Innovative Castor Oil Derivative Synthesized through a Sustainable Approach Generating Reactive Cross-Linker from Secondary Products for Additive Manufacturing

. 2025 Oct 08 ; 5 (5) : 545-556. [epub] 20250730

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41080902

Additive manufacturing utilizes various reactive precursors to fabricate diverse products, including prototypes, functional components, and designer objects. This work presents a synthesis approach toward a novel biobased printable compound, 2-hydroxypropyl ricinoleate dimethacrylate (2-HPRDM). Our proposed strategy involves the castor oil transesterification process, producing 2-hydroxypropyl ricinoleate (2-HPR). We used high-performance liquid chromatography (HPLC) analysis to investigate the reaction progress at equimolar and excess reactant concentrations. This fatty acid ester was modified with methacrylic anhydride to form 2-HPRDM, releasing the secondary reaction product methacrylic acid (MA). This compound was used for the synthesis of propylene glycol dimethacrylate (PGDMA), which valorized all potential wastes generated during the 2-HPRDM production. This article presents the innovative vacuum-distillation esterification approach that generates PGDMA. All synthesized compounds were structurally characterized via NMR, ESI-MS, and FTIR analyses. The formed curable compounds were fabricated into testing specimens and a detailed prototype by an mSLA three-dimensional (3D) printer to confirm their usability. The 3D-printed object was used for the mechanical and thermomechanical characterization of the formulated curable resins via dynamic mechanical analysis (DMA), tensile, and flexural tests. The best-performing 2-HPRDM-based system contained 45 wt % of PGDMA and recorded a storage modulus of 750 MPa, a glass-transition temperature of 85.6 °C, a cross-linking density of 18.9 kmol/m3, a tensile strength of 16.1 ± 2.4 MPa, and a flexural strength of 14.3 ± 1.0 MPa.

Zobrazit více v PubMed

Chakraborty I., Chatterjee K.. Polymers And Composites Derived From Castor Oil As Sustainable Materials And Degradable Biomaterials: Current Status And Emerging Trends. Biomacromolecules. 2020;21(12):4639–4662. doi: 10.1021/acs.biomac.0c01291. PubMed DOI

Pan J.-L., Xu C.-R., Zeng F.-R., Liang Y., Zhang T., Xu J., Li Z.-L., Li Z.-C.. Castor Oil-Based Bioplastics Via Polyesterification: Synthesis, Characterization, And Functionalization. ACS Appl. Polym. Mater. 2021;3(4):2054–2062. doi: 10.1021/acsapm.1c00109. DOI

Borrego M., Martín-Alfonso J. E., Valencia C., del Carmen Sánchez Carrillo M., Franco J. M.. Developing Electrospun Ethylcellulose Nanofibrous Webs: An Alternative Approach For Structuring Castor Oil. ACS Appl. Polym. Mater. 2022;4(10):7217–7227. doi: 10.1021/acsapm.2c01090. PubMed DOI PMC

Jašek V., Figalla S.. Vegetable Oils For Material Applications – Available Biobased Compounds Seeking Their Utilities. ACS Polym. Au. 2025;5(2):105–128. doi: 10.1021/acspolymersau.5c00001. PubMed DOI PMC

Becquet C., Berche F., Bricout H., Monflier E., Tilloy S.. Hydrohydroxymethylation Of Ethyl Ricinoleate And Castor Oil. ACS Sustainable Chem. Eng. 2021;9(28):9444–9454. doi: 10.1021/acssuschemeng.1c02924. DOI

Prabakaran R., Marie J. M., Xavier A. J. M.. Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid And Itaconic Acid In Vitro Antibacterial, And Cytocompatibility Studies: Synthesis, In Vitro Antibacterial, And Cytocompatibility Studies. ACS Appl. Bio Mater. 2020;3(9):5708–5721. doi: 10.1021/acsabm.0c00480. PubMed DOI

Rischard F., Flourat A. L., Broche L., Dosso A., Godon B., Allais F., Gore E., Savary G.. Novel Biobased Multifunctional Emollients For Cosmetic Applications: Toward The Ingredient-List Reduction. ACS Sustainable Chem. Eng. 2023;11(48):16955–16964. doi: 10.1021/acssuschemeng.3c04259. DOI

Singh S., Sharma S., Sarma S. J., Brar S. K.. A Comprehensive Review Of Castor Oil-Derived Renewable And Sustainable Industrial Products. Environ. Prog. Sustainable Energy. 2023;42(2):e14008. doi: 10.1002/ep.14008. DOI

Wu Z., Thoresen P. P., Matsakas L., Rova U., Christakopoulos P., Shi Y.. Facile Synthesis Of Lignin-Castor Oil-Based Oleogels As Green Lubricating Greases With Excellent Lubricating And Antioxidation Properties. ACS Sustainable Chem. Eng. 2023;11(34):12552–12561. doi: 10.1021/acssuschemeng.3c01801. DOI

Borrero-López A. M., Guzmán D. B., González-Delgado J. A., Arteaga J. F., Valencia C., Pischel U., Franco J. M.. Toward Uv-Triggered Curing Of Solvent-Free Polyurethane Adhesives Based On Castor Oil. ACS Sustainable Chem. Eng. 2021;9(33):11032–11040. doi: 10.1021/acssuschemeng.1c02461. DOI

Zhao X., Qi X., Chen Q., Ao X., Guo Y.. Sulfur-Modified Coated Slow-Release Fertilizer Based On Castor Oil: Synthesis And A Controlled-Release Model. ACS Sustainable Chem. Eng. 2020;8(49):18044–18053. doi: 10.1021/acssuschemeng.0c06056. DOI

Costa Cornellà A., Tabrizian S. K., Ferrentino P., Roels E., Terryn S., Vanderborght B., Van Assche G., Brancart J.. Self-Healing, Recyclable, And Degradable Castor Oil-Based Elastomers For Sustainable Soft Robotics. ACS Sustainable Chem. Eng. 2023;11(8):3437–3450. doi: 10.1021/acssuschemeng.2c06874. DOI

Wei D., Zeng J., Yong Q.. High-Performance Bio-Based Polyurethane Antismudge Coatings Using Castor Oil-Based Hyperbranched Polyol As Superior Cross-Linkers. ACS Appl. Polym. Mater. 2021;3(7):3612–3622. doi: 10.1021/acsapm.1c00503. DOI

Nekhavhambe E., Mukaya H. E., Nkazi D. B.. Development Of Castor Oil–Based Polymers: A Review. J. Adv. Manuf. Process. 2019;1(4):e10030. doi: 10.1002/amp2.10030. DOI

Vaz B. M. C., Contieri L. S., Sosa F. H. B., Martins M., Conde A., Dias A. C. R. V., Rostagno M. A., de Souza Mesquita L. M., Ventura S. P. M.. Unleashing The Potential Of Castor Oil As Extraction Solvent Of Carotenoids From Tomatoes. Sep. Purif. Technol. 2025;358:130278. doi: 10.1016/j.seppur.2024.130278. DOI

Mustata F., Tudorachi N.. Synthesis And Thermal Characterization Of Some Hardeners For Epoxy Resins Based On Castor Oil And Cyclic Anhydrides. Ind. Crops Prod. 2021;159:113087. doi: 10.1016/j.indcrop.2020.113087. DOI

Kalayci D., Akar E., Luleburgaz S., Çakmakçi E., Gunay U. S., Kumbaraci V., Durmaz H., Tunca U.. Facile Modification Of Propiolated Castor Oil Via Nucleophilic Thiol-Yne Click Reactions. Macromol. Chem. Phys. 2025;226(7):2400146. doi: 10.1002/macp.202400146. DOI

Xu P., Yan F., Bi Y., Peng D., Li J.. Synthesis Of Dehydrated Ricinoleic Acid/Maleic Anhydride Adduct Based On Diels-Alder Reaction: Characteristics And Its Application In Pressure-Sensitive Adhesive. ChemistrySelect. 2025;10(13):e202405848. doi: 10.1002/slct.202405848. DOI

Kuo T.-H., Chung H.-H., Chang H.-Y., Lin C.-W., Wang M.-Y., Shen T.-L., Hsu C.-C.. Deep Lipidomics And Molecular Imaging Of Unsaturated Lipid Isomers: A Universal Strategy Initiated By Mcpba Epoxidation. Anal. Chem. 2019;91(18):11905–11915. doi: 10.1021/acs.analchem.9b02667. PubMed DOI

Yan W., Wang Z., Luo C., Xia X., Liu Z., Zhao Y., Du F., Jin X.. Opportunities And Emerging Challenges Of The Heterogeneous Metal-Based Catalysts For Vegetable Oil Epoxidation. ACS Sustainable Chem. Eng. 2022;10(23):7426–7446. doi: 10.1021/acssuschemeng.2c00617. DOI

Chen J., de Liedekerke Beaufort M., Gyurik L., Dorresteijn J., Otte M., Gebbink R. J. M. K.. Highly Efficient Epoxidation Of Vegetable Oils Catalyzed By A Manganese Complex With Hydrogen Peroxide And Acetic Acid. Green Chem. 2019;21(9):2436–2447. doi: 10.1039/C8GC03857K. DOI

Lewandowski G., Musik M., Malarczyk-Matusiak K., Sałaciński Ł., Milchert E.. Epoxidation Of Vegetable Oils, Unsaturated Fatty Acids And Fatty Acid Esters: A Review. Mini-Rev. Org. Chem. 2020;17(4):412–422. doi: 10.2174/1570193X16666190430154319. DOI

Ling Z., Zhou Q.. Synthesis And Properties Of Linseed Oil-Based Waterborne Non-Isocyanate Polyurethane Coating. Green Chem. 2023;25(23):10082–10090. doi: 10.1039/D3GC03249C. DOI

Jia P., Ma Y., Xia H., Zheng M., Feng G., Hu L., Zhang M., Zhou Y.. Clean Synthesis Of Epoxidized Tung Oil Derivatives Via Phase Transfer Catalyst And Thiol–Ene Reaction: A Detailed Study. ACS Sustainable Chem. Eng. 2018;6(11):13983–13994. doi: 10.1021/acssuschemeng.8b02446. DOI

Tang Q., Jiang J., Li J., Zhao L., Xi Z.. Understanding The Structure-Property Relationship Of Anhydride-Cured Epoxidized Vegetable Oils: Modeling And Molecular Dynamics Simulation. Polymer. 2024;312:127593. doi: 10.1016/j.polymer.2024.127593. DOI

Li Y., Sun X. S.. Di-Hydroxylated Soybean Oil Polyols With Varied Hydroxyl Values And Their Influence On Uv-Curable Pressure-Sensitive Adhesives. J. Am. Oil Chem. Soc. 2014;91(8):1425–1432. doi: 10.1007/s11746-014-2474-6. DOI

Moser B. R., Cermak S. C., Doll K. M., Kenar J. A., Sharma B. K.. A Review Of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, And Applications. J. Am. Oil Chem. Soc. 2022;99(10):801–842. doi: 10.1002/aocs.12623. DOI

Fei M., Liu T., Zhao B., Otero A., Chang Y.-C., Zhang J.. From Glassy Plastic To Ductile Elastomer: Vegetable Oil-Based Uv-Curable Vitrimers And Their Potential Use In 3D Printing. ACS Appl. Polym. Mater. 2021;3(5):2470–2479. doi: 10.1021/acsapm.1c00063. DOI

Vazquez-Martel C., Becker L., Liebig W. V., Elsner P., Blasco E.. Vegetable Oils As Sustainable Inks For Additive Manufacturing: A Comparative Study. ACS Sustainable Chem. Eng. 2021;9(49):16840–16848. doi: 10.1021/acssuschemeng.1c06784. DOI

Arnaud S. P., Andreou E., Köster L. V. G. P., Robert T.. Selective Synthesis Of Monoesters Of Itaconic Acid With Broad Substrate Scope: Biobased Alternatives To Acrylic Acid? ACS Sustainable Chem. Eng. 2020;8(3):1583–1590. doi: 10.1021/acssuschemeng.9b06330. DOI

Esen H., Çayli G.. Epoxidation And Polymerization Of Acrylated Castor Oil. Eur. J. Lipid Sci. Technol. 2016;118(6):959–966. doi: 10.1002/ejlt.201500132. DOI

Kumar S., Samal S. K., Mohanty S., Nayak S. K.. Epoxidized Soybean Oil-Based Epoxy Blend Cured With Anhydride-Based Cross-Linker: Thermal And Mechanical Characterization. Ind. Eng. Chem. Res. 2017;56(3):687–698. doi: 10.1021/acs.iecr.6b03879. DOI

Luo Y., Liu G., Zhang P., Zhou B., Zhang P., Xu P., Qiu Z., Xie Z., Mei L.. Modified Castor Oil-Based Uv/Thermal Dual-Curing Polyurethane Acrylate Coatings With Outstanding Comprehensive Properties. Mater. Today Commun. 2024;41:110978. doi: 10.1016/j.mtcomm.2024.110978. DOI

Lavazza J., Zhang Q., de Kergariou C., Comandini G., Briscoe W. H., Rowlandson J. L., Panzera T. H., Scarpa F.. Rigid Polyurethane Foams From Commercial Castor Oil Resins. Polym. Test. 2024;135:108457. doi: 10.1016/j.polymertesting.2024.108457. DOI

Liu Y., Lan Y., Tie Y., Yu L., Zhang Y., Wang J., Wang T.. Renewable Photosensitive Castor Oil To Fabricate Ionogels: Freezing-Tolerance, Stretchability, And Degradation For 3D Printing And Flexible Sensor Applications. Small. 2025;21(24):2502700–2502711. doi: 10.1002/smll.202502700. PubMed DOI

Bhanushali H., Mestry S., Mhaske S. T.. Castor Oil-Based Uv -Curable Polyurethane Acrylate Resins For Digital Light Processing (Dlp) 3D Printing Technology. J. Appl. Polym. Sci. 2023;140(18):e53817. doi: 10.1002/app.53817. DOI

Dillman B. F., Kang N. Y., Jessop J. L. P.. Solventless Synthesis And Free-Radical Photopolymerization Of A Castor Oil-Based Acrylate Oligomer. Polymer. 2013;54(7):1768–1774. doi: 10.1016/j.polymer.2013.02.006. DOI

Lai H., Zhang J., Xiao P.. Renewable Photopolymers: Transformation Of Biomass Resources Into Value-Added Products Under Light. ACS Sustainable Chem. Eng. 2023;11(46):16365–16406. doi: 10.1021/acssuschemeng.3c05257. DOI

Liu C., Wang C., Hu Y., Zhang F., Shang Q., Lei W., Zhou Y., Cai Z.. Castor Oil-Based Polyfunctional Acrylate Monomers: Synthesis And Utilization In Uv-Curable Materials. Prog. Org. Coat. 2018;121:236–246. doi: 10.1016/j.porgcoat.2018.04.020. DOI

Briede S., Platnieks O., Barkane A., Sivacovs I., Leitans A., Lungevics J., Gaidukovs S.. Tailored Biobased Resins From Acrylated Vegetable Oils For Application In Wood Coatings. Coatings. 2023;13(3):657. doi: 10.3390/coatings13030657. DOI

Jašek V., Fučík J., Bartoš O., Figalla S., Přikryl R.. Photocurable Oil-Based Thermosets Containing Modifiers From Renewable Sources For Coating Applications. ACS Polym. Au. 2024;4(6):527–539. doi: 10.1021/acspolymersau.4c00068. PubMed DOI PMC

Wang F., Allen D., Tian S., Oler E., Gautam V., Greiner R., Metz T. O., Wishart D. S.. Cfm-Id 4.0 – A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022;50(W1):W165–W174. doi: 10.1093/nar/gkac383. PubMed DOI PMC

Zhang C., Madbouly S. A., Kessler M. R.. Biobased Polyurethanes Prepared From Different Vegetable Oils. ACS Appl. Mater. Interfaces. 2015;7(2):1226–1233. doi: 10.1021/am5071333. PubMed DOI

Shao L., Chang Y.-C., Hao C., Fei M.-E., Zhao B., Bliss B. J., Zhang J.. A Chemical Approach For The Future Of Pla Upcycling: From Plastic Wastes To New 3D Printing Materials. Green Chem. 2022;24(22):8716–8724. doi: 10.1039/D2GC01745H. DOI

Sukirno; Farhandika, L. In Synthesis And Characterization Of Ethylene Glycol Ester From Spent Bleaching Earth Oil And Ethylene Glycol As Hydraulic Lubricants, AIP Conference Proceedings; AIP, 2020; pp 060015–060021.

Jadhav A. L., Malkar R. S., Yadav G. D.. Zn- And Ti-Modified Hydrotalcites For Transesterification Of Dimethyl Terephthalate With Ethylene Glycol: Effect Of The Metal Oxide And Catalyst Synthesis Method. ACS Omega. 2020;5(5):2088–2096. doi: 10.1021/acsomega.9b02230. PubMed DOI PMC

Jang W.-J., Jeong D.-W., Shim J.-O., Kim H.-M., Roh H.-S., Son I. H., Lee S. J.. Combined Steam And Carbon Dioxide Reforming Of Methane And Side Reactions: Thermodynamic Equilibrium Analysis And Experimental Application. Appl. Energy. 2016;173:80–91. doi: 10.1016/j.apenergy.2016.04.006. DOI

Meunier F. C., Scalbert J., Thibault-Starzyk F.. Unraveling The Mechanism Of Chemical Reactions Through Thermodynamic Analyses: A Short Review. Appl. Catal., A. 2015;504:220–227. doi: 10.1016/j.apcata.2014.12.028.. DOI

Treskow, M. ; Glock, M. ; Gräff, G. ; Schütz, T. ; Krill, S. ; U.S. Patent and Trademark Office . Preparation of diesters of (meth) acrylic acid from epoxides. US Patent, US11,319,276.2022. https://patentimages.storage.googleapis.com/9b/69/d7/49c066029a0204/US11319276.pdf.

Blanazs A., Madsen J., Battaglia G., Ryan A. J., Armes S. P.. Mechanistic Insights For Block Copolymer Morphologies: How Do Worms Form Vesicles? J. Am. Chem. Soc. 2011;133(41):16581–16587. doi: 10.1021/ja206301a. PubMed DOI

Jašek V., Fučík J., Krhut J., Mravcova L., Figalla S., Přikryl R.. A Study Of Isosorbide Synthesis From Sorbitol For Material Applications Using Isosorbide Dimethacrylate For Enhancement Of Bio-Based Resins. Polymers. 2023;15(17):3640. doi: 10.3390/polym15173640. PubMed DOI PMC

Cseri L., Kumar S., Palchuber P., Szekely G.. Nmr Chemical Shifts Of Emerging Green Solvents, Acids, And Bases For Facile Trace Impurity Analysis. ACS Sustainable Chem. Eng. 2023;11(14):5696–5725. doi: 10.1021/acssuschemeng.3c00244. DOI

Hernandez N. L. P., Bonon A. J., Bahú J. O., Barbosa M. I. R., Maciel M. R. W., Filho R. M.. Epoxy Monomers Obtained From Castor Oil Using A Toxicity-Free Catalytic System. J. Mol. Catal. A: Chem. 2017;426:550–556. doi: 10.1016/j.molcata.2016.08.005. DOI

Rastegari H., Ghaziaskar H. S., Yalpani M., Shafiei A.. Development Of A Continuous System Based On Azeotropic Reactive Distillation To Enhance Triacetin Selectivity In Glycerol Esterification With Acetic Acid. Energy Fuels. 2017;31(8):8256–8262. doi: 10.1021/acs.energyfuels.7b01068. DOI

Inayat A., van Assche A., Clark J. H., Farmer T. J.. Greening The Esterification Between Isosorbide And Acetic Acid. Sustainable Chem. Pharm. 2018;7:41–49. doi: 10.1016/j.scp.2017.10.004. DOI

Jašek V., Fučík J., Melcova V., Figalla S., Mravcova L., Krobot Š., Přikryl R.. Synthesis Of Bio-Based Thermoset Mixture Composed Of Methacrylated Rapeseed Oil And Methacrylated Methyl Lactate: One-Pot Synthesis Using Formed Methacrylic Acid As A Continual Reactant. Polymers. 2023;15(8):1811. doi: 10.3390/polym15081811. PubMed DOI PMC

Liu W., Xie T., Qiu R.. Biobased Thermosets Prepared From Rigid Isosorbide And Flexible Soybean Oil Derivatives. ACS Sustainable Chem. Eng. 2017;5(1):774–783. doi: 10.1021/acssuschemeng.6b02117. DOI

Zhou M., Hu Y., Zhou X., Wen Q., Ye C., Ye Z., Li P., Yang S., Yang Z.. A Solvent-Free And Scalable Method To Prepare Alkali Soluble Soybean Oil-Based Epoxy Acrylic Resin For Photoresist Application. Ind. Crops Prod. 2023;191:115877. doi: 10.1016/j.indcrop.2022.115877. DOI

Mendes-Felipe C., Costa P., Roppolo I., Sangermano M., Lanceros-Mendez S.. Bio-Based Piezo- And Thermoresistive Photocurable Sensing Materials From Acrylated Epoxidized Soybean Oil. Macromol. Mater. Eng. 2022;307(7):2100934. doi: 10.1002/mame.202100934. DOI

Guggenbiller G., Brooks S., King O., Constant E., Merckle D., Weems A. C.. 3D Printing Of Green And Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Appl. Polym. Mater. 2023;5(5):3201–3229. doi: 10.1021/acsapm.2c02171. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...