Preparation and Optimisation of Cross-Linked Enzyme Aggregates Using Native Isolate White Rot Fungi Trametes versicolor and Fomes fomentarius for the Decolourisation of Synthetic Dyes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29295505
PubMed Central
PMC5800123
DOI
10.3390/ijerph15010023
PII: ijerph15010023
Knihovny.cz E-zdroje
- Klíčová slova
- CLEA, enzyme immobilization, laccase, white rot fungi,
- MeSH
- azosloučeniny chemie MeSH
- barva MeSH
- barvicí látky chemie MeSH
- bromthymolová modř chemie MeSH
- enzymy imobilizované chemie MeSH
- glutaraldehyd chemie MeSH
- katalýza MeSH
- lakasa chemie MeSH
- Polyporales enzymologie MeSH
- reagencia zkříženě vázaná chemie MeSH
- rosanilinová barviva chemie MeSH
- síran amonný chemie MeSH
- teplota MeSH
- Trametes enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- azosloučeniny MeSH
- barvicí látky MeSH
- bromthymolová modř MeSH
- enzymy imobilizované MeSH
- glutaraldehyd MeSH
- lakasa MeSH
- malachite green MeSH Prohlížeč
- methyl red MeSH Prohlížeč
- reagencia zkříženě vázaná MeSH
- rosanilinová barviva MeSH
- síran amonný MeSH
The key to obtaining an optimum performance of an enzyme is often a question of devising a suitable enzyme and optimisation of conditions for its immobilization. In this study, laccases from the native isolates of white rot fungi Fomes fomentarius and/or Trametes versicolor, obtained from Czech forests, were used. From these, cross-linked enzyme aggregates (CLEA) were prepared and characterised when the experimental conditions were optimized. Based on the optimization steps, saturated ammonium sulphate solution (75 wt.%) was used as the precipitating agent, and different concentrations of glutaraldehyde as a cross-linking agent were investigated. CLEA aggregates formed under the optimal conditions showed higher catalytic efficiency and stabilities (thermal, pH, and storage, against denaturation) as well as high reusability compared to free laccase for both fungal strains. The best concentration of glutaraldehyde seemed to be 50 mM and higher efficiency of cross-linking was observed at a low temperature 4 °C. An insignificant increase in optimum pH for CLEA laccases with respect to free laccases for both fungi was observed. The results show that the optimum temperature for both free laccase and CLEA laccase was 35 °C for T. versicolor and 30 °C for F. fomentarius. The CLEAs retained 80% of their initial activity for Trametes and 74% for Fomes after 70 days of cultivation. Prepared cross-linked enzyme aggregates were also investigated for their decolourisation activity on malachite green, bromothymol blue, and methyl red dyes. Immobilised CLEA laccase from Trametes versicolor showed 95% decolourisation potential and CLEA from Fomes fomentarius demonstrated 90% decolourisation efficiency within 10 h for all dyes used. These results suggest that these CLEAs have promising potential in dye decolourisation.
Zobrazit více v PubMed
Worrall J.J., Anagnost S.E., Zabel R.A. Comparison of wood decay among diverse lignicolous fungi. Mycologia. 1997;89:199–219. doi: 10.2307/3761073. DOI
Giardina P., Faraco V., Pezzella C., Piscitelli A., Vanhulle S., Sannia G. Laccases: A never-ending story. Cell. Mol. Life Sci. 2010;67:369–385. doi: 10.1007/s00018-009-0169-1. PubMed DOI PMC
Nyanhongo G.S., Gomes J., Gubitz G.M., Zvauya R., Read J., Steiner W. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta. Water Res. 2002;36:1449–1456. doi: 10.1016/S0043-1354(01)00365-7. PubMed DOI
Baldrian P. Fungal laccases-occurrence and properties. FEMS Microbiol. Rev. 2006;30:215–242. doi: 10.1111/j.1574-4976.2005.00010.x. PubMed DOI
Bertrand B., Martinez-Morales F., Trejo-Hernandez M.R. Fungal laccases: Induction and production. Rev. Mex. Ing. Quim. 2013;12:473–488.
Viswanath B., Rajesh B., Janardhan A., Kumar A.P., Narasimha G. Fungal laccases and their applications in bioremediation. Enzyme Res. 2014;2014:1–21. doi: 10.1155/2014/163242. PubMed DOI PMC
Bosso L., Cristinzio G. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Bio/Technol. 2014;13:387–427. doi: 10.1007/s11157-014-9342-6. DOI
McMullan G., Meehan C., Conneely A., Kirby N., Robinson T., Nigam P., Banat I.M., Marchant R., Smyth W.E. Microbial decolourisation and degradation of textile dyes. Appl. Microbiol. Biotechnol. 2001;56:81–87. doi: 10.1007/s002530000587. PubMed DOI
Maciel M.J.M., Silva A.C.E., Ribeiro H.C.T. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electron. J. Biotechnol. 2010;13:1–13.
Matijosyte I., Arends I., de Vries S., Sheldon R.A. Preparation and use of cross-linked enzyme aggregates (cleas) of laccases. J. Mol. Catal. B Enzym. 2010;62:142–148. doi: 10.1016/j.molcatb.2009.09.019. DOI
Talekar S., Joshi A., Joshi G., Kamat P., Haripurkar R., Kambale S. Parameters in preparation and characterization of cross linked enzyme aggregates (cleas) RSC Adv. 2013;3:12485–12511. doi: 10.1039/c3ra40818c. DOI
Bhattacharya A., Pletschke B.I. Magnetic cross-linked enzyme aggregates (cleas): A novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme Microb. Technol. 2014;61–62:17–27. doi: 10.1016/j.enzmictec.2014.04.009. PubMed DOI
Kumar V.V., Cabana H. Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals. Bioresour. Technol. 2016;200:81–89. doi: 10.1016/j.biortech.2015.09.100. PubMed DOI
Talekar S., Ghodake V., Ghotage T., Rathod P., Deshmukh P., Nadar S., Mulla M., Ladole M. Novel magnetic cross-linked enzyme aggregates (magnetic cleas) of alpha amylase. Bioresour. Technol. 2012;123:542–547. doi: 10.1016/j.biortech.2012.07.044. PubMed DOI
Mohamad N.R., Marzuki N.H.C., Buang N.A., Huyop F., Wahab R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015;29:205–220. doi: 10.1080/13102818.2015.1008192. PubMed DOI PMC
Sheldon R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007;349:1289–1307. doi: 10.1002/adsc.200700082. DOI
Sheldon R.A. Cross-linked enzyme aggregates as industrial biocatalysts. Org. Process Res. Dev. 2011;15:213–223. doi: 10.1021/op100289f. DOI
Sheldon R.A., van Pelt S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013;42:6223–6235. doi: 10.1039/C3CS60075K. PubMed DOI
Su Y.L., Xian H., Shi S.J., Zhang C.S., Manik S.M.N., Mao J.J., Zhang G., Liao W.H., Wang Q., Liu H.B. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk. BMC Biotechnol. 2016;16:1–9. doi: 10.1186/s12896-016-0311-8. PubMed DOI PMC
Kumar V.V., Sivanesan S., Cabana H. Magnetic cross-linked laccase aggregates—Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 2014;487:830–839. doi: 10.1016/j.scitotenv.2014.04.009. PubMed DOI
Chen L., Zou M., Hong F.F. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. Front. Microbiol. 2015;6:1–10. doi: 10.3389/fmicb.2015.01245. PubMed DOI PMC
Alqadami A.A., Naushad M., Abdalla M.A., Khan M.R., Alothman Z.A. Adsorptive removal of toxic dye using Fe3O4-TSC nanocomposite: Equilibrium, kinetic, and thermodynamic studies. J. Chem. Eng. Data. 2016;61:3806–3813. doi: 10.1021/acs.jced.6b00446. DOI
Daneshvar E., Vazirzadeh A., Niazi A., Kousha M., Naushad M., Bhatnagar A. Desorption of methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling. J. Clean. Prod. 2017;152:443–453. doi: 10.1016/j.jclepro.2017.03.119. DOI
Pathania D., Katwal R., Sharma G., Naushad M., Khan M.R., Al-Muhtaseb A.H. Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 2016;87:366–374. doi: 10.1016/j.ijbiomac.2016.02.073. PubMed DOI
Pathania D., Gupta D., Al-Muhtaseb A.H., Sharma G., Kumar A., Naushad M., Ahamad T., Alshehri S.M. Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZNS in presence of solar irradiation. J. Photochem. Photobiol. A Chem. 2016;329:61–68. doi: 10.1016/j.jphotochem.2016.06.019. DOI
Vrsanska M., Voberkova S. The ability to decolorize different synthetic dyes due to laccase production by trametes versicolor and fomes fomentarius; Proceedings of the International PhD Students Conference (Mendelnet 2016); Brno, Czech Republic. 9–10 November 2016; pp. 763–768.
Solcany V., Vrsanska M., Voberkova S. Optimization of the procedure for a ligninolytic enzymes isolation from the white rot fungi; Proceedings of the International phD Students Conference (Mendelnet 2016); Brno, Czech Republic. 9–10 November 2016; pp. 1011–1015.
Li S.P., Su Y.T., Liu Y.D., Sun L.F., Yu M.X., Wu Y.K. Preparation and characterization of cross-linked enzyme aggregates (cleas) of recombinant thermostable alkylsulfatase (sdsap) from pseudomonas sp s9. Process Biochem. 2016;51:2084–2089. doi: 10.1016/j.procbio.2016.09.013. DOI
Jiang D.S., Long S.Y., Huang J., Xiao H.Y., Zhou J.Y. Immobilization of pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 2005;25:15–23. doi: 10.1016/j.bej.2005.03.007. DOI
Kumar V.V., Kumar M.P.P., Thiruvenkadaravi K.V., Baskaralingam P., Kumar P.S., Sivanesan S. Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour. Technol. 2012;119:28–34. doi: 10.1016/j.biortech.2012.05.078. PubMed DOI
Bourbonnais R., Paice M.G. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;267:99–102. doi: 10.1016/0014-5793(90)80298-W. PubMed DOI
Wang F., Hu J.H., Guo C., Liu C.Z. Enhanced laccase production by trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresour. Technol. 2014;166:602–605. doi: 10.1016/j.biortech.2014.05.068. PubMed DOI
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Cristovao R.O., Silverio S.C., Tavares A.P.M., Brigida A.I.S., Loureiro J.M., Boaventura R.A.R., Macedo E.A., Coelho M.A.Z. Green coconut fiber: A novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization. World J. Microbiol. Biotechnol. 2012;28:2827–2838. doi: 10.1007/s11274-012-1092-4. PubMed DOI
Liu Y.Y., Zeng Z.T., Zeng G.M., Tang L., Pang Y., Li Z., Liu C., Lei X.X., Wu M.S., Ren P.Y., et al. Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 2012;115:21–26. doi: 10.1016/j.biortech.2011.11.015. PubMed DOI
Kunamneni A., Ghazi I., Camarero S., Ballesteros A., Plou F.J., Alcalde M. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochem. 2008;43:169–178. doi: 10.1016/j.procbio.2007.11.009. DOI
Davis S., Burns R.G. Covalent immobilization of laccase on activated carbon for phenolic effluent treatment. Appl. Microbiol. Biotechnol. 1992;37:474–479. doi: 10.1007/BF00180972. DOI
Sinirlioglu Z.A., Sinirlioglu D., Akbas F. Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from shewanella putrefaciens and using malachite green decolorization. Bioresour. Technol. 2013;146:807–811. doi: 10.1016/j.biortech.2013.08.032. PubMed DOI
Kastner M., Schulz T. Ion-exchange fast protein liquid chromatography-optimization of the purification of cytochrome p 450 from marmoset monkeys. J. Chromatogr. 1987;397:153–163. doi: 10.1016/S0021-9673(01)84998-0. PubMed DOI
Lopez-Gallego F., Betancor L., Hidalgo A., Alonso N., Fernandez-Lafuente R., Guisan J.M. Co-aggregation of enzymes and polyethyleneimine: A simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules. 2005;6:1839–1842. doi: 10.1021/bm050088e. PubMed DOI
Migneault I., Dartiguenave C., Bertrand M.J., Waldron K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37:790–796. PubMed
Cabana H., Jones J.P., Agathos S.N. Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J. Biotechnol. 2007;132:23–31. doi: 10.1016/j.jbiotec.2007.07.948. PubMed DOI
Li X.D., Wu J., Jia D.C., Wan Y.H., Yang N., Qiao M. Preparation of cross-linked glucoamylase aggregates immobilization by using dextrin and xanthan gum as protecting agents. Catalysts. 2016;6:1. doi: 10.3390/catal6010001. DOI
Broun G.B. Chemically aggregated enzymes. Methods Enzymol. 1976;44:263–280. PubMed
Munoz C., Guillen F., Martinez A.T., Martinez M.J. Laccase isoenzymes of pleurotus eryngii: Characterization, catalytic properties, and participation in activation of molecular oxygen and MN2+ oxidation. Appl. Environ. Microbiol. 1997;63:2166–2174. PubMed PMC
Wang S.S., Ning Y.J., Wang S.N., Zhang J., Zhang G.Q., Chen Q.J. Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus cerrena unicolor gsm-01. Int. J. Biol. Macromol. 2017;95:920–927. doi: 10.1016/j.ijbiomac.2016.10.079. PubMed DOI
Xu F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J. Biol. Chem. 1997;272:924–928. doi: 10.1074/jbc.272.2.924. PubMed DOI
Neifar M., Jaouani A., Ellouze-Ghorbel R., Ellouze-Chaabouni S. Purification, characterization and decolourization ability of fomes fomentarius laccase produced in solid medium. J. Mol. Catal. B Enzym. 2010;64:68–74. doi: 10.1016/j.molcatb.2010.02.004. DOI
Zhang B., Weng Y., Xu H., Mao Z. Enzyme immobilization for biodiesel production. Appl. Microbiol. Biotechnol. 2012;93:61–70. doi: 10.1007/s00253-011-3672-x. PubMed DOI
Wang F., Guo C., Yang L.R., Liu C.Z. Magnetic mesoporous silica nanoparticles: Fabrication and their laccase immobilization performance. Bioresour. Technol. 2010;101:8931–8935. doi: 10.1016/j.biortech.2010.06.115. PubMed DOI
Fernandez-Fernandez M., Sanroman M.A., Moldes D. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 2013;31:1808–1825. doi: 10.1016/j.biotechadv.2012.02.013. PubMed DOI
Zhu Y., Kaskel S., Shi J., Wage T., van Pee K.H. Immobilization of trametes versicolor laccase on magnetically separable mesoporous silica spheres. Chem. Mater. 2007;19:6408–6413. doi: 10.1021/cm071265g. DOI
Ba S., Arsenault A., Hassani T., Jones J.P., Cabana H. Laccase immobilization and insolubilization: From fundamentals to applications for the elimination of emerging contaminants in wastewater treatment. Crit. Rev. Biotechnol. 2013;33:404–418. doi: 10.3109/07388551.2012.725390. PubMed DOI
Wang M.F., Jia C.X., Qi W., Yu Q.X., Peng X., Su R.X., He Z.M. Porous-cleas of papain: Application to enzymatic hydrolysis of macromolecules. Bioresour. Technol. 2011;102:3541–3545. doi: 10.1016/j.biortech.2010.08.120. PubMed DOI
Rahmani K., Faramarzi M.A., Mahvi A.H., Gholami M., Esrafili A., Forootanfar H., Farzadkia M. Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads. Int. Biodeterior. Biodegrad. 2015;97:107–114. doi: 10.1016/j.ibiod.2014.10.018. DOI
Bayramoglu G., Yilmaz M., Arica M.Y. Preparation and characterization of epoxy-functionalized magnetic chitosan beads: Laccase immobilized for degradation of reactive dyes. Bioprocess Biosyst. Eng. 2010;33:439–448. doi: 10.1007/s00449-009-0345-6. PubMed DOI
Dai Y.R., Yin L.F., Niu J.F. Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ. Sci. Technol. 2011;45:10611–10618. doi: 10.1021/es203286e. PubMed DOI
Xu R., Tang R.Z., Zhou Q.J., Li F.T., Zhang B.R. Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes. Chem. Eng. J. 2015;262:88–95. doi: 10.1016/j.cej.2014.09.072. DOI
Wilson L., Illanes A., Pessela B.C.C., Abian O., Fernandez-Lafuente R., Guisan J.M. Encapsulation of crosslinked penicillin g acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnol. Bioeng. 2004;86:558–562. doi: 10.1002/bit.20107. PubMed DOI
Sangeetha K., Abraham T.E. Preparation and characterization of cross-linked enzyme aggregates (clea) of subtilisin for controlled release applications. Int. J. Biol. Macromol. 2008;43:314–319. doi: 10.1016/j.ijbiomac.2008.07.001. PubMed DOI
Fang H., Huang J., Ding L.Y., Li M.T., Chen Z. Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2009;24:42–47. doi: 10.1007/s11595-009-1042-7. DOI
Ling Z.R., Wang S.S., Zhu M.J., Ning Y.J., Wang S.N., Li B., Yang A.Z., Zhang G.Q., Zhao X.M. An extracellular laccase with potent dye decolorizing ability from white rot fungus trametes sp lac-01. Int. J. Biol. Macromol. 2015;81:785–793. doi: 10.1016/j.ijbiomac.2015.09.011. PubMed DOI
Sharma D., Goel G., Sud A., Chauhan R.S. A novel laccase from newly isolated cotylidia pannosa and its application in decolorization of synthetic dyes. Biocatal. Agric. Biotechnol. 2015;4:661–666. doi: 10.1016/j.bcab.2015.07.008. DOI
Peralta-Zamora P., Pereira C.M., Tiburtius E.R.L., Moraes S.G., Rosa M.A., Minussi R.C., Duran N. Decolorization of reactive dyes by immobilized laccase. Appl. Catal. B-Environ. 2003;42:131–144. doi: 10.1016/S0926-3373(02)00220-5. DOI
Rodríguez-Couto S. Decolouration of industrial metal-complex dyes in successive batches by active cultures of trametes pubescens. Biotechnol. Rep. 2014;4:156–160. doi: 10.1016/j.btre.2014.10.006. PubMed DOI PMC