Photocurable Oil-Based Thermosets Containing Modifiers from Renewable Sources for Coating Applications

. 2024 Dec 11 ; 4 (6) : 527-539. [epub] 20241028

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39679053

Coating materials involving nature-inspired compounds or renewable sources have recently attracted vast attention. This article presents the synthesis of modified rapeseed oil (MRO) as a precursor possessing high biobased carbon content suitable for cured thermosets formation. Two reactive diluents based on renewable sources, methacrylated methyl 3-hydroxybutyrate (M3HBMMA) and ethyl 3-hydroxybutyrate (E3HBMMA), were successfully synthesized. Lastly, isosorbide monomethacrylate (MISD) was suggested and produced as a polarity modifier miscible with modified curable oil systems capable of increasing the thermoset surface energy. All synthesized compounds were structurally analyzed via NMR, ESI-MS, and FTIR. The characterized reactive substances were coated on paper, stainless steel, and beech wood to investigate their suitability for forming thin layers. The paper dip coating verified the reactive diluting properties of M3HBMMA, resulting in the average formed coating deviation decrease (87.5% for undiluted MRO and 28.0% for 50 wt % M3HBMMA containing MRO). Also, the additional cured thermoset weight decreased from 350 to 69 wt % for the same systems. The standardized bend test applied on the coated stainless steel specimens revealed the thermoset's flexibility and adhesion increase from a 12 ± 2° bending angle of 100% pure MRO to a 121 ± 2° bending angle measured for 40 wt % E3HBMMA containing the MRO-based thermoset. The coated beech wood samples underwent the standardized cross-hatch test investigating the substrate's coating quality. The 100% MRO reached a level 1 rating (second worst), while the system with 40 wt % of MISD obtained a level 5 rating (the best).

Zobrazit více v PubMed

Liang B.; Chen J.; Guo X.; Yang Z.; Yuan T. Bio-Based Organic-Inorganic Hybrid Uv-Curable Hydrophobic Coating Prepared From Epoxidized Vegetable Oils. Industrial Crops and Products 2021, 163, 113331–113342. 10.1016/j.indcrop.2021.113331. DOI

Cui Y.; Yang J.; Lei D.; Su J. 3D Printing Of A Dual-Curing Resin With Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020, 59 (25), 11381–11388. 10.1021/acs.iecr.0c01507. DOI

Barkane A.; Platnieks O.; Jurinovs M.; Kasetaite S.; Ostrauskaite J.; Gaidukovs S.; Habibi Y. Uv-Light Curing Of 3D Printing Inks From Vegetable Oils For Stereolithography. Polymers 2021, 13 (8), 1195–1211. 10.3390/polym13081195. PubMed DOI PMC

Centeno-Pedrazo A.; Perez-Arce J.; Freixa Z.; Ortiz P.; Garcia-Suarez E. J. Catalytic Systems For The Effective Fixation Of Co 2 Into Epoxidized Vegetable Oils And Derivates To Obtain Biobased Cyclic Carbonates As Precursors For Greener Polymers. Ind. Eng. Chem. Res. 2023, 62 (8), 3428–3443. 10.1021/acs.iecr.2c03747. DOI

Vazquez-Martel C.; Becker L.; Liebig W. V.; Elsner P.; Blasco E. Vegetable Oils As Sustainable Inks For Additive Manufacturing: A Comparative Study. ACS Sustainable Chem. Eng. 2021, 9 (49), 16840–16848. 10.1021/acssuschemeng.1c06784. DOI

Rajput C. V.; Sastry N. V.; Chikhaliya N. P. Vegetable Oils Based Precursors: Modifications And Scope For Futuristic Bio-Based Polymeric Materials. Journal of Polymer Research 2023, 30 (4), 159–194. 10.1007/s10965-023-03534-8. DOI

Jalil M. J.; Yamin A. F. M.; Azmi I. S.; Jamaludin S. K.; Daud A. R. M. Mechanism And Kinetics Study In Homogenous Epoxidation Of Vegetable Oil. Int. J.Eng. Technol. 2018, 7 (4.42), 124–126. 10.14419/ijet.v7i4.42.25693. DOI

Lewandowski G.; Musik M.; Malarczyk-Matusiak K.; Sałaciński Ł.; Milchert E. Epoxidation Of Vegetable Oils, Unsaturated Fatty Acids And Fatty Acid Esters: A Review. Mini-Reviews in Organic Chemistry 2020, 17 (4), 412–422. 10.2174/1570193X16666190430154319. DOI

Di Mauro C.; Malburet S.; Genua A.; Graillot A.; Mija A. Sustainable Series Of New Epoxidized Vegetable Oil-Based Thermosets With Chemical Recycling Properties. Biomacromolecules 2020, 21 (9), 3923–3935. 10.1021/acs.biomac.0c01059. PubMed DOI

Turco R.; Tesser R.; Russo V.; Cogliano T.; Di Serio M.; Santacesaria E. Epoxidation Of Linseed Oil By Performic Acid Produced In Situ. Ind. Eng. Chem. Res. 2021, 60 (46), 16607–16618. 10.1021/acs.iecr.1c02212. DOI

Jalil M. J.; Hadi A.; Azmi I. S. Catalytic Epoxidation Of Palm Oleic Acid Using In Situ Generated Performic Acid–Optimization And Kinetic Studies. Mater. Chem. Phys. 2021, 270, 124754–124761. 10.1016/j.matchemphys.2021.124754. DOI

Hernández-Cruz M. C.; Meza-Gordillo R.; Domínguez Z.; Rosales-Quintero A.; Abud-Archila M.; Ayora-Talavera T.; Villalobos-Maldonado J. J. Optimization And Characterization Of In Situ Epoxidation Of Chicken Fat With Peracetic Acid. Fuel 2021, 285, 11912710.1016/j.fuel.2020.119127. DOI

Addli M. A.; Azmi I. S.; Fadzil A. F. M.; Jalil M. J. In Situ Epoxidation Of Castor Oil Via Peracetic Acid Mechanism With Applied Synergistic Of Sulfate-Impregnated Zeolite Sm–5 As Catalyst. Polym. Bull. 2024, 81 (9), 8105–8117. 10.1007/s00289-023-05085-w. DOI

Jašek V.; Fučík J.; Melcova V.; Figalla S.; Mravcova L.; Krobot Š.; Přikryl R. Synthesis Of Bio-Based Thermoset Mixture Composed Of Methacrylated Rapeseed Oil And Methacrylated Methyl Lactate: One-Pot Synthesis Using Formed Methacrylic Acid As A Continual Reactant. Polymers 2023, 15 (8), 1811–1832. 10.3390/polym15081811. PubMed DOI PMC

Reyhani A.; McKenzie T. G.; Fu Q.; Qiao G. G. Fenton-Chemistry-Mediated Radical Polymerization. Macromol. Rapid Commun. 2019, 40 (18), 1900220–1900236. 10.1002/marc.201900220. PubMed DOI

Ho Y. H.; Parthiban A.; Thian M. C.; Ban Z. H.; Siwayanan P.; Lai J.-Y. Acrylated Biopolymers Derived Via Epoxidation And Subsequent Acrylation Of Vegetable Oils. Int. J. Polym. Sci. 2022, 2022, 1–12. 10.1155/2022/6210128. DOI

Guit J.; Tavares M. B. L.; Hul J.; Ye C.; Loos K.; Jager J.; Folkersma R.; Voet V. S. D. Photopolymer Resins With Biobased Methacrylates Based On Soybean Oil For Stereolithography. ACS Applied Polymer Materials 2020, 2 (2), 949–957. 10.1021/acsapm.9b01143. DOI

Li P.; Ma S.; Dai J.; Liu X.; Jiang Y.; Wang S.; Wei J.; Chen J.; Zhu J. Itaconic Acid As A Green Alternative To Acrylic Acid For Producing A Soybean Oil-Based Thermoset: Synthesis And Properties. ACS Sustainable Chem. Eng. 2017, 5 (1), 1228–1236. 10.1021/acssuschemeng.6b02654. DOI

Decostanzi M.; Lomège J.; Ecochard Y.; Mora A.-S.; Negrell C.; Caillol S. Fatty Acid-Based Cross-Linkable Polymethacrylate Coatings. Prog. Org. Coat. 2018, 124, 147–157. 10.1016/j.porgcoat.2018.08.001. DOI

Silva J. A. C.; Dever S.; Siccardi A.; Snelling D.; Al Qabani I.; Thompson S.; Goldberg K.; Baudoin G.; Martins Lacerda T.; Quirino R. L. Itaconic Anhydride As A Bio-Based Compatibilizer For A Tung Oil-Based Thermosetting Resin Reinforced With Sand And Algae Biomass. Coatings 2023, 13 (7), 1188–1203. 10.3390/coatings13071188. DOI

Thomas J.; Patil R. Enabling Green Manufacture Of Polymer Products Via Vegetable Oil Epoxides. Ind. Eng. Chem. Res. 2023, 62 (4), 1725–1735. 10.1021/acs.iecr.2c03867. DOI

Liu K.; Madbouly S. A.; Kessler M. R. Biorenewable Thermosetting Copolymer Based On Soybean Oil And Eugenol. Eur. Polym. J. 2015, 69, 16–28. 10.1016/j.eurpolymj.2015.05.021. DOI

Athawale V. D.; Nimbalkar R. V. Waterborne Coatings Based On Renewable Oil Resources: An Overview. J. Am. Oil Chem. Soc. 2011, 88 (2), 159–185. 10.1007/s11746-010-1668-9. DOI

Mousaa I. M.; Radi H. Photosynthesis Of Anticorrosive Protective Coatings For Steel Substrate Based On Acrylated Oil Containing Unsaturated Amino Acid Compounds. Prog. Org. Coat. 2017, 107, 18–28. 10.1016/j.porgcoat.2017.03.006. DOI

Zulkifli F.; Ali N.; Yusof M. S. M.; Isa M. I. N.; Yabuki A.; Wan Nik W. B. Henna Leaves Extract As A Corrosion Inhibitor In Acrylic Resin Coating. Prog. Org. Coat. 2017, 105, 310–319. 10.1016/j.porgcoat.2017.01.017. DOI

Uzoma P. C.; Liu F.; Xu L.; Zhang Z.; Han E.-H.; Ke W.; Arukalam I. O. Superhydrophobicity, Conductivity And Anticorrosion Of Robust Siloxane-Acrylic Coatings Modified With Graphene Nanosheets. Prog. Org. Coat. 2019, 127, 239–251. 10.1016/j.porgcoat.2018.11.018. DOI

Ifijen I. H.; Maliki M.; Odiachi I. J.; Aghedo O. N.; Ohiocheoya E. B. Review On Solvents Based Alkyd Resins And Water Borne Alkyd Resins: Impacts Of Modification On Their Coating Properties. Chemistry Africa 2022, 5 (2), 211–225. 10.1007/s42250-022-00318-3. DOI

Radoman T. S.; Dzunuzovic J. V.; Trifkovic K. T.; Palija T.; Marinkovic A. D.; Bugarski B.; Dzunuzovic E. S. Effect Of Surface Modified Tio2 Nanoparticles On Thermal, Barrier And Mechanical Properties Of Long Oil Alkyd Resin-Based Coatings. Express Polymer Letters 2015, 9 (10), 916–931. 10.3144/expresspolymlett.2015.83. DOI

Kim Y. S.; Cho H. J.; Lee H.; Kim W. Y.; Jung Y. C.; Lee S. Y. Development Of A Multi-Functional Acrylic Urethane Coating With High Hardness And Low Surface Energy. Prog. Org. Coat. 2020, 147, 10574810.1016/j.porgcoat.2020.105748. DOI

Paraskar P. M.; Prabhudesai M. S.; Hatkar V. M.; Kulkarni R. D. Vegetable Oil Based Polyurethane Coatings–A Sustainable Approach: A Review. Prog. Org. Coat. 2021, 156, 10626710.1016/j.porgcoat.2021.106267. DOI

Wei H.; Xia J.; Zhou W.; Zhou L.; Hussain G.; Li Q.; Ostrikov K.(K.). Adhesion And Cohesion Of Epoxy-Based Industrial Composite Coatings. Compos. B: Eng. 2020, 193, 10803510.1016/j.compositesb.2020.108035. DOI

Croll S. G. Surface Roughness Profile And Its Effect On Coating Adhesion And Corrosion Protection: A Review. Prog. Org. Coat. 2020, 148, 10584710.1016/j.porgcoat.2020.105847. DOI

Tang X.; Yan X. Dip-Coating For Fibrous Materials: Mechanism, Methods And Applications. J. Sol-Gel Sci. Technol. 2017, 81 (2), 378–404. 10.1007/s10971-016-4197-7. DOI

Khudyakov I. V. Fast Photopolymerization Of Acrylate Coatings: Achievements And Problems. Prog. Org. Coat. 2018, 121, 151–159. 10.1016/j.porgcoat.2018.04.030. DOI

Bai J.; Yu Q. Preparation And Characterization Of A Silicone Raft-Modified Aqueous Acrylic Resin Coating For Wood Antifouling. Colloids Surf., A 2023, 677, 13238510.1016/j.colsurfa.2023.132385. DOI

Hochmańska-Kaniewska P.; Janiszewska D.; Oleszek T. Enhancement Of The Properties Of Acrylic Wood Coatings With The Use Of Biopolymers. Prog. Org. Coat. 2022, 162, 10652210.1016/j.porgcoat.2021.106522. DOI

Liu M.; Liu Y.; Wang P.; Ying W.; Liu Q.; Ding G.; Chen S. Synthesis And Properties Of A Photocurable Coating Based On Waste Cooking Oil. Coatings 2023, 13 (9), 1553–1572. 10.3390/coatings13091553. DOI

Jašek V.; Fučík J.; Ivanová L.; Veselý D.; Figalla S.; Mravcova L.; Sedlacek P.; Krajčovič J.; Přikryl R. High-Pressure Depolymerization Of Poly(Lactic Acid) (Pla) And Poly(3-Hydroxybutyrate) (Phb) Using Bio-Based Solvents: A Way To Produce Alkyl Esters Which Can Be Modified To Polymerizable Monomers. Polymers 2022, 14 (23), 5236–5254. 10.3390/polym14235236. PubMed DOI PMC

Jašek V.; Fučík J.; Melčová V.; Přikryl R.; Figalla S. Improvements In The Production Of Isosorbide Monomethacrylate Using A Biobased Catalyst And Liquid–Liquid Extraction Isolation For Modifications Of Oil-Based Resins. ACS Omega 2024, 9 (23), 24728–24738. 10.1021/acsomega.4c01275. PubMed DOI PMC

Wang F.; Allen D.; Tian S.; Oler E.; Gautam V.; Greiner R.; Metz T. O.; Wishart D. S. Cfm-Id 4.0–A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022, 50 (W1), W165–W174. 10.1093/nar/gkac383. PubMed DOI PMC

Wu Q.; Hu Y.; Tang J.; Zhang J.; Wang C.; Shang Q.; Feng G.; Liu C.; Zhou Y.; Lei W. High-Performance Soybean-Oil-Based Epoxy Acrylate Resins: “Green” Synthesis And Application In Uv-Curable Coatings. ACS Sustainable Chem. Eng. 2018, 6 (7), 8340–8349. 10.1021/acssuschemeng.8b00388. DOI

Jašek V.; Melčová V.; Figalla S.; Fučík J.; Menčík P.; Přikryl R. Study Of The Thermomechanical Properties Of Photocured Resins Based On Curable Monomers From Pla And Phb For Sla 3D Printing. ACS Applied Polymer Materials 2023, 5 (12), 9909–9917. 10.1021/acsapm.3c01730. DOI

Yadav M.; Saha J. K.; Ghosh S. K. Surface, Chemical, And Mechanical Properties Of Polyurethane-Coated Galvanized Steel Sheets. J. Mater. Eng. Perform. 2024, 1–16. 10.1007/s11665-024-09171-6. DOI

Zhu Y.; Zhu W.; Li Z.; Feng Y.; Qi W.; Li S.; Wang X.; Chen M. Enhancement Of Wood Coating Properties By Adding Silica Sol To Uv-Curable Waterborne Acrylics. Forests 2023, 14 (2), 335–348. 10.3390/f14020335. DOI

Teacă C.-A.; Roşu D.; Mustaţă F.; Rusu T.; Roşu L.; Roşca I.; Varganici C.-D. Natural Bio-Based Products For Wood Coating And Protection Against Degradation: A Review. BioResources 2019, 14 (2), 4873–4901. 10.15376/biores.14.2.Teaca. DOI

Patil R. S.; Thomas J.; Patil M.; John J. To Shed Light On The Uv Curable Coating Technology: Current State Of The Art And Perspectives. Journal of Composites Science 2023, 7 (12), 513–528. 10.3390/jcs7120513. DOI

Thomas J.; Patil R. S.; Patil M.; John J. Navigating The Labyrinth Of Polymer Sustainability In The Context Of Carbon Footprint. Coatings 2024, 14 (6), 774–786. 10.3390/coatings14060774. DOI

Jašek V.; Fučík J.; Krhut J.; Mravcova L.; Figalla S.; Přikryl R. A Study Of Isosorbide Synthesis From Sorbitol For Material Applications Using Isosorbide Dimethacrylate For Enhancement Of Bio-Based Resins. Polymers 2023, 15 (17), 3640–3658. 10.3390/polym15173640. PubMed DOI PMC

Veith C.; Diot-Néant F.; Miller S. A.; Allais F. Synthesis And Polymerization Of Bio-Based Acrylates: A Review. Polym. Chem. 2020, 11 (47), 7452–7470. 10.1039/D0PY01222J. DOI

Badía A.; Agirre A.; Barandiaran M. J.; Leiza J. R. Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures Of Isosorbide Methacrylate Monomers. Biomacromolecules 2020, 21 (11), 4522–4531. 10.1021/acs.biomac.0c00474. PubMed DOI

Thomas J.; Patil R. S.; Patil M.; John J. Addressing The Sustainability Conundrums And Challenges Within The Polymer Value Chain. Sustainability 2023, 15 (22), 15758–15777. 10.3390/su152215758. DOI

Thakur S.; Misra M.; Mohanty A. K. Sustainable Hydrophobic And Moisture-Resistant Coating Derived From Downstream Corn Oil. ACS Sustainable Chem. Eng. 2019, 7 (9), 8766–8774. 10.1021/acssuschemeng.9b00689. DOI

Xu H.; Tu J.; Xiang G.; Zhang Y.; Guo X. A Thermosetting Polyurethane With Excellent Self-Healing Properties And Stability For Metal Surface Coating. Macromol. Chem. Phys. 2020, 221 (20), 2000273–2000281. 10.1002/macp.202000273. DOI

Wang T.; Segura J. J.; Graversen E.; Weinell C. E.; Dam-Johansen K.; Kiil S. Simultaneous Tracking Of Hardness, Reactant Conversion, Solids Concentration, And Glass Transition Temperature In Thermoset Polyurethane Coatings. Journal of Coatings Technology and Research 2021, 18 (2), 349–359. 10.1007/s11998-020-00407-3. DOI

Wang J.; Wu H.; Liu R.; Long L.; Xu J.; Chen M.; Qiu H. Preparation Of A Fast Water-Based Uv Cured Polyurethane-Acrylate Wood Coating And The Effect Of Coating Amount On The Surface Properties Of Oak (Quercus Alba L.). Polymers 2019, 11 (9), 1414–1427. 10.3390/polym11091414. PubMed DOI PMC

Sadeghi I.; Lu X.; Sarmadi M.; Langer R.; Jaklenec A. Micromolding Of Thermoplastic Polymers For Direct Fabrication Of Discrete. Multilayered Microparticles. Small Methods 2022, 6 (9), 2200232–2200243. 10.1002/smtd.202200232. PubMed DOI

Shibryaeva L. S.; Lyusova L. R.; Karpova S. G.; Naumova Y. A. Structure And Properties Of Films And Coatings Made Of A Styrene-Butadiene Thermoplastic Elastomer. Russian Journal of Physical Chemistry B 2022, 16 (2), 334–345. 10.1134/S199079312202021X. DOI

Zhang C.; Yan M.; Cochran E. W.; Kessler M. R. Biorenewable Polymers Based On Acrylated Epoxidized Soybean Oil And Methacrylated Vanillin. Materials Today Communications 2015, 5, 18–22. 10.1016/j.mtcomm.2015.09.003. DOI

Sharmin E.; Zafar F.; Akram D.; Alam M.; Ahmad S. Recent Advances In Vegetable Oils Based Environment Friendly Coatings: A Review. Industrial Crops and Products 2015, 76, 215–229. 10.1016/j.indcrop.2015.06.022. DOI

Alam M.; Akram D.; Sharmin E.; Zafar F.; Ahmad S. Vegetable Oil Based Eco-Friendly Coating Materials: A Review Article. Arabian Journal of Chemistry 2014, 7 (4), 469–479. 10.1016/j.arabjc.2013.12.023. DOI

Alam M.; Ahmed M.; Altaf M.; Shaik J. P. Fabrication Of Multiwalled Carbon Nanotube-Reinforced Rapeseed-Oil-Based Polyurethane Coatings For Anticorrosive Applications. Polym. Int. 2023, 72 (1), 126–137. 10.1002/pi.6468. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...