Vegetable Oils for Material Applications - Available Biobased Compounds Seeking Their Utilities
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40226347
PubMed Central
PMC11986731
DOI
10.1021/acspolymersau.5c00001
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Materials derived from natural sources are demanded for future applications due to the combination of factors such as sustainability increase and legislature requirements. The availability and efficient analysis of vegetable oils (triacylglycerides) open an enormous potential for incorporating these compounds into various products to ensure the ecological footprint decreases and to provide advantageous properties to the eventual products, such as flexibility, toughness, or exceptional hydrophobic character. The double bonds located in many vegetable oils are centers for chemical functionalization, such as epoxidization, hydroxylation, or many nucleophile substitutions using acids or anhydrides. Naturally occurring castor oil comprises a reactive vacant hydroxyl group, which can be modified via numerous chemical approaches. This comprehensive Review provides an overall insight toward multiple materials utilities for functionalized glycerides such as additive manufacturing (3D printing), polyurethane materials (including their chemical recycling), coatings, and adhesives. This work provides a complex list of investigated and studied applications throughout the available literature and describes the chemical principles for each selected application.
Zobrazit více v PubMed
Sajjadi B.; Raman A. A. A.; Arandiyan H. A Comprehensive Review On Properties Of Edible And Non-Edible Vegetable Oil-Based Biodiesel: Composition, Specifications And Prediction Models. Renewable and Sustainable Energy Reviews 2016, 63, 62–92. 10.1016/j.rser.2016.05.035. DOI
Rafiq M.; Lv Y. Z.; Zhou Y.; Ma K. B.; Wang W.; Li C. R.; Wang Q. Use Of Vegetable Oils As Transformer Oils – A Review. Renewable and Sustainable Energy Reviews 2015, 52, 308–324. 10.1016/j.rser.2015.07.032. DOI
Panchal T. M.; Patel A.; Chauhan D. D.; Thomas M.; Patel J. V. A Methodological Review On Bio-Lubricants From Vegetable Oil Based Resources. Renewable and Sustainable Energy Reviews 2017, 70, 65–70. 10.1016/j.rser.2016.11.105. DOI
Giakoumis E. G. Analysis Of 22 Vegetable Oils’ Physico-Chemical Properties And Fatty Acid Composition On A Statistical Basis, And Correlation With The Degree Of Unsaturation. Renewable Energy 2018, 126, 403–419. 10.1016/j.renene.2018.03.057. DOI
Lee S. H.; Ashaari Z.; Lum W. C.; Abdul Halip J.; Ang A. F.; Tan L. P.; Chin K. L.; Md Tahir P. Thermal Treatment Of Wood Using Vegetable Oils: A Review. Construction and Building Materials 2018, 181, 408–419. 10.1016/j.conbuildmat.2018.06.058. DOI
Ashokkumar S.; Adler-Nissen J.; Møller P. Factors Affecting The Wettability Of Different Surface Materials With Vegetable Oil At High Temperatures And Its Relation To Cleanability. Appl. Surf. Sci. 2012, 263, 86–94. 10.1016/j.apsusc.2012.09.002. DOI
Satyarthi J. K.; Srinivas D.; Ratnasamy P. Hydrolysis Of Vegetable Oils And Fats To Fatty Acids Over Solid Acid Catalysts. Applied Catalysis A: General 2011, 391 (1–2), 427–435. 10.1016/j.apcata.2010.03.047. DOI
Salimon J.; Abdullah B. M.; Salih N. Hydrolysis Optimization And Characterization Study Of Preparing Fatty Acids From Jatropha Curcasseed Oil. Chemistry Central Journal 2011, 5 (1), 67.10.1186/1752-153X-5-67. PubMed DOI PMC
Karmakar G.; Ghosh P.; Sharma B. Chemically Modifying Vegetable Oils To Prepare Green Lubricants. Lubricants 2017, 5 (4), 44.10.3390/lubricants5040044. DOI
Mobin Siddique B.; Ahmad A.; Hakimi Ibrahim M.; Hena S.; Rafatullah M.; A. K M. O. Physico-Chemical Properties Of Blends Of Palm Olein With Other Vegetable Oils. Grasas y Aceites 2010, 61 (4), 423–429. 10.3989/gya.010710. DOI
Saberi A. H.; Chin-Ping T.; Oi-Ming L. Phase Behavior Of Palm Oil In Blends With Palm-Based Diacylglycerol. J Americ Oil Chem Soc 2011, 88 (12), 1857–1865. 10.1007/s11746-011-1860-6. DOI
Medeiros Vicentini-Polette C.; Rodolfo Ramos P.; Bernardo Gonçalves C.; Lopes De Oliveira A. Determination Of Free Fatty Acids In Crude Vegetable Oil Samples Obtained By High-Pressure Processes. Food Chemistry: X 2021, 12, 100166.10.1016/j.fochx.2021.100166. PubMed DOI PMC
Nanlohy H. Y.; Wardana I. N. G.; Hamidi N.; Yuliati L.; Ueda T. The Effect Of Rh3+ Catalyst On The Combustion Characteristics Of Crude Vegetable Oil Droplets. Fuel 2018, 220, 220–232. 10.1016/j.fuel.2018.02.001. DOI
Klimeš J.; Michaelides A. Perspective: Advances And Challenges In Treating Van Der Waals Dispersion Forces In Density Functional Theory. J. Chem. Phys. 2012, 137 (12), 120901.10.1063/1.4754130. PubMed DOI
Xie L.; Wang J.; Lu Q.; Hu W.; Yang D.; Qiao C.; Peng X.; Peng Q.; Wang T.; Sun W.; Liu Q.; Zhang H.; Zeng H. Surface Interaction Mechanisms In Mineral Flotation: Fundamentals, Measurements, And Perspectives. Adv. Colloid Interface Sci. 2021, 295, 102491.10.1016/j.cis.2021.102491. PubMed DOI
Gao J.; Luo X.; Fang F.; Sun J. Fundamentals Of Atomic And Close-To-Atomic Scale Manufacturing: A Review. International Journal of Extreme Manufacturing 2022, 4 (1), 012001.10.1088/2631-7990/ac3bb2. DOI
Qiu Q.; Zhang J.; Yang L.; Du D.; Tang C. Differences Analysis Of Water Molecular Diffusion Behaviors In Vegetable Oil And Mineral Oil Under Temperature Field. J. Mol. Liq. 2021, 323, 115030.10.1016/j.molliq.2020.115030. DOI
Soodoo N.; Bouzidi L.; Narine S. S. Fundamental Structure–Function Relationships In Vegetable Oil-Based Lubricants: A Critical Review. Lubricants 2023, 11 (7), 284.10.3390/lubricants11070284. DOI
Dorni C.; Sharma P.; Saikia G.; Longvah T. Fatty Acid Profile Of Edible Oils And Fats Consumed In India. Food Chem. 2018, 238, 9–15. 10.1016/j.foodchem.2017.05.072. PubMed DOI
Folayan A. J.; Anawe P. A. L.; Aladejare A. E.; Ayeni A. O. Experimental Investigation Of The Effect Of Fatty Acids Configuration, Chain Length, Branching And Degree Of Unsaturation On Biodiesel Fuel Properties Obtained From Lauric Oils, High-Oleic And High-Linoleic Vegetable Oil Biomass. Energy Reports 2019, 5, 793–806. 10.1016/j.egyr.2019.06.013. DOI
Campanella A.; Rustoy E.; Baldessari A.; Baltanás M. A. Lubricants From Chemically Modified Vegetable Oils. Bioresour. Technol. 2010, 101 (1), 245–254. 10.1016/j.biortech.2009.08.035. PubMed DOI
Yang L.; Liao R.; Caixin S.; Zhu M. Influence Of Vegetable Oil On The Thermal Aging Of Transformer Paper And Its Mechanism. IEEE Transactions on Dielectrics and Electrical Insulation 2011, 18 (3), 692–700. 10.1109/TDEI.2011.5931054. DOI
Zhang X.; Li C.; Zhou Z.; Liu B.; Zhang Y.; Yang M.; Gao T.; Liu M.; Zhang N.; Said Z.; Sharma S.; Ali H. M. Vegetable Oil-Based Nanolubricants In Machining: From Physicochemical Properties To Application. Chinese Journal of Mechanical Engineering 2023, 36 (1), 76.10.1186/s10033-023-00895-5. DOI
Mutlu H.; Meier M. A. R. Castor Oil As A Renewable Resource For The Chemical Industry. European Journal of Lipid Science and Technology 2010, 112 (1), 10–30. 10.1002/ejlt.200900138. DOI
Avramovic J. M.; Marjanović Jeromela A. M.; Krstić M. S.; Kiprovski B. M.; Veličković A. V.; Rajković D. D.; Veljković V. B. Castor Oil Extraction: Methods And Impacts. Separation & Purification Reviews 2025, 54 (1), 60–82. 10.1080/15422119.2024.2361674. DOI
Wei L.; Chao M.; Dai X.; Jia X.; Geng X.; Guo H. Synthesis And Characterization Of A Novel Multibranched Block Polyether Demulsifier By Polymerization. ACS Omega 2021, 6 (15), 10454–10461. 10.1021/acsomega.1c00949. PubMed DOI PMC
Kunduru K. R.; Basu A.; Haim Zada M.; Domb A. J. Castor Oil-Based Biodegradable Polyesters. Biomacromolecules 2015, 16 (9), 2572–2587. 10.1021/acs.biomac.5b00923. PubMed DOI
Thakur S.; Karak N. Ultratough, Ductile, Castor Oil-Based, Hyperbranched, Polyurethane Nanocomposite Using Functionalized Reduced Graphene Oxide. ACS Sustainable Chem. Eng. 2014, 2 (5), 1195–1202. 10.1021/sc500165d. DOI
Robertson M. L.; Paxton J. M.; Hillmyer M. A. Tough Blends Of Polylactide And Castor Oil. ACS Appl. Mater. Interfaces 2011, 3 (9), 3402–3410. 10.1021/am2006367. PubMed DOI
Thakur S.; Karak N. Castor Oil-Based Hyperbranched Polyurethanes As Advanced Surface Coating Materials. Prog. Org. Coat. 2013, 76 (1), 157–164. 10.1016/j.porgcoat.2012.09.001. DOI
Chebude Y.; Gonfa G.; Díaz I. Preparation And Characterization Of Vernolic Acid Methyl Ester Functionalized Ordered Mesoporous Materials. Bulletin of the Chemical Society of Ethiopia 2023, 37 (3), 689–702. 10.4314/bcse.v37i3.12. DOI
Sun Y.; Liu B.; Xue J.; Wang X.; Cui H.; Li R.; Jia X. Critical Metabolic Pathways And Genes Cooperate For Epoxy Fatty Acid-Enriched Oil Production In Developing Seeds Of Vernonia Galamensis, An Industrial Oleaginous Plant. Biotechnology for Biofuels and Bioproducts 2022, 15 (1), 21.10.1186/s13068-022-02120-2. PubMed DOI PMC
Billault I.; Le Du A.; Ouethrani M.; Serhan Z.; Lesot P.; Robins R. J. Probing Substrate–Product Relationships By Natural Abundance Deuterium 2D Nmr Spectroscopy In Liquid-Crystalline Solvents: Epoxidation Of Linoleate To Vernoleate By Two Different Plant Enzymes. Anal. Bioanal. Chem. 2012, 402 (9), 2985–2998. 10.1007/s00216-012-5748-6. PubMed DOI
d’Almeida Gameiro M.; Jacob P. L.; Kortsen K.; Ward T.; Taresco V.; Stockman R. A.; Chebude Y.; Howdle S. M. Greener Extraction-Chemical Modification-Polymerization Pipeline Of Vernolic Acid From Ethiopian Ironweed Plant. J. Polym. Sci. 2022, 60 (24), 3354–3365. 10.1002/pol.20220050. DOI
Berry S. E.; Bruce J. H.; Steenson S.; Stanner S.; Buttriss J. L.; Spiro A.; Gibson P. S.; Bowler I.; Dionisi F.; Farrell L.; Glass A.; Lovegrove J. A.; Nicholas J.; Peacock E.; Porter S.; Mensink R. P.; L Hall W. Interesterified Fats: What Are They And Why Are They Used? A Briefing Report From The Roundtable On Interesterified Fats In Foods. Nutrition Bulletin 2019, 44 (4), 363–380. 10.1111/nbu.12397. DOI
Philippidis G.; Álvarez R. X.; Di Lucia L.; Hermoso H. G.; Martinez A. G.; M’barek R.; Moiseyev A.; Panoutsou C.; Itoiz E. S.; Sturm V.; van Leeuwen M.; van Zeist W.-J.; Verkerk P. J. The Development Of Bio-Based Industry In The European Union: A Prospective Integrated Modelling Assessment. Ecological Economics 2024, 219, 108156.10.1016/j.ecolecon.2024.108156. DOI
Asli H.; Ahmadinia E.; Zargar M.; Karim M. R. Investigation On Physical Properties Of Waste Cooking Oil – Rejuvenated Bitumen Binder. Construction and Building Materials 2012, 37, 398–405. 10.1016/j.conbuildmat.2012.07.042. DOI
Paruzel A.; Michałowski S.; Hodan J.; Horák P.; Prociak A.; Beneš H. Rigid Polyurethane Foam Fabrication Using Medium Chain Glycerides Of Coconut Oil And Plastics From End-Of-Life Vehicles. ACS Sustainable Chem. Eng. 2017, 5 (7), 6237–6246. 10.1021/acssuschemeng.7b01197. DOI
Reis C. E. R.; Rajendran A.; Hu B. New Technologies In Value Addition To The Thin Stillage From Corn-To-Ethanol Process. Reviews in Environmental Science and Bio/Technology 2017, 16 (1), 175–206. 10.1007/s11157-017-9421-6. DOI
McNutt J.; He Q. Spent Coffee Grounds: A Review On Current Utilization. Journal of Industrial and Engineering Chemistry 2019, 71, 78–88. 10.1016/j.jiec.2018.11.054. DOI
Liu C.; Wang C.; Hu Y.; Zhang F.; Shang Q.; Lei W.; Zhou Y.; Cai Z. Castor Oil-Based Polyfunctional Acrylate Monomers: Synthesis And Utilization In Uv-Curable Materials. Prog. Org. Coat. 2018, 121, 236–246. 10.1016/j.porgcoat.2018.04.020. DOI
Vazquez-Martel C.; Becker L.; Liebig W. V.; Elsner P.; Blasco E. Vegetable Oils As Sustainable Inks For Additive Manufacturing: A Comparative Study. ACS Sustainable Chem. Eng. 2021, 9 (49), 16840–16848. 10.1021/acssuschemeng.1c06784. DOI
Barkane A.; Platnieks O.; Vecstaudza J.; Gaidukovs S. Analysis Of Bio-Based Acrylate Accelerated Weathering: A Study Of Nanocellulose Impact On The Bulk Durability Of 3D-Printed Nanocomposites. Materials Today Chemistry 2023, 33, 101737.10.1016/j.mtchem.2023.101737. DOI
Husić I.; Mahendran A. R.; Sinic J.; Jocham C.; Lammer H. Interaction Of Porous Substrate And Vegetable Oil-Based Hydrophobic Thermoset Coatings During Uv-Polymerization. Journal of Plastic Film & Sheeting 2023, 39 (4), 427–446. 10.1177/87560879231190574. DOI
Samoilenko T. F.; Yarova N. V.; Yashchenko L. M.; Brovko O. O. Uv -Cured Epoxy-Acrylate Interpenetrating Polymer Networks With Different Contents Of Epoxidized Soybean Oil. J. Appl. Polym. Sci. 2024, 141 (38), e55974.10.1002/app.55974. DOI
Işık M.; Ahmetli G. Nanocomposites Based On Mwcnt And Nanoclay: Effect Of Acrylated Epoxidized Soybean Oil On Curing And Composite Properties. Industrial Crops and Products 2024, 221, 119421.10.1016/j.indcrop.2024.119421. DOI
Grauzeliene S.; Schuller A.-S.; Delaite C.; Ostrauskaite J. Biobased Vitrimer Synthesized From 2-Hydroxy-3-Phenoxypropyl Acrylate, Tetrahydrofurfuryl Methacrylate And Acrylated Epoxidized Soybean Oil For Digital Light Processing 3D Printing. Eur. Polym. J. 2023, 198, 112424.10.1016/j.eurpolymj.2023.112424. DOI
Bodor M.; Lasagabáster-Latorre A.; Arias-Ferreiro G.; Dopico-García M. S.; Abad M.-J. Improving The 3D Printability And Mechanical Performance Of Biorenewable Soybean Oil-Based Photocurable Resins. Polymers 2024, 16 (7), 977.10.3390/polym16070977. PubMed DOI PMC
Milchert E.; Smagowicz A.; Lewandowski G. Optimization Of The Epoxidation Of Rapeseed Oil With Peracetic Acid. Org. Process Res. Dev. 2010, 14 (5), 1094–1101. 10.1021/op900240p. DOI
Pignitter M.; Somoza V. Critical Evaluation Of Methods For The Measurement Of Oxidative Rancidity In Vegetable Oils. Journal of Food and Drug Analysis 2012, 20 (4), 6.10.38212/2224-6614.2024. DOI
Kuo T.-H.; Chung H.-H.; Chang H.-Y.; Lin C.-W.; Wang M.-Y.; Shen T.-L.; Hsu C.-C. Deep Lipidomics And Molecular Imaging Of Unsaturated Lipid Isomers: A Universal Strategy Initiated By Mcpba Epoxidation. Anal. Chem. 2019, 91 (18), 11905–11915. 10.1021/acs.analchem.9b02667. PubMed DOI
Zima A. M.; Lyakin O. Y.; Ottenbacher R. V.; Bryliakov K. P.; Talsi E. P. Iron-Catalyzed Enantioselective Epoxidations With Various Oxidants: Evidence For Different Active Species And Epoxidation Mechanisms. ACS Catal. 2017, 7 (1), 60–69. 10.1021/acscatal.6b02851. DOI
He W.; Fang Z.; Tian Q.; Shen W.; Guo K. Tandem, Effective Continuous Flow Process For The Epoxidation Of Cyclohexene. Ind. Eng. Chem. Res. 2016, 55 (5), 1373–1379. 10.1021/acs.iecr.5b04187. DOI
Chen Y.; Xi Z.; Zhao L. New Bio-Based Polymeric Thermosets Synthesized By Ring-Opening Polymerization Of Epoxidized Soybean Oil With A Green Curing Agent. Eur. Polym. J. 2016, 84, 435–447. 10.1016/j.eurpolymj.2016.08.038. DOI
Cussó O.; Serrano-Plana J.; Costas M. Evidence Of A Sole Oxygen Atom Transfer Agent In Asymmetric Epoxidations With Fe-Pdp Catalysts. ACS Catal. 2017, 7 (8), 5046–5053. 10.1021/acscatal.7b01184. DOI
Chen J.; Zhou J.; Liu W.; Bi Y.; Peng D. Enzymatic Epoxidation Of Soybean Oil In The Presence Of Perbutyric Acid. Chemical Papers 2017, 71 (11), 2139–2144. 10.1007/s11696-017-0206-8. DOI
José da Silva M.; Vergara Torres J. A.; Vilanculo C. B. Vanadium-Doped Phosphomolybdic Acids As Catalysts For Geraniol Oxidation With Hydrogen Peroxide. RSC Adv. 2022, 12 (19), 11796–11806. 10.1039/D2RA01258H. PubMed DOI PMC
Vianello C.; Piccolo D.; Lorenzetti A.; Salzano E.; Maschio G. Study Of Soybean Oil Epoxidation: Effects Of Sulfuric Acid And The Mixing Program. Ind. Eng. Chem. Res. 2018, 57 (34), 11517–11525. 10.1021/acs.iecr.8b01109. DOI
Dinda S.; Patwardhan A. V.; Goud V. V.; Pradhan N. C. Epoxidation Of Cottonseed Oil By Aqueous Hydrogen Peroxide Catalysed By Liquid Inorganic Acids. Bioresour. Technol. 2008, 99 (9), 3737–3744. 10.1016/j.biortech.2007.07.015. PubMed DOI
de Haro J. C.; Izarra I.; Rodríguez J. F.; Pérez Á.; Carmona M. Modelling The Epoxidation Reaction Of Grape Seed Oil By Peracetic Acid. Journal of Cleaner Production 2016, 138, 70–76. 10.1016/j.jclepro.2016.05.015. DOI
Kim N.; Li Y.; Sun X. S. Epoxidation Of Camelina Sativa Oil And Peel Adhesion Properties. Industrial Crops and Products 2015, 64, 1–8. 10.1016/j.indcrop.2014.10.025. DOI
Arumugam S.; Sriram G.; Rajmohan T. Multi-Response Optimization Of Epoxidation Process Parameters Of Rapeseed Oil Using Response Surface Methodology (Rsm)-Based Desirability Analysis. Arabian Journal for Science and Engineering 2014, 39 (3), 2277–2287. 10.1007/s13369-013-0789-5. DOI
Musik M.; Milchert E.; Malarczyk-Matusiak K. Technological Parameters Of Epoxidation Of Sesame Oil With Performic Acid. Polish Journal of Chemical Technology 2018, 20 (3), 53–59. 10.2478/pjct-2018-0038. DOI
Fong M. N. F.; Salimon J. Epoxidation of palm kernel oil fatty acids. Journal of Science and Technology 2012, 4 (2), 87–98.
Sudha G. S.; Kalita H.; Mohanty S.; Nayak S. K. Castor Oil Modified By Epoxidation, Transesterification, And Acrylation Processes: Spectroscopic Characteristics. International Journal of Polymer Analysis and Characterization 2017, 22 (6), 519–525. 10.1080/1023666X.2017.1334171. DOI
Fernandes F. C.; Kirwan K.; Lehane D.; Coles S. R. Epoxy Resin Blends And Composites From Waste Vegetable Oil. Eur. Polym. J. 2017, 89, 449–460. 10.1016/j.eurpolymj.2017.02.005. DOI
Hutchins P. D.; Saez Cabezas C. A.; Enokida J. S.; Hu Y.; Lai Y.; Mazure V.; Martin M.; Setula K.; Stutzman J. R.; Wade J. H. Monitoring Epoxidized Soybean Oil Degradation Using Liquid Chromatography–Mass Spectrometry And In Silico Spectral Libraries. J. Am. Soc. Mass Spectrom. 2024, 35 (8), 1940–1949. 10.1021/jasms.4c00212. PubMed DOI
Moser B. R.; Cermak S. C.; Doll K. M.; Kenar J. A.; Sharma B. K. A Review Of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, And Applications. J Americ Oil Chem Soc 2022, 99 (10), 801–842. 10.1002/aocs.12623. DOI
Wang X.; Li Y.; Jiang Y.; Meng L.; Nie Z. In-Depth Free Fatty Acids Annotation Of Edible Oil By Mcpba Epoxidation And Tandem Mass Spectrometry. Food Chem. 2022, 374, 131793.10.1016/j.foodchem.2021.131793. PubMed DOI
Omonov T. S.; Kharraz E.; Curtis J. M. The Epoxidation Of Canola Oil And Its Derivatives. RSC Adv. 2016, 6 (95), 92874–92886. 10.1039/C6RA17732H. DOI
Li X.; Teitgen A. M.; Shirani A.; Ling J.; Busta L.; Cahoon R. E.; Zhang W.; Li Z.; Chapman K. D.; Berman D.; Zhang C.; Minto R. E.; Cahoon E. B. Discontinuous Fatty Acid Elongation Yields Hydroxylated Seed Oil With Improved Function. Nature Plants 2018, 4 (9), 711–720. 10.1038/s41477-018-0225-7. PubMed DOI
Soodoo N.; Poopalam K. D.; Bouzidi L.; Narine S. S. Fundamental Structure-Function Relationships In Vegetable Oil Based Phase Change Materials: A Critical Review. Journal of Energy Storage 2022, 51, 104355.10.1016/j.est.2022.104355. DOI
Galià M.; de Espinosa L. M.; Ronda J. C.; Lligadas G.; Cádiz V. Vegetable Oil-Based Thermosetting Polymers. European Journal of Lipid Science and Technology 2010, 112 (1), 87–96. 10.1002/ejlt.200900096. DOI
Miao S.; Wang P.; Su Z.; Zhang S. Vegetable-Oil-Based Polymers As Future Polymeric Biomaterials. Acta Biomaterialia 2014, 10 (4), 1692–1704. 10.1016/j.actbio.2013.08.040. PubMed DOI
Noor Armylisas A. H.; Siti Hazirah M. F.; Yeong S. K.; Hazimah A. H. Modification Of Olefinic Double Bonds Of Unsaturated Fatty Acids And Other Vegetable Oil Derivatives Via Epoxidation: A Review. Grasas y Aceites 2017, 68 (1), e174.10.3989/gya.0684161. DOI
Vonsul M.-I.; Webster D. C. Investigation Of Cottonseed Oil As Renewable Source For The Development Of Highly Functional Uv-Curable Materials. Prog. Org. Coat. 2023, 185, 107883.10.1016/j.porgcoat.2023.107883. DOI
Li Y.; Sun X. S. Di-Hydroxylated Soybean Oil Polyols With Varied Hydroxyl Values And Their Influence On Uv-Curable Pressure-Sensitive Adhesives. J Americ Oil Chem Soc 2014, 91 (8), 1425–1432. 10.1007/s11746-014-2474-6. DOI
Çayli G.; Cekli S.; Uzunoğlu C. P. Synthesis, Photopolymerization And Evaluation Of Electrical Properties Of Epoxidized Castor Oil-Based Acrylates. Polym. Bull. 2024, 81 (14), 13289–13304. 10.1007/s00289-024-05349-z. DOI
Gómez-de-Miranda-Jiménez-de-Aberasturi O.; Calvo J.; Svensson I.; Blanco N.; Lorenzo L.; Rodriguez R. Novel Determination Of Functional Groups In Partially Acrylated Epoxidized Soybean Oil. Molecules 2024, 29 (19), 4582.10.3390/molecules29194582. PubMed DOI PMC
Pezzana L.; Wolff R.; Stampfl J.; Liska R.; Sangermano M. High Temperature Vat Photopolymerization 3D Printing Of Fully Bio-Based Composites: Green Vegetable Oil Epoxy Matrix & Bio-Derived Filler Powder. Additive Manufacturing 2024, 79, 103929.10.1016/j.addma.2023.103929. DOI
Tran T.-N.; Mauro C. D.; Graillot A.; Mija A. Chemical Reactivity And The Influence Of Initiators On The Epoxidized Vegetable Oil/Dicarboxylic Acid System. Macromolecules 2020, 53 (7), 2526–2538. 10.1021/acs.macromol.9b02700. DOI
Khan Z.; Javed F.; Shamair Z.; Hafeez A.; Fazal T.; Aslam A.; Zimmerman W. B.; Rehman F. Current Developments In Esterification Reaction: A Review On Process And Parameters. Journal of Industrial and Engineering Chemistry 2021, 103, 80–101. 10.1016/j.jiec.2021.07.018. DOI
Yan Z.; Ma Z.; Deng J.; Luo G. Mechanism And Kinetics Of Epoxide Ring-Opening With Carboxylic Acids Catalyzed By The Corresponding Carboxylates. Chem. Eng. Sci. 2021, 242, 116746.10.1016/j.ces.2021.116746. DOI
Ob-eye J.; Chaiendoo K.; Itthibenchapong V. Catalytic Conversion Of Epoxidized Palm Fatty Acids Through Oxirane Ring Opening Combined With Esterification And The Properties Of Palm Oil-Based Biolubricants. Ind. Eng. Chem. Res. 2021, 60 (44), 15989–15998. 10.1021/acs.iecr.1c03974. DOI
Bardella N.; Facchin M.; Fabris E.; Baldan M.; Beghetto V. Waste Cooking Oil As Eco-Friendly Rejuvenator For Reclaimed Asphalt Pavement. Materials 2024, 17 (7), 1477.10.3390/ma17071477. PubMed DOI PMC
Şeker H.; Çakmakçi E. Fully Bio-Based Thiol-Ene Photocured Thermosets From Isosorbide And Tung Oil. J. Polym. Sci. 2020, 58 (8), 1105–1114. 10.1002/pol.20190291. DOI
Maity D.; Tade R.; Sabnis A. S. Development Of Bio-Based Polyester-Urethane-Acrylate (Pua) From Citric Acid For Uv-Curable Coatings. Journal of Coatings Technology and Research 2023, 20 (3), 1083–1097. 10.1007/s11998-022-00728-5. DOI
Ozman E.; Dizman C.; Birtane H.; Kahraman M. V. Novel Bio-Based Phosphorous-Containing Uv-Curable Flame-Retardant Coatings. Journal of Coatings Technology and Research 2023, 20 (4), 1257–1268. 10.1007/s11998-022-00740-9. DOI
Uzoh C. F.; Onukwuli O. D.; Ozofor I. H.; Odera R. S. Encapsulation Of Urea With Alkyd Resin-Starch Membranes For Controlled N2 Release: Synthesis, Characterization, Morphology And Optimum N2 Release. Process Safety and Environmental Protection 2019, 121, 133–142. 10.1016/j.psep.2018.10.015. DOI
Cybulski M.; Przybylek P. Application Of Molecular Sieves For Drying Transformers Insulated With Mineral Oil, Natural Ester, Or Synthetic Ester. Energies 2021, 14 (6), 1719.10.3390/en14061719. DOI
Lomège J.; Negrell C.; Robin J.-J.; Lapinte V.; Caillol S. Oleic Acid-Based Poly(Alkyl Methacrylate) As Bio-Based Viscosity Control Additive For Mineral And Vegetable Oils. Polym. Eng. Sci. 2019, 59 (S1), E164.10.1002/pen.24896. DOI
Zhang Y.; Thakur V. K.; Li Y.; Garrison T. F.; Gao Z.; Gu J.; Kessler M. R. Soybean-Oil-Based Thermosetting Resins With Methacrylated Vanillyl Alcohol As Bio-Based, Low-Viscosity Comonomer. Macromol. Mater. Eng. 2018, 303 (1), 1700278.10.1002/mame.201700278. DOI
Woma T. Y.; Lawal S. A.; Abdulrahman A. S.; Olutoye M. A.; Ojapah M. M. Vegetable Oil Based Lubricants: Challenges And Prospects. Tribology Online 2019, 14 (2), 60–70. 10.2474/trol.14.60. DOI
Zhang X.; Li C.; Zhou Z.; Liu B.; Zhang Y.; Yang M.; Gao T.; Liu M.; Zhang N.; Said Z.; Sharma S.; Ali H. M. Vegetable Oil-Based Nanolubricants In Machining: From Physicochemical Properties To Application. Chinese Journal of Mechanical Engineering 2023, 36 (1), 76.10.1186/s10033-023-00895-5. DOI
Mannekote J. K.; Kailas S. V.; Venkatesh K.; Kathyayini N. Environmentally Friendly Functional Fluids From Renewable And Sustainable Sources-A Review. Renewable and Sustainable Energy Reviews 2018, 81, 1787–1801. 10.1016/j.rser.2017.05.274. DOI
Liu H.; Lu W.; Liu S. Development Of Acrylated Soybean Oil-Based Uv-Curable Coatings With High Impact Strength From Low Viscosity Oligomer. J. Appl. Polym. Sci. 2018, 135 (3), 45698.10.1002/app.45698. DOI
Agüero Á.; Garcia-Sanoguera D.; Lascano D.; Rojas-Lema S.; Ivorra-Martinez J.; Fenollar O.; Torres-Giner S. Evaluation Of Different Compatibilization Strategies To Improve The Performance Of Injection-Molded Green Composite Pieces Made Of Polylactide Reinforced With Short Flaxseed Fibers. Polymers 2020, 12 (4), 821.10.3390/polym12040821. PubMed DOI PMC
Zhu L.; Wang Y.; Wang S.; Huo T.; Jing X.; Li A.; Xia D. High Viscosity-Reducing Performance Oil-Soluble Viscosity Reduction Agents Containing Acrylic Acid Ester As Monomer For Heavy Oil With High Asphaltene Content. J. Pet. Sci. Eng. 2018, 163, 37–44. 10.1016/j.petrol.2017.12.079. DOI
El-hoshoudy A. N.; Mohammedy M. M.; Ramzi M.; Desouky S. M.; Attia A. M. Experimental, Modeling And Simulation Investigations Of A Novel Surfmer-Co-Poly Acrylates Crosslinked Hydrogels For Water Shut-Off And Improved Oil Recovery. J. Mol. Liq. 2019, 277, 142–156. 10.1016/j.molliq.2018.12.073. DOI
Bodhak C.; Patel T.; Sahu P.; Gupta R. K. Soybean Oil-Derived Acrylate/Methacrylate Ether For High-Resolution Additive Manufacturing. ACS Applied Polymer Materials 2024, 6 (20), 12886–12896. 10.1021/acsapm.4c02568. DOI
Su Y.; Zhang S.; Chen Y.; Yuan T.; Yang Z. One-Step Synthesis Of Novel Renewable Multi-Functional Linseed Oil-Based Acrylate Prepolymers And Its Application In Uv-Curable Coatings. Prog. Org. Coat. 2020, 148, 105820.10.1016/j.porgcoat.2020.105820. PubMed DOI PMC
Barkane A.; Platnieks O.; Jurinovs M.; Kasetaite S.; Ostrauskaite J.; Gaidukovs S.; Habibi Y. Uv-Light Curing Of 3D Printing Inks From Vegetable Oils For Stereolithography. Polymers 2021, 13 (8), 1195.10.3390/polym13081195. PubMed DOI PMC
Silva J. A. C.; Grilo L. M.; Gandini A.; Lacerda T. M. The Prospering Of Macromolecular Materials Based On Plant Oils Within The Blooming Field Of Polymers From Renewable Resources. Polymers 2021, 13 (11), 1722.10.3390/polym13111722. PubMed DOI PMC
Jadhav N. C.; Jadhav A. C. Synthesis Of Acrylate Epoxidized Rice Bran Oil (Aerbo) And Its Modification Using Styrene & Shellac To Study Its Properties As A Composite Material. Polym. Bull. 2023, 80 (5), 5023–5045. 10.1007/s00289-022-04302-2. DOI
Chen T.; Liu W. Highly Unsaturated Microcrystalline Cellulose And Its Cross-Linked Soybean-Oil-Based Thermoset Composites. ACS Sustainable Chem. Eng. 2019, 7 (1), 1796–1805. 10.1021/acssuschemeng.8b05968. DOI
Quiles-Carrillo L.; Blanes-Martínez M. M.; Montanes N.; Fenollar O.; Torres-Giner S.; Balart R. Reactive Toughening Of Injection-Molded Polylactide Pieces Using Maleinized Hemp Seed Oil. Eur. Polym. J. 2018, 98, 402–410. 10.1016/j.eurpolymj.2017.11.039. DOI
Sung J.; Sun X. S. Cardanol Modified Fatty Acids From Camelina Oils For Flexible Bio-Based Acrylates Coatings. Prog. Org. Coat. 2018, 123, 242–253. 10.1016/j.porgcoat.2018.02.008. DOI
Ghosal K.; Rashed N.; Khamaisi B.; Farah S. Precision 4D Printing Of Multifunctional Olive Oil-Based Acrylate Photo-Resin For Biomedical Applications. Adv. Funct. Mater. 2024, 2414129.10.1002/adfm.202414129. DOI
Li J.-J.; Sun J.; Xie Y.-X.; Zhao C.; Ma H.-X.; Liu C.-M. A Novel Star-Shaped, Cardanol-Based Bio-Prepolymer: Synthesis, Uv Curing Characteristics And Properties Of Cured Films. Polym. Degrad. Stab. 2018, 158, 124–135. 10.1016/j.polymdegradstab.2018.10.025. DOI
Wu Y.; He J.; Huang W.; Chen W.; Zhou S.; She X.; Zhu W.; Huang F.; Li H.; Xu H. Stereolithography 3D Printed Monolithic Catalyst For Highly Efficient Oxidative Desulfurization Of Fuels. Fuel 2023, 332, 126021.10.1016/j.fuel.2022.126021. DOI
Su Y.; Lin H.; Zhang S.; Yang Z.; Yuan T. One-Step Synthesis Of Novel Renewable Vegetable Oil-Based Acrylate Prepolymers And Their Application In Uv-Curable Coatings. Polymers 2020, 12 (5), 1165.10.3390/polym12051165. PubMed DOI PMC
Grishchuk S.; Karger-Kocsis J. Hybrid Thermosets From Vinyl Ester Resin And Acrylated Epoxidized Soybean Oil (Aeso). Express Polymer Letters 2011, 5 (1), 2–11. 10.3144/expresspolymlett.2011.2. DOI
Liu W.; Xie T.; Qiu R. Biobased Thermosets Prepared From Rigid Isosorbide And Flexible Soybean Oil Derivatives. ACS Sustainable Chem. Eng. 2017, 5 (1), 774–783. 10.1021/acssuschemeng.6b02117. DOI
Fei M.; Liu T.; Zhao B.; Otero A.; Chang Y.-C.; Zhang J. From Glassy Plastic To Ductile Elastomer: Vegetable Oil-Based Uv-Curable Vitrimers And Their Potential Use In 3D Printing. ACS Applied Polymer Materials 2021, 3 (5), 2470–2479. 10.1021/acsapm.1c00063. DOI
Briede S.; Jurinovs M.; Nechausov S.; Platnieks O.; Gaidukovs S. State-Of-The-Art Uv-Assisted 3D Printing Via A Rapid Syringe-Extrusion Approach For Photoactive Vegetable Oil Acrylates Produced In One-Step Synthesis. Molecular Systems Design & Engineering 2022, 7 (11), 1434–1448. 10.1039/D2ME00085G. DOI
Çayli G.; Gürbüz D.; Çınarli A. Characterization And Polymerization Of Epoxidized Methacrylated Castor Oil. European Journal of Lipid Science and Technology 2019, 121 (1), 1700189.10.1002/ejlt.201700189. DOI
Melilli G.; Guigo N.; Robert T.; Sbirrazzuoli N. Radical Oxidation Of Itaconic Acid-Derived Unsaturated Polyesters Under Thermal Curing Conditions. Macromolecules 2022, 55 (20), 9011–9021. 10.1021/acs.macromol.2c01682. DOI
Fouilloux H.; Thomas C. M. Production And Polymerization Of Biobased Acrylates And Analogs. Macromol. Rapid Commun. 2021, 42 (3), 2000530.10.1002/marc.202000530. PubMed DOI
Pérocheau Arnaud S.; Andreou E.; Pereira Köster L. V. G.; Robert T. Selective Synthesis Of Monoesters Of Itaconic Acid With Broad Substrate Scope: Biobased Alternatives To Acrylic Acid?. ACS Sustainable Chem. Eng. 2020, 8 (3), 1583–1590. 10.1021/acssuschemeng.9b06330. DOI
Papadopoulos L.; Malitowski N. M.; Bikiaris D.; Robert T. Bio-Based Additive Manufacturing Materials: An In-Depth Structure-Property Relationship Study Of Uv-Curing Polyesters From Itaconic Acid. Eur. Polym. J. 2023, 186, 111872.10.1016/j.eurpolymj.2023.111872. DOI
Dicks J.; Masela S. Itaconic Acid As An Effective Biobased Platform Molecule For Vat Photopolymerisation Additive Manufacturing. MATEC Web of Conferences 2024, 406, 03013.10.1051/matecconf/202440603013. DOI
Gaglieri C.; Alarcon R.; de Moura A.; Magri R.; Rinaldo D.; Bannach G. Effect Of Isomerization And Copolymerization Of Itaconic Anhydride During The Synthesis Of Renewable Monomers Using Vegetable Oils. J. Braz. Chem. Soc. 2023, 34, 600.10.21577/0103-5053.20220134. DOI
Conti Silva J. A.; Walton H.; Dever S.; Kardel K.; Martins Lacerda T.; Lopes Quirino R. Itaconic Anhydride As A Green Compatibilizer In Composites Prepared By The Reinforcement Of A Tung Oil-Based Thermosetting Resin With Miscanthus, Pine Wood, Or Algae Biomass. Coatings 2023, 13 (1), 25.10.3390/coatings13010025. DOI
Afewerki S.; Edlund U. Engineering An All-Biobased Solvent- And Styrene-Free Curable Resin. ACS Polymers Au 2023, 3 (6), 447–456. 10.1021/acspolymersau.3c00015. PubMed DOI PMC
Vetri Buratti V.; Sanz de Leon A.; Maturi M.; Sambri L.; Molina S. I.; Comes Franchini M. Itaconic-Acid-Based Sustainable Poly(Ester Amide) Resin For Stereolithography. Macromolecules 2022, 55 (8), 3087–3095. 10.1021/acs.macromol.1c02525. PubMed DOI PMC
Chaudhary M. L.; Patel R.; Parekh S.; Chaudhari S.; Gupta R. K. Soy-Based Polyester: Sustainable Solutions For Emerging Materials. Polym. Eng. Sci. 2024, 64 (9), 4582–4604. 10.1002/pen.26870. DOI
Mehta L. B.; Wadgaonkar K. K.; Jagtap R. N. Synthesis And Characterization Of High Bio-Based Content Unsaturated Polyester Resin For Wood Coating From Itaconic Acid: Effect Of Various Reactive Diluents As An Alternative To Styrene. J. Dispersion Sci. Technol. 2019, 40 (5), 756–765. 10.1080/01932691.2018.1480964. DOI
Dourado Fernandes C.; Francisco Oechsler B.; Sayer C.; de Oliveira D.; Hermes de Araújo P. H. Recent Advances And Challenges On Enzymatic Synthesis Of Biobased Polyesters Via Polycondensation. Eur. Polym. J. 2022, 169, 111132.10.1016/j.eurpolymj.2022.111132. DOI
Yadav S. K.; Hu F.; La Scala J. J.; Palmese G. R. Toughening Anhydride-Cured Epoxy Resins Using Fatty Alkyl-Anhydride-Grafted Epoxidized Soybean Oil. ACS Omega 2018, 3 (3), 2641–2651. 10.1021/acsomega.7b02042. PubMed DOI PMC
Chakraborty I.; Chatterjee K. Polymers And Composites Derived From Castor Oil As Sustainable Materials And Degradable Biomaterials: Current Status And Emerging Trends. Biomacromolecules 2020, 21 (12), 4639–4662. 10.1021/acs.biomac.0c01291. PubMed DOI
Prabakaran R.; Marie J. M.; Xavier A. J. M. Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid And Itaconic Acid In Vitro Antibacterial, And Cytocompatibility Studies: Synthesis, In Vitro Antibacterial, And Cytocompatibility Studies. ACS Applied Bio Materials 2020, 3 (9), 5708–5721. 10.1021/acsabm.0c00480. PubMed DOI
Fakhri V.; Janmaleki Dehchani A.; Davoudi S. A.; Tavakoli Dare M.; Jafari A.; Nemati Mahand S.; Dawi E. A.; Khonakdar H. A. Advancing Biomedical Frontiers With Functionalized Soybean Oil: Insights Into Tissue Engineering And Drug Delivery. Journal of Polymers and the Environment 2024, 32 (11), 5516–5543. 10.1007/s10924-024-03357-8. DOI
Clerget M.; Gagnon E.; Claverie J. P. Photopolymerization Of Limonene Dioxide And Vegetable Oils As Biobased 3D-Printing Stereolithographic Formulation. Polymers 2024, 16 (7), 965.10.3390/polym16070965. PubMed DOI PMC
Wang X.; Cai X.; Hu J.; Li J.; Zhou R.; Lin S. Green Synthesis Of Soybean Oil-Derived Uv-Curable Resins For High-Resolution 3D Printing. Additive Manufacturing 2024, 95, 104543.10.1016/j.addma.2024.104543. DOI
Poletto M. Maleated Soybean Oil As Coupling Agent In Recycled Polypropylene/Wood Flour Composites: Mechanical, Thermal, And Morphological Properties. Journal of Thermoplastic Composite Materials 2019, 32 (8), 1056–1067. 10.1177/0892705718785707. DOI
Pellegrene B.; Hammer T. J.; Pugh C.; Soucek M. D. Maleated Soybean Oil Derivatives As Versatile Reactive Diluents: Synthesis, Characterization, And Evaluation. J. Appl. Polym. Sci. 2022, 139 (12), 51814.10.1002/app.51814. DOI
Yu X.; Hu Y.; Lei W.; Liu C.; Zhou Y. Development Of Catalyst-Free Self-Healing Biobased Uv-Curable Coatings Via Maleate Monoester Transesterification. Coatings 2023, 13 (1), 110.10.3390/coatings13010110. DOI
Mandal M.; Nath D.; Maji T. K. Wood Polymer Nanocomposites From Functionalized Soybean Oil And Nanoclay. Wood Science and Technology 2018, 52 (6), 1621–1643. 10.1007/s00226-018-1043-9. DOI
Farshchi N.; Gedan-Smolka M. Polyurethane Powder Coatings: A Review Of Composition And Characterization. Ind. Eng. Chem. Res. 2020, 59 (34), 15121–15132. 10.1021/acs.iecr.0c02320. DOI
Tachibana K.; Abe H. Studies On Thermo-Mechanical And Thermal Degradation Properties Of Bio-Based Polyurethanes Synthesized From Vanillin-Derived Diol And Lysine Diisocyanate. Polym. Degrad. Stab. 2019, 167, 283–291. 10.1016/j.polymdegradstab.2019.07.014. DOI
Peng F.; Yang X.; Zhu Y.; Wang G. Effect Of The Symmetry Of Polyether Glycols On Structure-Morphology-Property Behavior Of Polyurethane Elastomers. Polymer 2022, 239, 124429.10.1016/j.polymer.2021.124429. DOI
Hung C.-S.; Barlow D. E.; Varaljay V. A.; Drake C. A.; Crouch A. L.; Russell J. N.; Nadeau L. J.; Crookes-Goodson W. J.; Biffinger J. C. The Biodegradation Of Polyester And Polyester Polyurethane Coatings Using Papiliotrema Laurentii. International Biodeterioration & Biodegradation 2019, 139, 34–43. 10.1016/j.ibiod.2019.02.002. DOI
Tan A. C. W.; Polo-Cambronell B. J.; Provaggi E.; Ardila-Suárez C.; Ramirez-Caballero G. E.; Baldovino-Medrano V. G.; Kalaskar D. M. Design And Development Of Low Cost Polyurethane Biopolymer Based On Castor Oil And Glycerol For Biomedical Applications. Biopolymers 2018, 109 (2), e23078.10.1002/bip.23078. PubMed DOI PMC
Lu S.; Shen T.; Xing J.; Song Q.; Shao J.; Zhang J.; Xin C. Preparation And Characterization Of Cross-Linked Polyurethane Shell Microencapsulated Phase Change Materials By Interfacial Polymerization. Mater. Lett. 2018, 211, 36–39. 10.1016/j.matlet.2017.09.074. DOI
Bian X.; He J.; He M.; Liu B.; Zhang Y. Study On The Properties Of Polyurethane–Urea Elastomers Prepared By Tdi/Mdi Mixture. International Journal of Polymer Science 2024, 2024 (1), 9248135.10.1155/2024/9248135. DOI
Li J.; Jiang S.; Ding L.; Wang L. Reaction Kinetics And Properties Of Mdi Base Poly (Urethane-Isocyanurate) Network Polymers. Des. Monomers Polym. 2021, 24 (1), 265–273. 10.1080/15685551.2021.1971858. PubMed DOI PMC
He H.; Shao Z.; Hu S.; Lu Y.; Li F. Comparative Study On Curing Kinetics Of Mdi-Based Polyurethanes With Different Chain Length Diol Curing Agents. Polymer 2024, 290, 126541.10.1016/j.polymer.2023.126541. DOI
Ma Z.; Liu X.; Xu X.; Liu L.; Yu B.; Maluk C.; Huang G.; Wang H.; Song P. Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings For Superhydrophobic Fire-Extinguishing Thermal Insulation Foam. ACS Nano 2021, 15 (7), 11667–11680. 10.1021/acsnano.1c02254. PubMed DOI
Rastegar N.; Ershad-Langroudi A.; Parsimehr H.; Moradi G. Sound-Absorbing Porous Materials: A Review On Polyurethane-Based Foams. Iranian Polymer Journal 2022, 31 (1), 83–105. 10.1007/s13726-021-01006-8. DOI
Samali B.; Nemati S.; Sharafi P.; Tahmoorian F.; Sanati F. Structural Performance Of Polyurethane Foam-Filled Building Composite Panels: A State-Of-The-Art. Journal of Composites Science 2019, 3 (2), 40.10.3390/jcs3020040. DOI
Felsenthal L. M.; Kim S.; Dichtel W. R. Robust Self-Healing Adhesives Based On Dynamic Urethane Exchange Reactions. ACS Appl. Mater. Interfaces 2024, 16 (42), 57687–57694. 10.1021/acsami.4c12415. PubMed DOI
Kortenbrede L.; Heider J.; Heckroth H.; Leimenstoll M.; Steuer H.; Sütterlin J.; Weise F.; Hokamp T. Development And Characterization Of Biodegradable Polyurethane-Urea-Based Hydrogels For The Prevention Of Postoperative Peritoneal Adhesions. ACS Omega 2024, 9 (31), 34008–34020. 10.1021/acsomega.4c04577. PubMed DOI PMC
Ercegović Ražić S.; Ludaš A.; Kaurin T.; Zonjić T. Applicability Of Polymers Printed On Textiles With A 3D Printer For Possible Use In Car Interior. IOP Conference Series: Earth and Environmental Science 2023, 1128 (1), 012027.10.1088/1755-1315/1128/1/012027. DOI
Rizzo F.; Cuomo S.; Pinto F.; Pucillo G.; Meo M. Thermoplastic Polyurethane Composites For Railway Applications: Experimental And Numerical Study Of Hybrid Laminates With Improved Impact Resistance. Journal of Thermoplastic Composite Materials 2021, 34 (8), 1009–1036. 10.1177/0892705719856049. DOI
Acharya S.; Swain L. M.; Samal R. R.; Parashar S. K. S.; Sahoo B. P. Fabrication Of Multiwalled Carbon Nanotubes (Mwcnt) And Reduced Graphene Oxide (Rgo) -Based Thermoplastic Polyurethane And Polypyrrole Nanocomposites For Electromagnetic Wave Absorption Application With A Low Reflection. Polym. Compos. 2024, 45 (4), 3769–3784. 10.1002/pc.28027. DOI
Kwon S. -il; Kalker S. V.; Choi S. H.; Kim K.; Park K. S.; Kang S.; Kim C.; Ryu S. C. Design And Fabrication Of Transformable Head Structures For Endoscopic Catheters. 2019 International Conference on Robotics and Automation (ICRA) 2019, 373–378. 10.1109/ICRA.2019.8794256. DOI
Yuan S.; Cheng L.; Tan Z. Characteristics And Preparation Of Oil-Coated Fertilizers: A Review. J. Controlled Release 2022, 345, 675–684. 10.1016/j.jconrel.2022.03.040. PubMed DOI
Deng Y.; Dewil R.; Appels L.; Ansart R.; Baeyens J.; Kang Q. Reviewing The Thermo-Chemical Recycling Of Waste Polyurethane Foam. Journal of Environmental Management 2021, 278, 111527.10.1016/j.jenvman.2020.111527. PubMed DOI
Patel V. R.; Dumancas G. G.; Viswanath L. C. K.; Maples R.; Subong B. J. J. Castor Oil: Properties, Uses, And Optimization Of Processing Parameters In Commercial Production. Lipid Insights 2016, 9, 1.10.4137/LPI.S40233. PubMed DOI PMC
Molefe M.; Nkazi D.; Mukaya H. E. Method Selection For Biojet And Biogasoline Fuel Production From Castor Oil: A Review. Energy Fuels 2019, 33 (7), 5918–5932. 10.1021/acs.energyfuels.9b00384. DOI
Abukhadra M. R.; Basyouny M. G.; El-Sherbeeny A. M.; El-Meligy M. A.; Luqman M. Sonocogreen Decoration Of Clinoptilolite By Cao Nanorods As Ecofriendly Catalysts In The Transesterification Of Castor Oil Into Biodiesel. Response Surface Studies. ACS Omega 2021, 6 (2), 1556–1567. 10.1021/acsomega.0c05371. PubMed DOI PMC
Nautiyal O. H. Castor Oil And Its Derivatives’ With Market Growth, Commercial Perspective: Review. Organic & Medicinal Chemistry International Journal 2018, 6 (4), 555692.10.19080/OMCIJ.2018.06.555692. DOI
Yadav S.; Khan A.; Hamdani S. S.; Rabnawaz M. Degradable Polymeric Waxes For Paper Coating Applications. ACS Applied Polymer Materials 2024, 6 (6), 3263–3272. 10.1021/acsapm.3c03072. DOI
Wu Z.; Thoresen P. P.; Matsakas L.; Rova U.; Christakopoulos P.; Shi Y. Facile Synthesis Of Lignin-Castor Oil-Based Oleogels As Green Lubricating Greases With Excellent Lubricating And Antioxidation Properties. ACS Sustainable Chem. Eng. 2023, 11 (34), 12552–12561. 10.1021/acssuschemeng.3c01801. DOI
Li J.; Zhang H.; Hong C.; Liu M.; Wang Y.; Han Y.; Song Y.; Zhou C. Realization Of Customizable Performance Castor Oil-Based Waterborne Polyurethane Antiseptic Coatings Via Arbutin. Industrial Crops and Products 2024, 212, 118315.10.1016/j.indcrop.2024.118315. DOI
Zhao X.; Qi X.; Chen Q.; Ao X.; Guo Y. Sulfur-Modified Coated Slow-Release Fertilizer Based On Castor Oil: Synthesis And A Controlled-Release Model. ACS Sustainable Chem. Eng. 2020, 8 (49), 18044–18053. 10.1021/acssuschemeng.0c06056. DOI
YEBOAH A.; YING S.; LU J.; XIE Y.; AMOANIMAA-DEDE H.; BOATENG K. G. A.; CHEN M.; YIN X. Castor Oil (Ricinus Communis): A Review On The Chemical Composition And Physicochemical Properties. Food Science and Technology 2021, 41 (suppl 2), 399–413. 10.1590/fst.19620. DOI
Dave V. J.; Patel H. S. Synthesis And Characterization Of Interpenetrating Polymer Networks From Transesterified Castor Oil Based Polyurethane And Polystyrene. Journal of Saudi Chemical Society 2017, 21 (1), 18–24. 10.1016/j.jscs.2013.08.001. DOI
Gurgel D.; Bresolin D.; Sayer C.; Cardozo Filho L.; Hermes de Araújo P. H. Flexible Polyurethane Foams Produced From Industrial Residues And Castor Oil. Industrial Crops and Products 2021, 164, 113377.10.1016/j.indcrop.2021.113377. DOI
Liu X.; Sun F.; Liu Y.; Yao B.; Liang H.; Mu M.; Liu X.; Bi H.; Wang Z.; Qian C.; Li X. Synthesis And Properties Of Castor Oil–Based Cationic Waterborne Polyurethane Modified By Epoxy Resin. Colloid Polym. Sci. 2024, 302 (1), 13–22. 10.1007/s00396-023-05174-2. DOI
Nogueira P. H. B. O.; Costa I. M.; Araújo R. C. S.; Pasa V. M. D. Bio-Oil-Based Polyurethane Coatings: A Sustainable Approach To Corrosion Protection. Prog. Org. Coat. 2024, 194, 108572.10.1016/j.porgcoat.2024.108572. DOI
Laukkanen T.; Reddy P. G.; Barua A.; Kumar M.; Kolpakov K.; Tirri T.; Sharma V. Sustainable Castor Oil-Derived Cross-Linked Poly(Ester-Urethane) Elastomeric Films For Stretchable Transparent Conductive Electrodes And Heaters. Journal of Materials Chemistry A 2024, 12 (47), 33177–33192. 10.1039/D4TA05338A. DOI
Li S.; Xu C.; Yang W.; Tang Q. Thermoplastic Polyurethanes Stemming From Castor Oil: Green Synthesis And Their Application In Wood Bonding. Coatings 2017, 7 (10), 159.10.3390/coatings7100159. DOI
Rodrigues J. D. O.; Andrade C. K. Z.; Quirino R. L.; Sales M. J. A. Non-Isocyanate Poly(Acyl-Urethane) Obtained From Urea And Castor (Ricinus Communis L.) Oil. Prog. Org. Coat. 2022, 162, 106557.10.1016/j.porgcoat.2021.106557. DOI
Patel J.; Chaudhary M. L.; Gupta R. K. Green Gold: Harnessing Used Vegetable Oil For Sustainable Polyurethane Production. Bio-Based Polymers: Farm to Industry. Vol. 2: Current Trends and Applications 2024, 1486, 1–19. 10.1021/bk-2024-1486.ch001. DOI
Gomez J. C.; Zakaria R.; Aung M. M.; Mokhtar M. N.; Yunus R. Synthesis And Characterization Of Polyurethanes From Residual Palm Oil With High Poly-Unsaturated Fatty Acid Oils As Additive. Polymers 2021, 13 (23), 4214.10.3390/polym13234214. PubMed DOI PMC
Brzeska J.; Piotrowska-Kirschling A. A Brief Introduction To The Polyurethanes According To The Principles Of Green Chemistry. Processes 2021, 9 (11), 1929.10.3390/pr9111929. DOI
Salleh W. N. F. W.; Tahir S. M.; Mohamed N. S. Synthesis Of Waste Cooking Oil-Based Polyurethane For Solid Polymer Electrolyte. Polym. Bull. 2018, 75 (1), 109–120. 10.1007/s00289-017-2019-x. DOI
Paciorek-Sadowska J.; Borowicz M.; Isbrandt M.; Czupryński B.; Apiecionek Ł. The Use Of Waste From The Production Of Rapeseed Oil For Obtaining Of New Polyurethane Composites. Polymers 2019, 11 (9), 1431.10.3390/polym11091431. PubMed DOI PMC
Volkova E. R.; Strelnikov V. N.; Borisova I. A.; Slobodinyuk A. I.; Savchuk A. V. The Effect Of The Isocyanate–Hydroxyl Ratio On The Structure And Properties Of Hard Polyurethanes. Polymer Science, Series D 2018, 11 (3), 292–296. 10.1134/S1995421218030231. DOI
Usman A.; Hussain M. T.; Akram N.; Zuber M.; Sultana S.; Aftab W.; Zia K. M.; Maqbool M.; Alanazi Y. M.; Nazir A.; Javaid M. A. Modulating Alginate-Polyurethane Elastomer Properties: Influence Of Nco/Oh Ratio With Aliphatic Diisocyanate. Int. J. Biol. Macromol. 2024, 278, 134657.10.1016/j.ijbiomac.2024.134657. PubMed DOI
Hussain N. I. A. M.; Bonnia N. N.; Hirzin R. S. F. N.; Ali E. S.; Zawawi E. Z. E. Effect Of Nco/Oh Ratio On Physical And Mechanical Properties Of Castor-Based Polyurethane Grouting Materials. Journal of Physics: Conference Series 2019, 1349 (1), 012113.10.1088/1742-6596/1349/1/012113. DOI
Ito N. M.; Gouveia J. R.; Vidotti S. E.; Ferreira M. J. G. C.; dos Santos D. J. Interplay Of Polyurethane Mechanical Properties And Practical Adhesion Of Flexible Multi-Layer Laminates. J. Adhes. 2020, 96 (14), 1219–1232. 10.1080/00218464.2019.1580580. DOI
de Lima A. P. D.; Aschenbrenner E. M.; Oliveira S. d. N.; Doucet J.-B.; Weiss C. K.; Ziener U.; Fonseca L. P.; Ricardo N. M. P. S.; de Freitas L. L.; Petzhold C. L.; Landfester K. Towards Regioselective Enzymatic Hydrolysis And Glycerolysis Of Tricaprylin In Miniemulsion And The Direct Preparation Of Polyurethane From The Hydrolysis Products. Journal of Molecular Catalysis B: Enzymatic 2013, 98, 127–137. 10.1016/j.molcatb.2013.10.013. DOI
Calderon M. J. P.; Dumancas G. G.; Gutierrez C. S.; Lubguban A. A.; Alguno A. C.; Malaluan R. M.; Lubguban A. A. Producing Polyglycerol Polyester Polyol For Thermoplastic Polyurethane Application: A Novel Valorization Of Glycerol, A By-Product Of Biodiesel Production. Heliyon 2023, 9 (9), e19491.10.1016/j.heliyon.2023.e19491. PubMed DOI PMC
Fu K.; Zhang L.; Lin Y.; Zhang W.; Zhao Z.; Chen W.; Chang C. Valorization Of Xylose Residues And Crude Glycerol For Production Of Biopolyurethane Foam. Waste and Biomass Valorization 2024, 15 (6), 3519–3533. 10.1007/s12649-023-02400-4. DOI
Salcedo M. L. D.; Omisol C. J. M.; Maputi A. O.; Estrada D. J. E.; Aguinid B. J. M.; Asequia D. M. A.; Erjeno D. J. D.; Apostol G.; Siy H.; Malaluan R. M.; Alguno A. C.; Dumancas G. G.; Lubguban A. A. Production Of Bio-Based Polyol From Coconut Fatty Acid Distillate (Cfad) And Crude Glycerol For Rigid Polyurethane Foam Applications. Materials 2023, 16 (15), 5453.10.3390/ma16155453. PubMed DOI PMC
Yusuf B. O.; Oladepo S. A.; Ganiyu S. A. Biodiesel Production From Waste Cooking Oil Via Β-Zeolite-Supported Sulfated Metal Oxide Catalyst Systems. ACS Omega 2023, 8 (26), 23720–23732. 10.1021/acsomega.3c01892. PubMed DOI PMC
Fu K.; Zhang L.; Lin Y.; Zhang W.; Zhao Z.; Chen W.; Chang C. Valorization Of Xylose Residues And Crude Glycerol For Production Of Biopolyurethane Foam. Waste and Biomass Valorization 2024, 15 (6), 3519–3533. 10.1007/s12649-023-02400-4. DOI
Ma Y.; Hu Y.; Fang Y.; Li Q.; Huang Q.; Shang Q.; Zhang M.; Li S.; Jia P.; Zhou Y. Recent Advances In Vegetable Oil Based Fine Chemicals And Polymers. Green Materials 2024, 2400083.10.1680/jgrma.24.00083. DOI
Paraskar P. M.; Prabhudesai M. S.; Hatkar V. M.; Kulkarni R. D. Vegetable Oil Based Polyurethane Coatings – A Sustainable Approach: A Review. Prog. Org. Coat. 2021, 156, 106267.10.1016/j.porgcoat.2021.106267. DOI
Bhutra K.; Datta S.; More A. P. A Comprehensive Review On Biobased Hyperbranched Polymers. Polym. Bull. 2024, 81 (14), 12287–12345. 10.1007/s00289-024-05293-y. DOI
Rayung M.; Ghani N. A.; Hasanudin N. A Review On Vegetable Oil-Based Non Isocyanate Polyurethane: Towards A Greener And Sustainable Production Route. RSC Adv. 2024, 14 (13), 9273–9299. 10.1039/D3RA08684D. PubMed DOI PMC
Shafiq M.; Butt M. T. Z.; Khan S. M. Synthesis Of Diethylene Glycol-Based Aliphatic Polyester Polyol And Effect Of Glycerin Crosslinker On Its Properties. Journal of Polymer Research 2022, 29 (9), 401.10.1007/s10965-022-03199-9. DOI
Malewska E.; Kirpluks M.; Słota J.; Banaś J.; Kurańska M. Open-Cell Bio-Based Polyurethane Foams Modified With Biopolyols From Non-Edible Oilseed Radish Oil. Clean Technologies and Environmental Policy 2024, 26 (8), 2503–2516. 10.1007/s10098-024-02740-2. DOI
Desroches M.; Escouvois M.; Auvergne R.; Caillol S.; Boutevin B. From Vegetable Oils To Polyurethanes: Synthetic Routes To Polyols And Main Industrial Products. Polym. Rev. 2012, 52 (1), 38–79. 10.1080/15583724.2011.640443. DOI
Frias C. F.; Fonseca A. C.; Coelho J. F. J.; Serra A. C. Straightforward Synthesis Of Amido Polyols From Epoxidized Soybean Oil For Polyurethane Films. Macromol. Mater. Eng. 2021, 306 (11), 2100453.10.1002/mame.202100453. DOI
Stirna U.; Fridrihsone A.; Lazdiṇa B.; Misa̅ne M.; Vilsone D. Biobased Polyurethanes From Rapeseed Oil Polyols: Structure, Mechanical And Thermal Properties. Journal of Polymers and the Environment 2013, 21 (4), 952–962. 10.1007/s10924-012-0560-0. DOI
Malani R. S.; Malshe V. C.; Thorat B. N. Polyols And Polyurethanes From Renewable Sources: Past, Present And Future—Part 1: Vegetable Oils And Lignocellulosic Biomass. Journal of Coatings Technology and Research 2022, 19 (1), 201–222. 10.1007/s11998-021-00490-0. DOI
Fridrihsone A.; Romagnoli F.; Kirsanovs V.; Cabulis U. Life Cycle Assessment Of Vegetable Oil Based Polyols For Polyurethane Production. Journal of Cleaner Production 2020, 266, 121403.10.1016/j.jclepro.2020.121403. DOI
Kirpluks M.; Vanags E.; Abolins A.; Michalowski S.; Fridrihsone A.; Cabulis U. High Functionality Bio-Polyols From Tall Oil And Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols. Materials 2020, 13 (8), 1985.10.3390/ma13081985. PubMed DOI PMC
Liang H.; Lu Q.; Liu M.; Ou R.; Wang Q.; Quirino R. L.; Luo Y.; Zhang C. Uv Absorption, Anticorrosion, And Long-Term Antibacterial Performance Of Vegetable Oil Based Cationic Waterborne Polyurethanes Enabled By Amino Acids. Chemical Engineering Journal 2021, 421, 127774.10.1016/j.cej.2020.127774. DOI
Malewska E.; Polaczek K.; Kurańska M. Impact Of Various Catalysts On Transesterification Of Used Cooking Oil And Foaming Processes Of Polyurethane Systems. Materials 2022, 15 (21), 7807.10.3390/ma15217807. PubMed DOI PMC
Donadini R.; Boaretti C.; Lorenzetti A.; Roso M.; Penzo D.; Dal Lago E.; Modesti M. Chemical Recycling Of Polyurethane Waste Via A Microwave-Assisted Glycolysis Process. ACS Omega 2023, 8 (5), 4655–4666. 10.1021/acsomega.2c06297. PubMed DOI PMC
Liu B.; Westman Z.; Richardson K.; Lim D.; Stottlemyer A. L.; Farmer T.; Gillis P.; Vlcek V.; Christopher P.; Abu-Omar M. M. Opportunities In Closed-Loop Molecular Recycling Of End-Of-Life Polyurethane. ACS Sustainable Chem. Eng. 2023, 11 (16), 6114–6128. 10.1021/acssuschemeng.2c07422. PubMed DOI PMC
Donadini R.; Boaretti C.; Scopel L.; Lorenzetti A.; Modesti M. Deamination Of Polyols From The Glycolysis Of Polyurethane. Chemistry A European J 2024, 30 (3), e202301919.10.1002/chem.202301919. PubMed DOI
Liu J.; He J.; Xue R.; Xu B.; Qian X.; Xin F.; Blank L. M.; Zhou J.; Wei R.; Dong W.; Jiang M. Biodegradation And Up-Cycling Of Polyurethanes: Progress, Challenges, And Prospects. Biotechnology Advances 2021, 48, 107730.10.1016/j.biotechadv.2021.107730. PubMed DOI
Vanbergen T.; Verlent I.; De Geeter J.; Haelterman B.; Claes L.; De Vos D. Recycling Of Flexible Polyurethane Foam By Split-Phase Alcoholysis: Identification Of Additives And Alcoholyzing Agents To Reach Higher Efficiencies. ChemSusChem 2020, 13 (15), 3835–3843. 10.1002/cssc.202000949. PubMed DOI
Mankar S. V.; Wahlberg J.; Warlin N.; Valsange N. G.; Rehnberg N.; Lundmark S.; Jannasch P.; Zhang B. Short-Loop Chemical Recycling Via Telechelic Polymers For Biobased Polyesters With Spiroacetal Units. ACS Sustainable Chem. Eng. 2023, 11 (13), 5135–5146. 10.1021/acssuschemeng.2c07176. DOI
Jašek V.; Montag P.; Menčík P.; Přikryl R.; Kalendová A.; Figalla S. Chemically Recycled Commercial Polyurethane (Pur) Foam Using 2-Hydroxypropyl Ricinoleate As A Glycolysis Reactant For Flexibility-Enhanced Automotive Applications. RSC Adv. 2024, 14 (41), 29966–29978. 10.1039/D4RA04972A. PubMed DOI PMC
Sansonetti E.; Ci̅rule D.; Andersons B.; Andersone I.; Kuka E. Changes In Ecological Linseed Oil Paints During Outdoor Weathering Of Wood Panels. Key Engineering Materials 2020, 850, 316–321. 10.4028/www.scientific.net/KEM.850.316. DOI
Hayta P.; Oktav M.; Ateş Duru Ö. An Ecological Approach To Printing Industry: Development Of Ecofriendly Offset Printing Inks Using Vegetable Oils And Pine Resin As Renewable Raw Materials And Evaluation Of Printability. Color Research & Application 2022, 47 (1), 164–171. 10.1002/col.22708. DOI
Machado M.; Rodriguez-Alcalá L. M.; Gomes A. M.; Pintado M. Vegetable Oils Oxidation: Mechanisms, Consequences And Protective Strategies. Food Reviews International 2023, 39 (7), 4180–4197. 10.1080/87559129.2022.2026378. DOI
Zhou Z.; Crilley L. R.; Ditto J. C.; VandenBoer T. C.; Abbatt J. P. D. Chemical Fate Of Oils On Indoor Surfaces: Ozonolysis And Peroxidation. Environ. Sci. Technol. 2023, 57 (41), 15546–15557. 10.1021/acs.est.3c04009. PubMed DOI
Rosu L.; Varganici C. – D.; Mustata F.; Rosu D.; Rosca I.; Rusu T. Epoxy Coatings Based On Modified Vegetable Oils For Wood Surface Protection Against Fungal Degradation. ACS Appl. Mater. Interfaces 2020, 12 (12), 14443–14458. 10.1021/acsami.0c00682. PubMed DOI
Alarcon R. T.; Gaglieri C.; Lamb K. J.; Cavalheiro É. T. G.; North M.; Bannach G. A New Acrylated Monomer From Macaw Vegetable Oil That Polymerizes Without External Photoinitiators. Journal of Polymer Research 2021, 28 (11), 425.10.1007/s10965-021-02787-5. DOI
Thorbole A.; Bodhak C.; Sahu P.; Gupta R. K. Green Ink Revolution 3D Printing With Vegetable Oil-Derived Inks: Pioneering Eco-Friendly 3D Printing With Vegetable Oil-Derived Inks. Polym. Eng. Sci. 2024, 64 (12), 5879–5902. 10.1002/pen.26974. DOI
Thomas J.; Soucek M. D. Cationic Copolymers Of Norbornylized Seed Oils For Fiber-Reinforced Composite Applications. ACS Omega 2022, 7 (38), 33949–33962. 10.1021/acsomega.2c02569. PubMed DOI PMC
Acik G. Synthesis Of Soybean Oil Biomass Main Chain Poly(Acrylic Acid)-Poly(ε-Caprolactone) Based Heterograft Copolymer By Simultaneous Photo-Induced Metal-Free Atrp And Ring-Opening Polymerizations. Journal of Polymers and the Environment 2023, 31 (1), 102–111. 10.1007/s10924-022-02630-y. DOI
Merino D.; Quilez-Molina A. I.; Perotto G.; Bassani A.; Spigno G.; Athanassiou A. A Second Life For Fruit And Vegetable Waste: A Review On Bioplastic Films And Coatings For Potential Food Protection Applications. Green Chem. 2022, 24 (12), 4703–4727. 10.1039/D1GC03904K. DOI
Milani J. M.; Nemati A. Lipid-Based Edible Films And Coatings: A Review Of Recent Advances And Applications. Journal of Packaging Technology and Research 2022, 6 (1), 11–22. 10.1007/s41783-021-00130-3. DOI
Alam M.; Ahmed M.; Alandis N. M.; Altaf M.; Almuhammadi Y. M.; Ahmad A. Corn Oil Based Cinnamate Amide/Fe2O3 Nanocomposite Anticorrosive Coating Material. Journal of King Saud University - Science 2022, 34 (8), 102365.10.1016/j.jksus.2022.102365. DOI
Deng H.; Xie F.; Shi H.; Li Y.; Liu S.; Zhang C. Uv Resistance, Anticorrosion And High Toughness Bio-Based Waterborne Polyurethane Enabled By A Sorbitan Monooleate. Chemical Engineering Journal 2022, 446, 137124.10.1016/j.cej.2022.137124. DOI
Ma T.; Li L.; Liu Z.; Zhang J.; Guo C.; Wang Q. A Facile Strategy To Construct Vegetable Oil-Based, Fire-Retardant, Transparent And Mussel Adhesive Intumescent Coating For Wood Substrates. Industrial Crops and Products 2020, 154, 112628.10.1016/j.indcrop.2020.112628. DOI
Patil C. K.; Jung D. W.; Jirimali H. D.; Baik J. H.; Gite V. V.; Hong S. C. Nonedible Vegetable Oil-Based Polyols In Anticorrosive And Antimicrobial Polyurethane Coatings. Polymers 2021, 13 (18), 3149.10.3390/polym13183149. PubMed DOI PMC
Sykam K.; Hussain S. S.; Sivanandan S.; Narayan R.; Basak P. Non-Halogenated Uv-Curable Flame Retardants For Wood Coating Applications: Review. Prog. Org. Coat. 2023, 179, 107549.10.1016/j.porgcoat.2023.107549. DOI
Briede S.; Platnieks O.; Barkane A.; Sivacovs I.; Leitans A.; Lungevics J.; Gaidukovs S. Tailored Biobased Resins From Acrylated Vegetable Oils For Application In Wood Coatings. Coatings 2023, 13 (3), 657.10.3390/coatings13030657. DOI
Žigon J.; Kovač J.; Petrič M. The Influence Of Mechanical, Physical And Chemical Pre-Treatment Processes Of Wood Surface On The Relationships Of Wood With A Waterborne Opaque Coating. Prog. Org. Coat. 2022, 162, 106574.10.1016/j.porgcoat.2021.106574. DOI
Pansumdaeng J.; Kuntharin S.; Harnchana V.; Supanchaiyamat N. Fully Bio-Based Epoxidized Soybean Oil Thermosets For High Performance Triboelectric Nanogenerators. Green Chem. 2020, 22 (20), 6912–6921. 10.1039/D0GC01738H. DOI
Wang X.; Li C.; Zhang Y.; Ding W.; Yang M.; Gao T.; Cao H.; Xu X.; Wang D.; Said Z.; Debnath S.; Jamil M.; Ali H. M. Vegetable Oil-Based Nanofluid Minimum Quantity Lubrication Turning: Academic Review And Perspectives. Journal of Manufacturing Processes 2020, 59, 76–97. 10.1016/j.jmapro.2020.09.044. DOI
Mukherjee R. B.; Rajput C. V.; Chilkhaliya N. P.. A Sustainable Non-Edible Plant Oil Derived From Simarouba Glauca (Lakshmi Taru) Seed Oil And Its Prilezhaev Epoxidation: An Experimental And Computational Study. Biomass Conversion and Biorefinery 2024. 10.1007/s13399-024-06427-y. DOI
Rajput C. V.; Mukherjee R. B.; Sastry N. V.; Chikhaliya N. P. Epoxidized Cassia Fistula Seed Oil As Bio-Based Plasticizer For Poly(Vinyl Chloride) Soft Films. ACS Applied Polymer Materials 2022, 4 (12), 8926–8941. 10.1021/acsapm.2c01333. DOI
Liu M.; Lyu S.; Peng L.; Cai L.; Huang Z.; Lyu J. Improvement Of Toughness And Mechanical Properties Of Furfurylated Wood By Biosourced Epoxidized Soybean Oil. ACS Sustainable Chem. Eng. 2021, 9 (24), 8142–8155. 10.1021/acssuschemeng.1c01358. DOI
Lee J.-S.; Lee E.-s.; Han J. Enhancement Of The Water-Resistance Properties Of An Edible Film Prepared From Mung Bean Starch Via The Incorporation Of Sunflower Seed Oil. Sci. Rep. 2020, 10 (1), 13622.10.1038/s41598-020-70651-5. PubMed DOI PMC
Jašek V.; Fučík J.; Bartoš O.; Figalla S.; Přikryl R. Photocurable Oil-Based Thermosets Containing Modifiers From Renewable Sources For Coating Applications. ACS Polymers Au 2024, 4 (6), 527–539. 10.1021/acspolymersau.4c00068. PubMed DOI PMC
Zeng K.; Gu J.; Cao C. Facile Approach For Ecofriendly, Low-Cost, And Water-Resistant Paper Coatings Via Palm Kernel Oil. ACS Appl. Mater. Interfaces 2020, 12 (16), 18987–18996. 10.1021/acsami.0c00067. PubMed DOI
Balasubramaniam S. P. L.; Patel A. S.; Nayak B. Surface Modification Of Cellulose Nanofiber Film With Fatty Acids For Developing Renewable Hydrophobic Food Packaging. Food Packaging and Shelf Life 2020, 26, 100587.10.1016/j.fpsl.2020.100587. DOI
Loesch-Zhang A.; Cordt C.; Geissler A.; Biesalski M. A Solvent-Free Approach To Crosslinked Hydrophobic Polymeric Coatings On Paper Using Vegetable Oil. Polymers 2022, 14 (9), 1773.10.3390/polym14091773. PubMed DOI PMC
Croll S. G. Surface Roughness Profile And Its Effect On Coating Adhesion And Corrosion Protection: A Review. Prog. Org. Coat. 2020, 148, 105847.10.1016/j.porgcoat.2020.105847. DOI
Ma L.; Ren C.; Wang J.; Liu T.; Yang H.; Wang Y.; Huang Y.; Zhang D. Self-Reporting Coatings For Autonomous Detection Of Coating Damage And Metal Corrosion: A Review. Chemical Engineering Journal 2021, 421, 127854.10.1016/j.cej.2020.127854. DOI
Khan A.; Qurashi A.; Badeghaish W.; Noui-Mehidi M. N.; Aziz M. A. Frontiers And Challenges In Electrochemical Corrosion Monitoring; Surface And Downhole Applications. Sensors 2020, 20 (22), 6583.10.3390/s20226583. PubMed DOI PMC
Alam M.; Ahmed M.; Altaf M.; Husain F. M. Rapeseed Oil-Based Hippurate Amide Nanocomposite Coating Material For Anticorrosive And Antibacterial Applications. Open Chemistry 2022, 20 (1), 725–735. 10.1515/chem-2022-0193. DOI
Swamy N. K.; Mohana K. N. S.; Hegde M. B.; Madhusudana A. M. Fabrication Of 1D Graphene Nanoribbon And Malenized Linseed Oil-Based Nanocomposite: A Highly Impervious Bio-Based Anti-Corrosion Coating Material For Mild Steel. J. Appl. Electrochem. 2022, 52 (7), 1133–1148. 10.1007/s10800-022-01692-z. DOI
Cordeiro Neto A. G.; Pellanda A. C.; de Carvalho Jorge A. R.; Floriano J. B.; Coelho Berton M. A. Preparation And Evaluation Of Corrosion Resistance Of A Self-Healing Alkyd Coating Based On Microcapsules Containing Tung Oil. Prog. Org. Coat. 2020, 147, 105874.10.1016/j.porgcoat.2020.105874. DOI
Oktay B.; Türkcan J. H.; Özdemir O. K.; Kayaman-Apohan N. Vegetable Oil-Based Epoxy Coating Materials For Self-Healing And Anticorrosive Applications. Macromol. Res. 2023, 31 (11), 1077–1086. 10.1007/s13233-023-00190-1. DOI
Pouladi J.; Mirabedini S. M.; Eivaz Mohammadloo H.; Rad N. G. Synthesis Of Novel Plant Oil-Based Isocyanate-Free Urethane Coatings And Study Of Their Anti-Corrosion Properties. Eur. Polym. J. 2021, 153, 110502.10.1016/j.eurpolymj.2021.110502. DOI
Chu S.; Zhang B.; Zhao X.; Soo H. S.; Wang F.; Xiao R.; Zhang H. Photocatalytic Conversion Of Plastic Waste: From Photodegradation To Photosynthesis. Adv. Energy Mater. 2022, 12 (22), 2200435.10.1002/aenm.202200435. DOI
Abd El Khalk A. A.; Betiha M. A.; Mansour A. S.; Abd El Wahed M. G.; Al-Sabagh A. M. High Degradation Of Methylene Blue Using A New Nanocomposite Based On Zeolitic Imidazolate Framework-8. ACS Omega 2021, 6 (40), 26210–26220. 10.1021/acsomega.1c03195. PubMed DOI PMC
Rao F.; Li X.; Li N.; Li L.; Liu Q.; Wang J.; Zhu X.; Chen Y. Photodegradation And Photostability Of Bamboo: Recent Advances. ACS Omega 2022, 7 (28), 24041–24047. 10.1021/acsomega.2c02035. PubMed DOI PMC
Fathi H.; Kazemirad S.; Nasir V.. Mechanical Degradation Of Wood Under Ultraviolet Radiation Characterized By Lamb Wave Propagation. Structural Control and Health Monitoring 2021, 28 ( (6), ). 10.1002/stc.2731. DOI
Meng X.; Zhou J.; Jin X.; Xia C.; Ma S.; Hong S.; Aladejana J. T.; Dong A.; Luo Y.; Li J.; Zhan X.; Yang R. High-Strength, High-Swelling-Resistant, High-Sensitivity Hydrogel Sensor Prepared With Wood That Retains Lignin. Biomacromolecules 2024, 25 (3), 1696–1708. 10.1021/acs.biomac.3c01228. PubMed DOI
Zhang Y.; Naebe M. Lignin: A Review On Structure, Properties, And Applications As A Light-Colored Uv Absorber. ACS Sustainable Chem. Eng. 2021, 9 (4), 1427–1442. 10.1021/acssuschemeng.0c06998. DOI
Liu B.; Zhang W.; Zeng J.; Gong N.; Ying G.; Li P.; Wang B.; Xu J.; Gao W.; Chen K. Acid-Catalyzed Phenolation Of Lignin With Tea Polyphenol: Enhancing Uv Resistance And Oxidation Resistance For Potential Applications. Int. J. Biol. Macromol. 2024, 267, 131462.10.1016/j.ijbiomac.2024.131462. PubMed DOI
Slabu A. I.; Miu L.; Ghibu E.; Stavarache C. E.; Stan R.; Teodorescu F. Bioconjugation Of Vegetable Oils With Uv Absorbers: New Approach In Skin Photoprotection. Molecules 2023, 28 (22), 7550.10.3390/molecules28227550. PubMed DOI PMC
Bansal R.; Nair S.; Pandey K. K. Uv Resistant Wood Coating Based On Zinc Oxide And Cerium Oxide Dispersed Linseed Oil Nano-Emulsion. Materials Today Communications 2022, 30, 103177.10.1016/j.mtcomm.2022.103177. DOI
Varganici C.-D.; Rosu L.; Rosu D.; Rosca I.; Ignat M.-E.; Ignat L. Surface Degradation Of Dgeba Epoxy Resins Cured With Structurally Different Amine Hardeners: Effects Of Uv Radiation. Polymers 2024, 16 (1), 67.10.3390/polym16010067. PubMed DOI PMC
Diógenes O. B. F.; de Oliveira D. R.; da Silva L. R. R.; Pereira Í. G.; Mazzetto S. E.; Araujo W. S.; Lomonaco D. Development Of Coal Tar-Free Coatings: Acetylated Lignin As A Bio-Additive For Anticorrosive And Uv-Blocking Epoxy Resins. Prog. Org. Coat. 2021, 161, 106533.10.1016/j.porgcoat.2021.106533. DOI
Yin J.; Xiong Y.; Zhou X.; Yang Z.; Yuan T. An Efficient Halogen-Free Reactive Flame-Retardant Active Diluent For Soy-Castor Oil-Based Fire Safety Uv-Curable Coatings. Prog. Org. Coat. 2022, 163, 106683.10.1016/j.porgcoat.2021.106683. DOI
Zhang X.; Guan Q.; Wen Y.; Wang Z.; Xie H. Improved Thermal Stability And Flame Retardancy Of Soybean Oil-Based Polyol Rigid Polyurethane Foams Modified With Magnesium Borate Hydroxide And Ammonium Polyphosphate. Sci. Rep. 2024, 14 (1), 17340.10.1038/s41598-024-68465-w. PubMed DOI PMC
Kurańska M.; Beneš H.; Sałasińska K.; Prociak A.; Malewska E.; Polaczek K. Development And Characterization Of “Green Open-Cell Polyurethane Foams” With Reduced Flammability. Materials 2020, 13 (23), 5459.10.3390/ma13235459. PubMed DOI PMC
Yin H.; Qiu Y.; Fang T.; Tian Z.; Zhang M.; Xu Y.; Liu J.; Wang Y.; Gui T.; Tan X. Preparation And Properties Of Biomass Castor Oil Polyurethane Films. Eur. Polym. J. 2024, 216, 113304.10.1016/j.eurpolymj.2024.113304. DOI
Pradeep S. V.; Kandasubramanian B.; Sidharth S. A Review On Recent Trends In Bio-Based Pressure Sensitive Adhesives. J. Adhes. 2023, 99 (14), 2145–2166. 10.1080/00218464.2023.2176761. DOI
Stammen E.; Bergenthun F.; Brokamp S.; Dilger K. Design Of Bio-Based Adhesives For Fuel Cell Applications. J. Adhes. 2025, 101 (1), 299–330. 10.1080/00218464.2024.2310604. DOI
Tenorio-Alfonso A.; Sánchez M. a C.; Franco J. M. a. A Review Of The Sustainable Approaches In The Production Of Bio-Based Polyurethanes And Their Applications In The Adhesive Field. Journal of Polymers and the Environment 2020, 28 (3), 749–774. 10.1007/s10924-020-01659-1. DOI
Gadhave R. V. I.; Gadhave C. R. Adhesives For The Paper Packaging Industry: An Overview. Open Journal of Polymer Chemistry 2022, 12 (02), 55–79. 10.4236/ojpchem.2022.122004. DOI
Li X.; Lin H.; Jiang H.; Zhang Y.; Liu B.; Sun Y.; Zhao C. Preparation And Properties Of A New Bio-Based Epoxy Resin/Diatomite Composite. Polym. Degrad. Stab. 2021, 187, 109541.10.1016/j.polymdegradstab.2021.109541. DOI
Wang Y.; Liang D.; Suo Z.; Jia K. Synergy Of Noncovalent Interlink And Covalent Toughener For Tough Hydrogel Adhesion. Extreme Mechanics Letters 2020, 39, 100797.10.1016/j.eml.2020.100797. DOI
Lallemang M.; Yu L.; Cai W.; Rischka K.; Hartwig A.; Haag R.; Hugel T.; Balzer B. N. Multivalent Non-Covalent Interactions Lead To Strongest Polymer Adhesion. Nanoscale 2022, 14 (10), 3768–3776. 10.1039/D1NR08338D. PubMed DOI
Zheng L.; McClelland D. J.; Rehmann K. M. S.; Barnett K. J.; Huber G. W.; Klier J. Bio-Based 1,5-Pentanediol As A Replacement For Petroleum-Derived 1,6-Hexanediol For Polyester Polyols, Coatings, And Adhesives. ACS Sustainable Chem. Eng. 2022, 10 (18), 5781–5791. 10.1021/acssuschemeng.1c08198. DOI
Li J.; Niu H.; Yu Y.; Gao Y.; Wu Q.; Wang F.; Sun P. Supramolecular Polydimethylsiloxane Elastomer With Enhanced Mechanical Properties And Self-Healing Ability Engineered By Synergetic Dynamic Bonds. ACS Applied Polymer Materials 2021, 3 (7), 3373–3382. 10.1021/acsapm.1c00271. DOI
Lim S. M.; Ryu J.; Sohn E.-H.; Lee S. G.; Park I. J.; Hong J.; Kang H. S. Flexible, Elastic, And Superhydrophobic/Superoleophilic Adhesive For Reusable And Durable Water/Oil Separation Coating. ACS Appl. Mater. Interfaces 2022, 14 (8), 10825–10835. 10.1021/acsami.1c23131. PubMed DOI
Lee J. H.; Park C. K.; Jung J. S.; Kim S. H. Synthesis Of Vegetable Oil-Based Hyperbranched Polyol Via Thiol-Yne Click Reaction And Their Application In Polyurethane. Prog. Org. Coat. 2022, 164, 106700.10.1016/j.porgcoat.2021.106700. DOI
Justine G.; Athul S.; Nair C. P. R. One-Step Hydroxylation Of Rubber Seed Oil And Synthesis Of Green Polyurethane Networks Thereof. Journal of Polymer Research 2020, 27 (7), 191.10.1007/s10965-020-02134-0. DOI
Lou W.; Dai Z.; Jiang P.; Zhang P.; Bao Y.; Gao X.; Xia J.; Haryono A. Development Of Soybean Oil-Based Aqueous Polyurethanes And The Effect Of Hydroxyl Value On Its Properties. Polym. Adv. Technol. 2022, 33 (8), 2393–2403. 10.1002/pat.5695. DOI
Cifarelli A.; Boggioni L.; Vignali A.; Tritto I.; Bertini F.; Losio S. Flexible Polyurethane Foams From Epoxidized Vegetable Oils And A Bio-Based Diisocyanate. Polymers 2021, 13 (4), 612.10.3390/polym13040612. PubMed DOI PMC
Soares L. F.; César dos Santos J.; Araújo de Freitas V. A.; Dutra Pereira R. B.; Panzera T. H.; Scarpa F. Castor-Oil Biobased Foam: The Effect Of The Composition On The Physical And Mechanical Properties Via A Statistical Mixture Design. RSC Sustainability 2024, 2 (4), 975–987. 10.1039/D3SU00374D. PubMed DOI PMC
Fan Y.; Shen H.; Zhang C.; Chu X.; Liu S.; Xing X.; Tang E. Fabrication Of Uv-Induced Peelable Adhesives Using Acrylic Copolymers Containing Photo-Initiators And Soybean Oil Based Urethane Acrylate Oligomers. Int. J. Adhes. Adhes. 2023, 126, 103476.10.1016/j.ijadhadh.2023.103476. DOI
Malik M.; Kaur R. Mechanical And Thermal Properties Of Castor Oil–Based Polyurethane Adhesive 2 Filler: Effect Of Tio 2 Filler. Advances in Polymer Technology 2018, 37 (1), 24–30. 10.1002/adv.21637. DOI
Ang K. P.; Lee C. S.; Cheng S. F.; Chuah C. H. Synthesis Of Palm Oil-Based Polyester Polyol For Polyurethane Adhesive Production. J. Appl. Polym. Sci. 2014, 131 (6), 39967.10.1002/app.39967. DOI
Gama N.; Ferreira A.; Barros-Timmons A. Cure And Performance Of Castor Oil Polyurethane Adhesive. Int. J. Adhes. Adhes. 2019, 95, 102413.10.1016/j.ijadhadh.2019.102413. DOI
Tenorio-Alfonso A.; Sánchez M. C.; Franco J. M. Impact Of The Processing Method On The Properties Of Castor Oil/Cellulose Acetate Polyurethane Adhesives For Bonding Wood. Int. J. Adhes. Adhes. 2022, 116, 103153.10.1016/j.ijadhadh.2022.103153. DOI
Du L.; Liu Z.; Ye Z.; Hao X.; Ou R.; Liu T.; Wang Q. Dynamic Cross-Linked Polyurethane Hot-Melt Adhesive With High Biomass Content And High Adhesive Strength Simultaneously. Eur. Polym. J. 2023, 182, 111732.10.1016/j.eurpolymj.2022.111732. DOI
Xu C.; Jia X.; Du J.; Zhou F.; Liu B.; Deng Y.; Huai X. Ultra-Strong And Solvent-Free Castor Oil-Based Polyurethane Thermally Conductive Structural Adhesives For Heat Management. Industrial Crops and Products 2023, 194, 116181.10.1016/j.indcrop.2022.116181. DOI
Dodangeh F.; Seyed Dorraji M. S.; Rasoulifard M. H.; Ashjari H. R. Synthesis And Characterization Of Alkoxy Silane Modified Polyurethane Wood Adhesive Based On Epoxidized Soybean Oil Polyester Polyol. Composites Part B: Engineering 2020, 187, 107857.10.1016/j.compositesb.2020.107857. DOI
Li Y.; Chen J. Design And Control Of An Energy-Saving Phosgenation Reaction Distillation For Toluene Diisocyanate. Chemical Engineering and Processing - Process Intensification 2020, 154, 107933.10.1016/j.cep.2020.107933. DOI
Guo Z.; Ding X.; Wang Y. How To Get Isocyanate?. ACS Omega 2024, 9 (10), 11168–11180. 10.1021/acsomega.3c10069. PubMed DOI PMC
Centeno-Pedrazo A.; Perez-Arce J.; Freixa Z.; Ortiz P.; Garcia-Suarez E. J. Non-Isocyanate Polyurethanes Derived From Carbonated Soybean Oil: Synthesis, Characterization And Comparison With Traditional Vegetable Oil-Based Polyurethanes. Prog. Org. Coat. 2024, 197, 108830.10.1016/j.porgcoat.2024.108830. DOI
Hu Y.; Kou Z.; Ma Y.; Huang Q.; Sha Y.; Zhang M.; Hu L.; Jia P.; Zhou Y. Hydrogen Bond-Enabled Bio-Based Random Copolymer/Carbon Nanotube Composites As Multifunctional Adhesives. ACS Sustainable Chem. Eng. 2023, 11 (36), 13492–13501. 10.1021/acssuschemeng.3c03978. DOI
Lei H.; Yao N.; Wang S.; Fang X.; Wu J.; Yang G.; Hua Z. Plant Oil-Based Branched Polymer Coatings Enhanced With Nucleobases For Achieving Strong Adhesion And Outstanding Environmental Tolerance. Chemical Engineering Journal 2023, 471, 144602.10.1016/j.cej.2023.144602. DOI
Eisen A.; Bussa M.; Röder H. A Review Of Environmental Assessments Of Biobased Against Petrochemical Adhesives. Journal of Cleaner Production 2020, 277, 124277.10.1016/j.jclepro.2020.124277. DOI
Dunky M. Wood Adhesives Based On Natural Resources: A Critical Review: Part Iv. Special Topics. Reviews of Adhesion and Adhesives 2021, 9 (2), 189–268. 10.7569/RAA.2021.097307. DOI
Cui C.; Liu W. Recent Advances In Wet Adhesives: Adhesion Mechanism, Design Principle And Applications. Prog. Polym. Sci. 2021, 116, 101388.10.1016/j.progpolymsci.2021.101388. DOI
Li J.; Luo S.; Li F.; Dong S. Supramolecular Polymeric Pressure-Sensitive Adhesive That Can Be Directly Operated At Low Temperatures. ACS Appl. Mater. Interfaces 2022, 14 (23), 27476–27483. 10.1021/acsami.2c05951. PubMed DOI
Mapari S.; Mestry S.; Mhaske S. T. Developments In Pressure-Sensitive Adhesives: A Review. Polym. Bull. 2021, 78 (7), 4075–4108. 10.1007/s00289-020-03305-1. DOI
Zhou Y.; Zhang C.; Gao S.; Li W.; Kai J.-j.; Wang Z. Pressure-Sensitive Adhesive With Enhanced And Phototunable Underwater Adhesion. ACS Appl. Mater. Interfaces 2021, 13 (42), 50451–50460. 10.1021/acsami.1c16146. PubMed DOI
Droesbeke M. A.; Aksakal R.; Simula A.; Asua J. M.; Du Prez F. E. Biobased Acrylic Pressure-Sensitive Adhesives. Prog. Polym. Sci. 2021, 117, 101396.10.1016/j.progpolymsci.2021.101396. DOI
Rigo E.; Ladmiral V.; Caillol S.; Lacroix-Desmazes P. Recent Advances In Radical Polymerization Of Bio-Based Monomers In Aqueous Dispersed Media. RSC Sustainability 2023, 1 (4), 788–813. 10.1039/D3SU00097D. DOI
Park M.; Hong S.-J.; Kim N.-K.; Shin J.; Kim Y.-W. Vegetable Oil-Derived Polyamide Multiblock Copolymers Toward Chemically Recyclable Pressure-Sensitive Adhesives. ACS Sustainable Chem. Eng. 2023, 11 (27), 10095–10107. 10.1021/acssuschemeng.3c02166. DOI
Li A.; Li K. Pressure-Sensitive Adhesives Based On Epoxidized Soybean Oil And Dicarboxylic Acids. ACS Sustainable Chem. Eng. 2014, 2 (8), 2090–2096. 10.1021/sc5003853. DOI
Maulana S.; Wibowo E. S.; Mardawati E.; Iswanto A. H.; Papadopoulos A.; Lubis M. A. R. Eco-Friendly And High-Performance Bio-Polyurethane Adhesives From Vegetable Oils: A Review. Polymers 2024, 16 (11), 1613.10.3390/polym16111613. PubMed DOI PMC
Wang K.-P.; Deng Y.-P.; Wang T.; Wang Q.-D.; Qian C.-G.; Zhang X.-Y. Development Of Spiropyran Bonded Bio-Based Waterborne Polyurethanes For Mechanical-Responsive Color-Variable Films. Polymer 2020, 210, 123017.10.1016/j.polymer.2020.123017. DOI
Tian M.; Bai Y.; Tian H.; Zhao X. The Chemical Composition And Health-Promoting Benefits Of Vegetable Oils—A Review. Molecules 2023, 28 (17), 6393.10.3390/molecules28176393. PubMed DOI PMC