Photocurable Oil-Based Thermosets Containing Modifiers from Renewable Sources for Coating Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39679053
PubMed Central
PMC11638785
DOI
10.1021/acspolymersau.4c00068
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Coating materials involving nature-inspired compounds or renewable sources have recently attracted vast attention. This article presents the synthesis of modified rapeseed oil (MRO) as a precursor possessing high biobased carbon content suitable for cured thermosets formation. Two reactive diluents based on renewable sources, methacrylated methyl 3-hydroxybutyrate (M3HBMMA) and ethyl 3-hydroxybutyrate (E3HBMMA), were successfully synthesized. Lastly, isosorbide monomethacrylate (MISD) was suggested and produced as a polarity modifier miscible with modified curable oil systems capable of increasing the thermoset surface energy. All synthesized compounds were structurally analyzed via NMR, ESI-MS, and FTIR. The characterized reactive substances were coated on paper, stainless steel, and beech wood to investigate their suitability for forming thin layers. The paper dip coating verified the reactive diluting properties of M3HBMMA, resulting in the average formed coating deviation decrease (87.5% for undiluted MRO and 28.0% for 50 wt % M3HBMMA containing MRO). Also, the additional cured thermoset weight decreased from 350 to 69 wt % for the same systems. The standardized bend test applied on the coated stainless steel specimens revealed the thermoset's flexibility and adhesion increase from a 12 ± 2° bending angle of 100% pure MRO to a 121 ± 2° bending angle measured for 40 wt % E3HBMMA containing the MRO-based thermoset. The coated beech wood samples underwent the standardized cross-hatch test investigating the substrate's coating quality. The 100% MRO reached a level 1 rating (second worst), while the system with 40 wt % of MISD obtained a level 5 rating (the best).
Zobrazit více v PubMed
Liang B.; Chen J.; Guo X.; Yang Z.; Yuan T. Bio-Based Organic-Inorganic Hybrid Uv-Curable Hydrophobic Coating Prepared From Epoxidized Vegetable Oils. Industrial Crops and Products 2021, 163, 113331–113342. 10.1016/j.indcrop.2021.113331. DOI
Cui Y.; Yang J.; Lei D.; Su J. 3D Printing Of A Dual-Curing Resin With Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020, 59 (25), 11381–11388. 10.1021/acs.iecr.0c01507. DOI
Barkane A.; Platnieks O.; Jurinovs M.; Kasetaite S.; Ostrauskaite J.; Gaidukovs S.; Habibi Y. Uv-Light Curing Of 3D Printing Inks From Vegetable Oils For Stereolithography. Polymers 2021, 13 (8), 1195–1211. 10.3390/polym13081195. PubMed DOI PMC
Centeno-Pedrazo A.; Perez-Arce J.; Freixa Z.; Ortiz P.; Garcia-Suarez E. J. Catalytic Systems For The Effective Fixation Of Co 2 Into Epoxidized Vegetable Oils And Derivates To Obtain Biobased Cyclic Carbonates As Precursors For Greener Polymers. Ind. Eng. Chem. Res. 2023, 62 (8), 3428–3443. 10.1021/acs.iecr.2c03747. DOI
Vazquez-Martel C.; Becker L.; Liebig W. V.; Elsner P.; Blasco E. Vegetable Oils As Sustainable Inks For Additive Manufacturing: A Comparative Study. ACS Sustainable Chem. Eng. 2021, 9 (49), 16840–16848. 10.1021/acssuschemeng.1c06784. DOI
Rajput C. V.; Sastry N. V.; Chikhaliya N. P. Vegetable Oils Based Precursors: Modifications And Scope For Futuristic Bio-Based Polymeric Materials. Journal of Polymer Research 2023, 30 (4), 159–194. 10.1007/s10965-023-03534-8. DOI
Jalil M. J.; Yamin A. F. M.; Azmi I. S.; Jamaludin S. K.; Daud A. R. M. Mechanism And Kinetics Study In Homogenous Epoxidation Of Vegetable Oil. Int. J.Eng. Technol. 2018, 7 (4.42), 124–126. 10.14419/ijet.v7i4.42.25693. DOI
Lewandowski G.; Musik M.; Malarczyk-Matusiak K.; Sałaciński Ł.; Milchert E. Epoxidation Of Vegetable Oils, Unsaturated Fatty Acids And Fatty Acid Esters: A Review. Mini-Reviews in Organic Chemistry 2020, 17 (4), 412–422. 10.2174/1570193X16666190430154319. DOI
Di Mauro C.; Malburet S.; Genua A.; Graillot A.; Mija A. Sustainable Series Of New Epoxidized Vegetable Oil-Based Thermosets With Chemical Recycling Properties. Biomacromolecules 2020, 21 (9), 3923–3935. 10.1021/acs.biomac.0c01059. PubMed DOI
Turco R.; Tesser R.; Russo V.; Cogliano T.; Di Serio M.; Santacesaria E. Epoxidation Of Linseed Oil By Performic Acid Produced In Situ. Ind. Eng. Chem. Res. 2021, 60 (46), 16607–16618. 10.1021/acs.iecr.1c02212. DOI
Jalil M. J.; Hadi A.; Azmi I. S. Catalytic Epoxidation Of Palm Oleic Acid Using In Situ Generated Performic Acid–Optimization And Kinetic Studies. Mater. Chem. Phys. 2021, 270, 124754–124761. 10.1016/j.matchemphys.2021.124754. DOI
Hernández-Cruz M. C.; Meza-Gordillo R.; Domínguez Z.; Rosales-Quintero A.; Abud-Archila M.; Ayora-Talavera T.; Villalobos-Maldonado J. J. Optimization And Characterization Of In Situ Epoxidation Of Chicken Fat With Peracetic Acid. Fuel 2021, 285, 11912710.1016/j.fuel.2020.119127. DOI
Addli M. A.; Azmi I. S.; Fadzil A. F. M.; Jalil M. J. In Situ Epoxidation Of Castor Oil Via Peracetic Acid Mechanism With Applied Synergistic Of Sulfate-Impregnated Zeolite Sm–5 As Catalyst. Polym. Bull. 2024, 81 (9), 8105–8117. 10.1007/s00289-023-05085-w. DOI
Jašek V.; Fučík J.; Melcova V.; Figalla S.; Mravcova L.; Krobot Š.; Přikryl R. Synthesis Of Bio-Based Thermoset Mixture Composed Of Methacrylated Rapeseed Oil And Methacrylated Methyl Lactate: One-Pot Synthesis Using Formed Methacrylic Acid As A Continual Reactant. Polymers 2023, 15 (8), 1811–1832. 10.3390/polym15081811. PubMed DOI PMC
Reyhani A.; McKenzie T. G.; Fu Q.; Qiao G. G. Fenton-Chemistry-Mediated Radical Polymerization. Macromol. Rapid Commun. 2019, 40 (18), 1900220–1900236. 10.1002/marc.201900220. PubMed DOI
Ho Y. H.; Parthiban A.; Thian M. C.; Ban Z. H.; Siwayanan P.; Lai J.-Y. Acrylated Biopolymers Derived Via Epoxidation And Subsequent Acrylation Of Vegetable Oils. Int. J. Polym. Sci. 2022, 2022, 1–12. 10.1155/2022/6210128. DOI
Guit J.; Tavares M. B. L.; Hul J.; Ye C.; Loos K.; Jager J.; Folkersma R.; Voet V. S. D. Photopolymer Resins With Biobased Methacrylates Based On Soybean Oil For Stereolithography. ACS Applied Polymer Materials 2020, 2 (2), 949–957. 10.1021/acsapm.9b01143. DOI
Li P.; Ma S.; Dai J.; Liu X.; Jiang Y.; Wang S.; Wei J.; Chen J.; Zhu J. Itaconic Acid As A Green Alternative To Acrylic Acid For Producing A Soybean Oil-Based Thermoset: Synthesis And Properties. ACS Sustainable Chem. Eng. 2017, 5 (1), 1228–1236. 10.1021/acssuschemeng.6b02654. DOI
Decostanzi M.; Lomège J.; Ecochard Y.; Mora A.-S.; Negrell C.; Caillol S. Fatty Acid-Based Cross-Linkable Polymethacrylate Coatings. Prog. Org. Coat. 2018, 124, 147–157. 10.1016/j.porgcoat.2018.08.001. DOI
Silva J. A. C.; Dever S.; Siccardi A.; Snelling D.; Al Qabani I.; Thompson S.; Goldberg K.; Baudoin G.; Martins Lacerda T.; Quirino R. L. Itaconic Anhydride As A Bio-Based Compatibilizer For A Tung Oil-Based Thermosetting Resin Reinforced With Sand And Algae Biomass. Coatings 2023, 13 (7), 1188–1203. 10.3390/coatings13071188. DOI
Thomas J.; Patil R. Enabling Green Manufacture Of Polymer Products Via Vegetable Oil Epoxides. Ind. Eng. Chem. Res. 2023, 62 (4), 1725–1735. 10.1021/acs.iecr.2c03867. DOI
Liu K.; Madbouly S. A.; Kessler M. R. Biorenewable Thermosetting Copolymer Based On Soybean Oil And Eugenol. Eur. Polym. J. 2015, 69, 16–28. 10.1016/j.eurpolymj.2015.05.021. DOI
Athawale V. D.; Nimbalkar R. V. Waterborne Coatings Based On Renewable Oil Resources: An Overview. J. Am. Oil Chem. Soc. 2011, 88 (2), 159–185. 10.1007/s11746-010-1668-9. DOI
Mousaa I. M.; Radi H. Photosynthesis Of Anticorrosive Protective Coatings For Steel Substrate Based On Acrylated Oil Containing Unsaturated Amino Acid Compounds. Prog. Org. Coat. 2017, 107, 18–28. 10.1016/j.porgcoat.2017.03.006. DOI
Zulkifli F.; Ali N.; Yusof M. S. M.; Isa M. I. N.; Yabuki A.; Wan Nik W. B. Henna Leaves Extract As A Corrosion Inhibitor In Acrylic Resin Coating. Prog. Org. Coat. 2017, 105, 310–319. 10.1016/j.porgcoat.2017.01.017. DOI
Uzoma P. C.; Liu F.; Xu L.; Zhang Z.; Han E.-H.; Ke W.; Arukalam I. O. Superhydrophobicity, Conductivity And Anticorrosion Of Robust Siloxane-Acrylic Coatings Modified With Graphene Nanosheets. Prog. Org. Coat. 2019, 127, 239–251. 10.1016/j.porgcoat.2018.11.018. DOI
Ifijen I. H.; Maliki M.; Odiachi I. J.; Aghedo O. N.; Ohiocheoya E. B. Review On Solvents Based Alkyd Resins And Water Borne Alkyd Resins: Impacts Of Modification On Their Coating Properties. Chemistry Africa 2022, 5 (2), 211–225. 10.1007/s42250-022-00318-3. DOI
Radoman T. S.; Dzunuzovic J. V.; Trifkovic K. T.; Palija T.; Marinkovic A. D.; Bugarski B.; Dzunuzovic E. S. Effect Of Surface Modified Tio2 Nanoparticles On Thermal, Barrier And Mechanical Properties Of Long Oil Alkyd Resin-Based Coatings. Express Polymer Letters 2015, 9 (10), 916–931. 10.3144/expresspolymlett.2015.83. DOI
Kim Y. S.; Cho H. J.; Lee H.; Kim W. Y.; Jung Y. C.; Lee S. Y. Development Of A Multi-Functional Acrylic Urethane Coating With High Hardness And Low Surface Energy. Prog. Org. Coat. 2020, 147, 10574810.1016/j.porgcoat.2020.105748. DOI
Paraskar P. M.; Prabhudesai M. S.; Hatkar V. M.; Kulkarni R. D. Vegetable Oil Based Polyurethane Coatings–A Sustainable Approach: A Review. Prog. Org. Coat. 2021, 156, 10626710.1016/j.porgcoat.2021.106267. DOI
Wei H.; Xia J.; Zhou W.; Zhou L.; Hussain G.; Li Q.; Ostrikov K.(K.). Adhesion And Cohesion Of Epoxy-Based Industrial Composite Coatings. Compos. B: Eng. 2020, 193, 10803510.1016/j.compositesb.2020.108035. DOI
Croll S. G. Surface Roughness Profile And Its Effect On Coating Adhesion And Corrosion Protection: A Review. Prog. Org. Coat. 2020, 148, 10584710.1016/j.porgcoat.2020.105847. DOI
Tang X.; Yan X. Dip-Coating For Fibrous Materials: Mechanism, Methods And Applications. J. Sol-Gel Sci. Technol. 2017, 81 (2), 378–404. 10.1007/s10971-016-4197-7. DOI
Khudyakov I. V. Fast Photopolymerization Of Acrylate Coatings: Achievements And Problems. Prog. Org. Coat. 2018, 121, 151–159. 10.1016/j.porgcoat.2018.04.030. DOI
Bai J.; Yu Q. Preparation And Characterization Of A Silicone Raft-Modified Aqueous Acrylic Resin Coating For Wood Antifouling. Colloids Surf., A 2023, 677, 13238510.1016/j.colsurfa.2023.132385. DOI
Hochmańska-Kaniewska P.; Janiszewska D.; Oleszek T. Enhancement Of The Properties Of Acrylic Wood Coatings With The Use Of Biopolymers. Prog. Org. Coat. 2022, 162, 10652210.1016/j.porgcoat.2021.106522. DOI
Liu M.; Liu Y.; Wang P.; Ying W.; Liu Q.; Ding G.; Chen S. Synthesis And Properties Of A Photocurable Coating Based On Waste Cooking Oil. Coatings 2023, 13 (9), 1553–1572. 10.3390/coatings13091553. DOI
Jašek V.; Fučík J.; Ivanová L.; Veselý D.; Figalla S.; Mravcova L.; Sedlacek P.; Krajčovič J.; Přikryl R. High-Pressure Depolymerization Of Poly(Lactic Acid) (Pla) And Poly(3-Hydroxybutyrate) (Phb) Using Bio-Based Solvents: A Way To Produce Alkyl Esters Which Can Be Modified To Polymerizable Monomers. Polymers 2022, 14 (23), 5236–5254. 10.3390/polym14235236. PubMed DOI PMC
Jašek V.; Fučík J.; Melčová V.; Přikryl R.; Figalla S. Improvements In The Production Of Isosorbide Monomethacrylate Using A Biobased Catalyst And Liquid–Liquid Extraction Isolation For Modifications Of Oil-Based Resins. ACS Omega 2024, 9 (23), 24728–24738. 10.1021/acsomega.4c01275. PubMed DOI PMC
Wang F.; Allen D.; Tian S.; Oler E.; Gautam V.; Greiner R.; Metz T. O.; Wishart D. S. Cfm-Id 4.0–A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022, 50 (W1), W165–W174. 10.1093/nar/gkac383. PubMed DOI PMC
Wu Q.; Hu Y.; Tang J.; Zhang J.; Wang C.; Shang Q.; Feng G.; Liu C.; Zhou Y.; Lei W. High-Performance Soybean-Oil-Based Epoxy Acrylate Resins: “Green” Synthesis And Application In Uv-Curable Coatings. ACS Sustainable Chem. Eng. 2018, 6 (7), 8340–8349. 10.1021/acssuschemeng.8b00388. DOI
Jašek V.; Melčová V.; Figalla S.; Fučík J.; Menčík P.; Přikryl R. Study Of The Thermomechanical Properties Of Photocured Resins Based On Curable Monomers From Pla And Phb For Sla 3D Printing. ACS Applied Polymer Materials 2023, 5 (12), 9909–9917. 10.1021/acsapm.3c01730. DOI
Yadav M.; Saha J. K.; Ghosh S. K. Surface, Chemical, And Mechanical Properties Of Polyurethane-Coated Galvanized Steel Sheets. J. Mater. Eng. Perform. 2024, 1–16. 10.1007/s11665-024-09171-6. DOI
Zhu Y.; Zhu W.; Li Z.; Feng Y.; Qi W.; Li S.; Wang X.; Chen M. Enhancement Of Wood Coating Properties By Adding Silica Sol To Uv-Curable Waterborne Acrylics. Forests 2023, 14 (2), 335–348. 10.3390/f14020335. DOI
Teacă C.-A.; Roşu D.; Mustaţă F.; Rusu T.; Roşu L.; Roşca I.; Varganici C.-D. Natural Bio-Based Products For Wood Coating And Protection Against Degradation: A Review. BioResources 2019, 14 (2), 4873–4901. 10.15376/biores.14.2.Teaca. DOI
Patil R. S.; Thomas J.; Patil M.; John J. To Shed Light On The Uv Curable Coating Technology: Current State Of The Art And Perspectives. Journal of Composites Science 2023, 7 (12), 513–528. 10.3390/jcs7120513. DOI
Thomas J.; Patil R. S.; Patil M.; John J. Navigating The Labyrinth Of Polymer Sustainability In The Context Of Carbon Footprint. Coatings 2024, 14 (6), 774–786. 10.3390/coatings14060774. DOI
Jašek V.; Fučík J.; Krhut J.; Mravcova L.; Figalla S.; Přikryl R. A Study Of Isosorbide Synthesis From Sorbitol For Material Applications Using Isosorbide Dimethacrylate For Enhancement Of Bio-Based Resins. Polymers 2023, 15 (17), 3640–3658. 10.3390/polym15173640. PubMed DOI PMC
Veith C.; Diot-Néant F.; Miller S. A.; Allais F. Synthesis And Polymerization Of Bio-Based Acrylates: A Review. Polym. Chem. 2020, 11 (47), 7452–7470. 10.1039/D0PY01222J. DOI
Badía A.; Agirre A.; Barandiaran M. J.; Leiza J. R. Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures Of Isosorbide Methacrylate Monomers. Biomacromolecules 2020, 21 (11), 4522–4531. 10.1021/acs.biomac.0c00474. PubMed DOI
Thomas J.; Patil R. S.; Patil M.; John J. Addressing The Sustainability Conundrums And Challenges Within The Polymer Value Chain. Sustainability 2023, 15 (22), 15758–15777. 10.3390/su152215758. DOI
Thakur S.; Misra M.; Mohanty A. K. Sustainable Hydrophobic And Moisture-Resistant Coating Derived From Downstream Corn Oil. ACS Sustainable Chem. Eng. 2019, 7 (9), 8766–8774. 10.1021/acssuschemeng.9b00689. DOI
Xu H.; Tu J.; Xiang G.; Zhang Y.; Guo X. A Thermosetting Polyurethane With Excellent Self-Healing Properties And Stability For Metal Surface Coating. Macromol. Chem. Phys. 2020, 221 (20), 2000273–2000281. 10.1002/macp.202000273. DOI
Wang T.; Segura J. J.; Graversen E.; Weinell C. E.; Dam-Johansen K.; Kiil S. Simultaneous Tracking Of Hardness, Reactant Conversion, Solids Concentration, And Glass Transition Temperature In Thermoset Polyurethane Coatings. Journal of Coatings Technology and Research 2021, 18 (2), 349–359. 10.1007/s11998-020-00407-3. DOI
Wang J.; Wu H.; Liu R.; Long L.; Xu J.; Chen M.; Qiu H. Preparation Of A Fast Water-Based Uv Cured Polyurethane-Acrylate Wood Coating And The Effect Of Coating Amount On The Surface Properties Of Oak (Quercus Alba L.). Polymers 2019, 11 (9), 1414–1427. 10.3390/polym11091414. PubMed DOI PMC
Sadeghi I.; Lu X.; Sarmadi M.; Langer R.; Jaklenec A. Micromolding Of Thermoplastic Polymers For Direct Fabrication Of Discrete. Multilayered Microparticles. Small Methods 2022, 6 (9), 2200232–2200243. 10.1002/smtd.202200232. PubMed DOI
Shibryaeva L. S.; Lyusova L. R.; Karpova S. G.; Naumova Y. A. Structure And Properties Of Films And Coatings Made Of A Styrene-Butadiene Thermoplastic Elastomer. Russian Journal of Physical Chemistry B 2022, 16 (2), 334–345. 10.1134/S199079312202021X. DOI
Zhang C.; Yan M.; Cochran E. W.; Kessler M. R. Biorenewable Polymers Based On Acrylated Epoxidized Soybean Oil And Methacrylated Vanillin. Materials Today Communications 2015, 5, 18–22. 10.1016/j.mtcomm.2015.09.003. DOI
Sharmin E.; Zafar F.; Akram D.; Alam M.; Ahmad S. Recent Advances In Vegetable Oils Based Environment Friendly Coatings: A Review. Industrial Crops and Products 2015, 76, 215–229. 10.1016/j.indcrop.2015.06.022. DOI
Alam M.; Akram D.; Sharmin E.; Zafar F.; Ahmad S. Vegetable Oil Based Eco-Friendly Coating Materials: A Review Article. Arabian Journal of Chemistry 2014, 7 (4), 469–479. 10.1016/j.arabjc.2013.12.023. DOI
Alam M.; Ahmed M.; Altaf M.; Shaik J. P. Fabrication Of Multiwalled Carbon Nanotube-Reinforced Rapeseed-Oil-Based Polyurethane Coatings For Anticorrosive Applications. Polym. Int. 2023, 72 (1), 126–137. 10.1002/pi.6468. DOI