Improvements in the Production of Isosorbide Monomethacrylate Using a Biobased Catalyst and Liquid-Liquid Extraction Isolation for Modifications of Oil-Based Resins
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38882143
PubMed Central
PMC11171093
DOI
10.1021/acsomega.4c01275
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The improved production of a polar curable monomer, isosorbide monomethacrylate (MISD), with methacrylic anhydride (MAAH) as an acyl donor, was performed. A sustainable and cheap catalyst, potassium acetate (CH3COOK), was used for a solvent-free synthesis, requiring only the equimolar amount of reagents (no excess). The production included the quantitative separation of the secondary product, methacrylic acid (MAA), preventing the reaction batch from the purification process (neutralization of MAA), and gaining a usable reagent. The synthesis resulted in a sufficient yield of MISD (61.8%) obtained by the liquid-liquid extraction process (LLE), which is a significant improvement in the process, avoiding the flash chromatography step in the isolation of MISD. The purity of synthesized and isolated MISD via the LLE was confirmed by 1H NMR, MS, and FTIR analyses. The thermal analyses, namely, DSC and TGA, were used to characterize the curability and thermal stability of MISD. The activation energy of MISD's curing was calculated (E a = 94.6 kJ/mol) along with the heat-resistant index (T s = 136.8). The polar character of isosorbide monomethacrylate was investigated in a mixture with epoxidized acrylated soybean oil (EASO). It was found that MISD is entirely soluble in EASO and can modify the rheological behavior and surface energy of EASO-based resins. The apparent viscosity of EASO at 30 °C (ηapp = 3413 mPa·s) decreased with the 50% content of MISD significantly (ηapp = 500 mPa·s), and the free surface energy value of EASO (γS = 42.2 mJ/m2) also increased with the 50% content of MISD (γS = 48.7 mJ/m2). The produced MISD can be successfully used as a diluent and the polarity modifier of curable oil-based resins.
Zobrazit více v PubMed
Voet V. S. D.; Strating T.; Schnelting G. H. M.; Dijkstra P.; Tietema M.; Xu J.; Woortman A. J. J.; Loos K.; Jager J.; Folkersma R. Biobased Acrylate Photocurable Resin Formulation For Stereolithography 3D Printing. ACS Omega 2018, 3 (2), 1403–1408. 10.1021/acsomega.7b01648. PubMed DOI PMC
Sutton J. T.; Rajan K.; Harper D. P.; Chmely S. C. Lignin-Containing Photoactive Resins For 3D Printing By Stereolithography. ACS Appl. Mater. Interfaces 2018, 10 (42), 36456–36463. 10.1021/acsami.8b13031. PubMed DOI
Stouten J.; Schnelting G. H. M.; Hul J.; Sijstermans N.; Janssen K.; Darikwa T.; Ye C.; Loos K.; Voet V. S. D.; Bernaerts K. V. Biobased Photopolymer Resin For 3D Printing Containing Dynamic Imine Bonds For Fast Reprocessability. ACS Appl. Mater. Interfaces 2023, 15 (22), 27110–27119. 10.1021/acsami.3c01669. PubMed DOI PMC
Fang L.; Zhou J.; Tao Y.; Wang Y.; Chen X.; Chen X.; Hou J.; Sun J.; Fang Q. Low Dielectric Fluorinated Polynorbornene With Good Thermostability And Transparency Derived From A Biobased Allylphenol (Eugenol). ACS Sustainable Chem. Eng. 2019, 7 (4), 4078–4086. 10.1021/acssuschemeng.8b05527. DOI
Bonamigo Moreira V.; Rintjema J.; Bravo F.; Kleij A. W.; Franco L.; Puiggalí J.; Alemán C.; Armelin E. Novel Biobased Epoxy Thermosets And Coatings From Poly(Limonene Carbonate) Oxide And Synthetic Hardeners. ACS Sustainable Chem. Eng. 2022, 10 (8), 2708–2719. 10.1021/acssuschemeng.1c07665. PubMed DOI PMC
Fang Z.; Nikafshar S.; Hegg E. L.; Nejad M. Biobased Divanillin As A Precursor For Formulating Biobased Epoxy Resin. ACS Sustainable Chem. Eng. 2020, 8 (24), 9095–9103. 10.1021/acssuschemeng.0c02351. DOI
Kocaman S.; Ahmetli G. A Study Of Coating Properties Of Biobased Modified Epoxy Resin With Different Hardeners. Prog. Org. Coat. 2016, 97, 53–64. 10.1016/j.porgcoat.2016.03.025. DOI
Li C.; Fan H.; Aziz T.; Bittencourt C.; Wu L.; Wang D.-Y.; Dubois P. Biobased Epoxy Resin With Low Electrical Permissivity And Flame Retardancy: From Environmental Friendly High-Throughput Synthesis To Properties. ACS Sustainable Chem. Eng. 2018, 6 (7), 8856–8867. 10.1021/acssuschemeng.8b01212. DOI
Di Mauro C.; Malburet S.; Genua A.; Graillot A.; Mija A. Sustainable Series Of New Epoxidized Vegetable Oil-Based Thermosets With Chemical Recycling Properties. Biomacromolecules 2020, 21 (9), 3923–3935. 10.1021/acs.biomac.0c01059. PubMed DOI
Li C.; Xiao H.; Wang X.; Zhao T. Development Of Green Waterborne Uv-Curable Vegetable Oil-Based Urethane Acrylate Pigment Prints Adhesive: Preparation And Application. Journal of Cleaner Production 2018, 180, 272–279. 10.1016/j.jclepro.2018.01.193. DOI
Balanuca B.; Lungu A.; Hanganu A.-M.; Stan L. R.; Vasile E.; Iovu H. Hybrid Nanocomposites Based On Poss And Networks Of Methacrylated Camelina Oil And Various Peg Derivatives. European Journal of Lipid Science and Technology 2014, 116 (4), 458–469. 10.1002/ejlt.201300370. DOI
Li J.; Zhang Z.; Zhang Y.; Sun F.; Wang D.; Wang H.; Jin Z. Synergistic Effect Of Lignin And Ethylene Glycol Crosslinked Epoxy Resin On Enhancing Thermal, Mechanical And Shape Memory Performance. Int. J. Biol. Macromol. 2021, 192, 516–524. 10.1016/j.ijbiomac.2021.10.035. PubMed DOI
Bakare F. O.; Skrifvars M.; Åkesson D.; Wang Y.; Afshar S. J.; Esmaeili N. Synthesis And Characterization Of Bio-Based Thermosetting Resins From Lactic Acid And Glycerol. J. Appl. Polym. Sci. 2014, 131 (13), 4048810.1002/app.40488. DOI
Schmidt S.; Gatti F. J.; Luitz M.; Ritter B. S.; Bruchmann B.; Mülhaupt R. Erythritol Dicarbonate As Intermediate For Solvent- And Isocyanate-Free Tailoring Of Bio-Based Polyhydroxyurethane Thermoplastics And Thermoplastic Elastomers. Macromolecules 2017, 50 (6), 2296–2303. 10.1021/acs.macromol.6b02787. DOI
Schmidt S.; Ritter B. S.; Kratzert D.; Bruchmann B.; Mülhaupt R. Isocyanate-Free Route To Poly(Carbohydrate–Urethane) Thermosets And 100% Bio-Based Coatings Derived From Glycerol Feedstock. Macromolecules 2016, 49 (19), 7268–7276. 10.1021/acs.macromol.6b01485. DOI
Dai M.; Tao Y.; Fang L.; Wang C.; Sun J.; Fang Q. Low Dielectric Polymers With High Thermostability Derived From Biobased Vanillin. ACS Sustainable Chem. Eng. 2020, 8 (39), 15013–15019. 10.1021/acssuschemeng.0c05503. DOI
Karakurt I.; Aydoğdu A.; Çıkrıkcı S.; Orozco J.; Lin L.. Stereolithography (Sla) 3D Printing Of Ascorbic Acid Loaded Hydrogels: A Controlled Release Study. Int. J. Pharm. 2020, 584. 11942810.1016/j.ijpharm.2020.119428. PubMed DOI
Rooney T. R.; Monyatsi O.; Hutchinson R. A. Polyester Macromonomer Syntheses And Radical Copolymerization Kinetics With Styrene. Macromolecules 2017, 50 (3), 784–795. 10.1021/acs.macromol.6b02297. DOI
Hevus I.; Ricapito N. G.; Tymoshenko S.; Raja S. N.; Webster D. C. Biobased Carboxylic Acids As Components Of Sustainable And High-Performance Coating Systems. ACS Sustainable Chem. Eng. 2020, 8 (14), 5750–5762. 10.1021/acssuschemeng.0c01046. DOI
Yu A. Z.; Sahouani J. M.; Webster D. C. Highly Functional Methacrylated Bio-Based Resins For Uv-Curable Coatings. Prog. Org. Coat. 2018, 122, 219–228. 10.1016/j.porgcoat.2018.05.035. DOI
Wan J.; Gan B.; Li C.; Molina-Aldareguia J.; Li Z.; Wang X.; Wang D.-Y. A Novel Biobased Epoxy Resin With High Mechanical Stiffness And Low Flammability: Synthesis, Characterization And Properties. Journal of Materials Chemistry A 2015, 3 (43), 21907–21921. 10.1039/C5TA02939B. DOI
Hofmann M. A.; Shahid A. T.; Garrido M.; Ferreira M. J.; Correia J. R.; Bordado J. C. Biobased Thermosetting Polyester Resin For High-Performance Applications. ACS Sustainable Chem. Eng. 2022, 10 (11), 3442–3454. 10.1021/acssuschemeng.1c06969. DOI
Lemesle C.; Bellayer S.; Duquesne S.; Schuller A.-S.; Thomas L.; Casetta M.; Jimenez M.. Self-Stratified Bio-Based Coatings: Formulation And Elucidation Of Critical Parameters Governing Stratification. Appl. Surf. Sci. 2021, 536. 14768710.1016/j.apsusc.2020.147687. DOI
Pucci M. F.; Liotier P.-J.; Drapier S. Tensiometric Method To Reliably Assess Wetting Properties Of Single Fibers With Resins: Validation On Cellulosic Reinforcements For Composites. Colloids Surf., A 2017, 512, 26–33. 10.1016/j.colsurfa.2016.09.047. DOI
Gumowska A.; Kowaluk G.. Physical And Mechanical Properties Of High-Density Fiberboard Bonded With Bio-Based Adhesives. Forests 2023, 14 ( (1), ). DOI: 84.10.3390/f14010084. DOI
Mokhothu T. H.; John M. J. Bio-Based Coatings For Reducing Water Sorption In Natural Fibre Reinforced Composites. Sci. Rep. 2017, 7 (1), 13335.10.1038/s41598-017-13859-2. PubMed DOI PMC
Saxon D. J.; Luke A. M.; Sajjad H.; Tolman W. B.; Reineke T. M.. Next-Generation Polymers: Isosorbide As A Renewable Alternative. Prog. Polym. Sci. 2020, 101. 10119610.1016/j.progpolymsci.2019.101196. DOI
Zhang Y.; Chen T.; Zhang G.; Wang G.; Zhang H. Efficient Production Of Isosorbide From Sorbitol Dehydration Over Mesoporous Carbon-Based Acid Catalyst. Applied Catalysis A: General 2019, 575, 38–47. 10.1016/j.apcata.2019.01.014. DOI
Xi J.; Zhang Y.; Ding D.; Xia Q.; Wang J.; Liu X.; Lu G.; Wang Y. Catalytic Production Of Isosorbide From Cellulose Over Mesoporous Niobium Phosphate-Based Heterogeneous Catalysts Via A Sequential Process. Applied Catalysis A: General 2014, 469, 108–115. 10.1016/j.apcata.2013.08.049. DOI
Deng T.; He X.; Liu H. Insights Into The Active Acid Sites For Isosorbide Synthesis From Renewable Sorbitol And Cellulose On Solid Acid Catalysts. Chemical Research in Chinese Universities 2022, 38 (1), 257–264. 10.1007/s40242-022-1499-x. DOI
Pan X.; Tian Y.; Li J.; Tan Q.; Ren J.. Bio-Based Polyurethane Reactive Hot-Melt Adhesives Derived From Isosorbide-Based Polyester Polyols With Different Carbon Chain Lengths. Chem. Eng. Sci. 2022, 264. 11815210.1016/j.ces.2022.118152. DOI
Kielty P.; Smith D. A.; Cannon P.; Carty M. P.; Kennedy M.; McArdle P.; Singer R. J.; Aldabbagh F. Selective Methylmagnesium Chloride Mediated Acetylations Of Isosorbide: A Route To Powerful Nitric Oxide Donor Furoxans. Org. Lett. 2018, 20 (10), 3025–3029. 10.1021/acs.orglett.8b01060. PubMed DOI
Carolan C. G.; Dillon G. P.; Gaynor J. M.; Reidy S.; Ryder S. A.; Khan D.; Marquez J. F.; Gilmer J. F. Isosorbide-2-Carbamate Esters: Potent And Selective Butyrylcholinesterase Inhibitors. J. Med. Chem. 2008, 51 (20), 6400–6409. 10.1021/jm800564y. PubMed DOI
Durand M.; Molinier V.; Féron T.; Aubry J.-M. Isosorbide Mono- And Di-Alkyl Ethers, A New Class Of Sustainable Coalescents For Water-Borne Paints. Prog. Org. Coat. 2010, 69 (4), 344–351. 10.1016/j.porgcoat.2010.07.007. DOI
Liu W.; Xie T.; Qiu R. Biobased Thermosets Prepared From Rigid Isosorbide And Flexible Soybean Oil Derivatives. ACS Sustainable Chem. Eng. 2017, 5 (1), 774–783. 10.1021/acssuschemeng.6b02117. DOI
Gallagher J. J.; Hillmyer M. A.; Reineke T. M. Isosorbide-Based Polymethacrylates. ACS Sustainable Chem. Eng. 2015, 3 (4), 662–667. 10.1021/sc5008362. DOI
Adjaoud A.; Puchot L.; Verge P. High- T G And Degradable Isosorbide-Based Polybenzoxazine Vitrimer. ACS Sustainable Chem. Eng. 2022, 10 (1), 594–602. 10.1021/acssuschemeng.1c07093. DOI
Park S.-A.; Choi J.; Ju S.; Jegal J.; Lee K. M.; Hwang S. Y.; Oh D. X.; Park J. Copolycarbonates Of Bio-Based Rigid Isosorbide And Flexible 1,4-Cyclohexanedimethanol: Merits Over Bisphenol-A Based Polycarbonates. Polymer 2017, 116, 153–159. 10.1016/j.polymer.2017.03.077. DOI
Xu Y.; Hua G.; Hakkarainen M.; Odelius K. Isosorbide As Core Component For Tailoring Biobased Unsaturated Polyester Thermosets For A Wide Structure–Property Window. Biomacromolecules 2018, 19 (7), 3077–3085. 10.1021/acs.biomac.8b00661. PubMed DOI
Sadler J. M.; Nguyen A. -P. T.; Toulan F. R.; Szabo J. P.; Palmese G. R.; Scheck C.; Lutgen S.; La Scala J. J.. Isosorbide-Methacrylate As A Bio-Based Low Viscosity Resin For High Performance Thermosetting Applications. Journal of Materials Chemistry A 2013, 1 ( (40), ). DOI: 12579.10.1039/c3ta12918g. DOI
Łukaszczyk J.; Janicki B.; Kożuch J.; Wojdyła H. Synthesis And Characterization Of Low Viscosity Dimethacrylic Resin Based On Isosorbide. J. Appl. Polym. Sci. 2013, 130 (4), 2514–2522. 10.1002/app.39435. DOI
Veith C.; Diot-Néant F.; Miller S. A.; Allais F. Synthesis And Polymerization Of Bio-Based Acrylates: A Review. Polym. Chem. 2020, 11 (47), 7452–7470. 10.1039/D0PY01222J. DOI
Veregin R. P.; Sacripante G. G. U.S. Patent 9983496. U.S. Patent and Trademark Office: Washington, DC, 2018.
Badía A.; Barandiaran M. J.; Leiza J. R.. Biobased Alkali Soluble Resins Promoting Supramolecular Interactions In Sustainable Waterborne Pressure-Sensitive Adhesives: High Performance And Removability. Eur. Polym. J. 2021, 144. 11024410.1016/j.eurpolymj.2020.110244. DOI
Laanesoo S.; Bonjour O.; Parve J.; Parve O.; Matt L.; Vares L.; Jannasch P. Poly(Alkanoyl Isosorbide Methacrylate)S: From Amorphous To Semicrystalline And Liquid Crystalline Biobased Materials. Biomacromolecules 2021, 22 (2), 640–648. 10.1021/acs.biomac.0c01474. PubMed DOI PMC
Yu D.; Huang H.; Wang Y.; Liu T.; Feng T.; Han H.. Synthetic method for isosorbide acrylic ester and application of isosorbide acrylic ester in improving thermal performance of polymer. CN Patent CN105198892A, 2015.
Matt L.; Parve J.; Parve O.; Pehk T.; Pham T. H.; Liblikas I.; Vares L.; Jannasch P. Enzymatic Synthesis And Polymerization Of Isosorbide-Based Monomethacrylates For High- T G Plastics. ACS Sustainable Chem. Eng. 2018, 6 (12), 17382–17390. 10.1021/acssuschemeng.8b05074. DOI
Badía A.; Agirre A.; Barandiaran M. J.; Leiza J. R. Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures Of Isosorbide Methacrylate Monomers. Biomacromolecules 2020, 21 (11), 4522–4531. 10.1021/acs.biomac.0c00474. PubMed DOI
Nonque F.; Sahut A.; Jacquel N.; Saint-Loup R.; Woisel P.; Potier J. Isosorbide Monoacrylate: A Sustainable Monomer For The Production Of Fully Bio-Based Polyacrylates And Thermosets. Polym. Chem. 2020, 11 (43), 6903–6909. 10.1039/D0PY00957A. DOI
Auerbach S. S.; Mahler J.; Travlos G. S.; Irwin R. D. A Comparative 90-Day Toxicity Study Of Allyl Acetate, Allyl Alcohol And Acrolein. Toxicology 2008, 253 (1–3), 79–88. 10.1016/j.tox.2008.08.014. PubMed DOI PMC
Kurata S.; Morishita K.; Kawase T.; Umemoto K. Cytotoxic Effects Of Acrylic Acid, Methacrylic Acid, Their Corresponding Saturated Carboxylic Acids, Hema, And Hydroquinone On Fibroblasts Derived From Human Pulp. Dental Materials Journal 2012, 31 (2), 219–225. 10.4012/dmj.2011-085. PubMed DOI
Wang F.; Allen D.; Tian S.; Oler E.; Gautam V.; Greiner R.; Metz T. O.; Wishart D. S. Cfm-Id 4.0 – A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022, 50 (W1), W165–W174. 10.1093/nar/gkac383. PubMed DOI PMC
Hansen C. M.Hansen solubility parameters: a user’s handbook; CRC Press, 2007.
Giap S. G. E. The hidden property of Arrhenius-type relationship: viscosity as a function of temperature. J. Phys. Sci. 2010, 21 (1), 29–39.
Hong C.; Wang X.; Pan Z.; Zhang Y. Curing Thermodynamics And Kinetics Of Unsaturated Polyester Resin With Different Chain Length Of Saturated Aliphatic Binary Carboxylic Acid. J. Therm. Anal. Calorim. 2015, 122 (1), 427–436. 10.1007/s10973-015-4682-1. DOI
Jašek V.; Melčová V.; Figalla S.; Fučík J.; Menčík P.; Přikryl R. Study Of The Thermomechanical Properties Of Photocured Resins Based On Curable Monomers From Pla And Phb For Sla 3D Printing. ACS Applied Polymer Materials 2023, 5 (12), 9909–9917. 10.1021/acsapm.3c01730. DOI
Nouailhas H.; Aouf C.; Le Guerneve C.; Caillol S.; Boutevin B.; Fulcrand H. Synthesis And Properties Of Biobased Epoxy Resins. Part 1. Glycidylation Of Flavonoids By Epichlorohydrin. J. Polym. Sci., Part A: Polym. Chem. 2011, 49 (10), 2261–2270. 10.1002/pola.24659. DOI
Date A. A.; Srivastava D.; Nagarsenker M. S.; Mulherkar R.; Panicker L.; Aswal V.; Hassan P. A.; Steiniger F.; Thamm J.; Fahr A. Lecithin-Based Novel Cationic Nanocarriers (Leciplex) I: Fabrication. Characterization And Evaluation. Nanomedicine 2011, 6 (8), 1309–1325. 10.2217/nnm.11.38. PubMed DOI
Wang C.; Yu X.; Smith L.; Wang G.; Cheng H.; Zhang S. Interfacial Properties Of Bamboo Fiber-Reinforced High-Density Polyethylene Composites By Different Methods For Adding Nano Calcium Carbonate. Polymers 2017, 9 (11), 587.10.3390/polym9110587. PubMed DOI PMC
Jašek V.; Fučík J.; Krhut J.; Mravcova L.; Figalla S.; Přikryl R. A Study of Isosorbide Synthesis from Sorbitol for Material Applications Using Isosorbide Dimethacrylate for Enhancement of Bio-Based Resins. Polymers 2023, 15, 3640.10.3390/polym15173640. PubMed DOI PMC
Verisqa F.; Cha J.-R.; Nguyen L.; Kim H.-W.; Knowles J. C. Digital Light Processing 3D Printing Of Gyroid Scaffold With Isosorbide-Based Photopolymer For Bone Tissue Engineering. Biomolecules 2022, 12 (11), 1692.10.3390/biom12111692. PubMed DOI PMC