1016/j.carbpol.2013.04.036. PubMed DOI

Dussenne C., Delaunay T., Wiatz V., Wyart H., Suisse I., Sauthier M. Synthesis of Isosorbide: An Overview of Challenging Reactions. Green Chem. 2017;19:5332–5344. doi: 10.1039/C7GC01912B. DOI

Xiang J., Yang S., Zhang J., Wu J., Shao Y., Wang Z., Yang M. The Preparation of Sorbitol and Its Application in Polyurethane: A Review. Polym. Bull. 2022;79:2667–2684. doi: 10.1007/s00289-021-03639-4. DOI

Barszczewska-Rybarek I.M. A Guide Through the Dental Dimethacrylate Polymer Network Structural Characterization and Interpretation of Physico-Mechanical Properties. Materials. 2019;12:4057. doi: 10.3390/ma12244057. PubMed DOI PMC

Wu Y., Fei M., Qiu R., Liu W., Qiu J. A Review on Styrene Substitutes in Thermosets and Their Composites. Polymers. 2019;11:1815. doi: 10.3390/polym11111815. PubMed DOI PMC

Nguyen T.P., Kim B., Kim Y.-J., Lee S.-H., Shin S., Cho J.K. Synthesis of the Bio-Based Alternative to Bis-Gma and Its Application to Photo-Polymerizable Adhesives. Int. J. Adhes. Adhes. 2018;80:60–65. doi: 10.1016/j.ijadhadh.2017.10.003. DOI

Kang E.C., Ogura A., Kataoka S., Iwata T. Diol (Meth) Acrylate Compoundhaving Urethane Bond, Method Forproducing the Same, and Polymer Thereof. No. 7,649,105. U.S. Patent. 2010 January 19;

Sadler J.M., Nguyen A.-P.T., Toulan F.R., Szabo J.P., Palmese G.R., Scheck C., Lutgen S., La Scala J.J. Isosorbide-Methacrylate as a Bio-Based Low Viscosity Resin for High Performance Thermosetting Applications. J. Mater. Chem. A. 2013;1:12579–12586. doi: 10.1039/c3ta12918g. DOI

Xu Y., Hua G., Hakkarainen M., Odelius K. Isosorbide as Core Component for Tailoring Biobased Unsaturated Polyester Thermosets for a Wide Structure–Property Window. Biomacromolecules. 2018;19:3077–3085. doi: 10.1021/acs.biomac.8b00661. PubMed DOI

Shin S., Kim B.-C., Chang E., Cho J.K., Suh D.H. A Biobased Photocurable Binder for Composites with Transparency and Thermal Stability from Biomass-Derived Isosorbide. RSC Adv. 2014;4:6226–6231. doi: 10.1039/c3ra47287f. DOI

Fertier L., Ibert M., Buffe C., Saint-Loup R., Joly-Duhamel C., Robin J.-J., Giani O. New BiosourcedUv Curable Coatings Based On Isosorbide. Prog. Org. Coat. 2016;99:393–399. doi: 10.1016/j.porgcoat.2016.07.001. DOI

Vazifehasl Z., Hemmati S., Zamanloo M., Dizaj S.M. New series of dimethacrylate-based monomers on isosorbide as a dental material: Synthesis and characterization. Int. J. Compos. Mater. 2013;3:100–107.

Alli Y.A., Anuar H., Manshor M.R., Bankole O.M., Rahman N.A.A., Olatunde S.K., Omotola E.O., Oladoye P.O., Ejeromedoghene O., Suhr J., et al. Influence of Nanocomposites in Extrusion-Based 3D Printing: A Review. Hybrid Adv. 2023;3:100069. doi: 10.1016/j.hybadv.2023.100069. DOI

Kim S., Cho J.K., Shin S., Kim B.-J. Photo-Curing Behaviors of Bio-Based Isosorbide Dimethacrylate by Irradiation of Light-Emitting Diodes and the Physical Properties of Its Photo-Cured Materials. J. Appl. Polym. Sci. 2015;132:42726. doi: 10.1002/app.42726. DOI

Yadav S.K., Schmalbach K.M., Kinaci E., Stanzione J.F., Palmese G.R. Recent Advances In Plant-Based Vinyl Ester Resins and Reactive Diluents. Eur. Polym. J. 2018;98:199–215. doi: 10.1016/j.eurpolymj.2017.11.002. DOI

Wei G., Xu H., Chen L., Li Z., Liu R. Isosorbide-Based High Performance Uv-Curable Reactive Diluents. Prog. Org. Coat. 2019;126:162–167. doi: 10.1016/j.porgcoat.2018.10.028. DOI

Badía A., Barandiaran M.J., Leiza J.R. Biobased Alkali Soluble Resins Promoting Supramolecular Interactions in Sustainable Waterborne Pressure-Sensitive Adhesives: High Performance and Removability. Eur. Polym. J. 2021;144:110244. doi: 10.1016/j.eurpolymj.2020.110244. DOI

Lastovickova D.N., Toulan F.R., Mitchell J.R., VanOosten D., Clay A.M., Stanzione J.F., Palmese G.R., La Scala J.J. Resin, Cure, and Polymer Properties of Photopolymerizable Resins Containing Bio-Derived Isosorbide. J. Appl. Polym. Sci. 2021;138:app50574. doi: 10.1002/app.50574. DOI

George J., Prasana J.C., Muthu S., Kuruvilla T.K. Spectroscopic (FT-IR, FT Raman) and quantum mechanical study on isosorbide mononitrate by density functional theory. Int. J. Mater. Sci. 2017;12:268–278.

Battegazzore D., Bocchini S., Nicola G., Martini E., Frache A. Isosorbide, a Green Plasticizer for Thermoplastic Starch That Does Not Retrogradate. Carbohydr. Polym. 2015;119:78–84. doi: 10.1016/j.carbpol.2014.11.030. PubMed DOI

Erol I., Akbıyık H. Kinetic Parameters, Thermal Stability, Biological Activity, and Dielectric Properties of New Methacrylate-Based Copolymers Functionalized with Methylparaben. J. Polym. Res. 2022;29:93. doi: 10.1007/s10965-022-02950-6. DOI

Liu W., Xie T., Qiu R. Biobased Thermosets Prepared from Rigid Isosorbide and Flexible Soybean Oil Derivatives. ACS Sustain. Chem. Eng. 2017;5:774–783. doi: 10.1021/acssuschemeng.6b02117. DOI

Nouailhas H., Aouf C., Le Guerneve C., Caillol S., Boutevin B., Fulcrand H. Synthesis and Properties of Biobased Epoxy Resins. Part 1. Glycidylation of Flavonoids by Epichlorohydrin. J. Polym. Sci. Part A Polym. Chem. 2011;49:2261–2270. doi: 10.1002/pola.24659. DOI

Aouf C., Nouailhas H., Fache M., Caillol S., Boutevin B., Fulcrand H. Multi-Functionalization of Gallic Acid. Synthesis of a Novel Bio-Based Epoxy Resin. Eur. Polym. J. 2013;49:1185–1195. doi: 10.1016/j.eurpolymj.2012.11.025. DOI

Badía A., Agirre A., Barandiaran M.J., Leiza J.R. Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures of Isosorbide Methacrylate Monomers. Biomacromolecules. 2020;21:4522–4531. doi: 10.1021/acs.biomac.0c00474. PubMed DOI

Yang S., Sui B., Cui Y., Liu X., Sun J., Wang J. A Novel Dental Infiltration Resin Based on Isosorbide-Derived Dimethacrylate with High Biocompatibility, Hydrolysis Resistance, and Antibacterial Effect. Front. Bioeng. Biotechnol. 2022;10:1–14. doi: 10.3389/fbioe.2022.1049894. PubMed DOI PMC

Jašek V., Fučík J., Ivanová L., Veselý D., Figalla S., Mravcova L., Sedlacek P., Krajčovič J., Přikryl R. High-Pressure Depolymerization of Poly(lactic acid) (PLA) and Poly(3-hydroxybutyrate) (PHB) Using Bio-Based Solvents: A Way to Produce Alkyl Esters Which Can Be Modified to Polymerizable Monomers. Polymers. 2022;14:5236. doi: 10.3390/polym14235236. PubMed DOI PMC

Zhang C., Madbouly S.A., Kessler M.R. Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Appl. Mater. Interfaces. 2015;7:1226–1233. doi: 10.1021/am5071333. PubMed DOI

Çayli G., Gürbüz D., Çınarli A. Characterization and Polymerization of Epoxidized Methacrylated Castor Oil. Eur. J. Lipid Sci. Technol. 2019;121:1700189. doi: 10.1002/ejlt.201700189. DOI

Khan M.A., Masudul Hassan M., Drzal L.T. Effect of 2-Hydroxyethyl Methacrylate (Hema) on the Mechanical and Thermal Properties of Jute-Polycarbonate Composite. Compos. Part A Appl. Sci. Manuf. 2005;36:71–81. doi: 10.1016/S1359-835X(04)00178-2. DOI

Karasz F.E., MacKnight W.J. The Influence of Stereoregularity on the Glass Transition Temperatures of Vinyl Polymers. Macromolecules. 1968;1:537–540. doi: 10.1021/ma60006a017. DOI

Schneider H.A. Polymer Class Specificity of the Glass Temperature. Polymer. 2005;46:2230–2237. doi: 10.1016/j.polymer.2004.07.054. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...