Innovative Castor Oil Derivative Synthesized through a Sustainable Approach Generating Reactive Cross-Linker from Secondary Products for Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41080902
PubMed Central
PMC12511972
DOI
10.1021/acspolymersau.5c00055
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, biobased, castor oil, curable resin, methacrylate, transesterification,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing utilizes various reactive precursors to fabricate diverse products, including prototypes, functional components, and designer objects. This work presents a synthesis approach toward a novel biobased printable compound, 2-hydroxypropyl ricinoleate dimethacrylate (2-HPRDM). Our proposed strategy involves the castor oil transesterification process, producing 2-hydroxypropyl ricinoleate (2-HPR). We used high-performance liquid chromatography (HPLC) analysis to investigate the reaction progress at equimolar and excess reactant concentrations. This fatty acid ester was modified with methacrylic anhydride to form 2-HPRDM, releasing the secondary reaction product methacrylic acid (MA). This compound was used for the synthesis of propylene glycol dimethacrylate (PGDMA), which valorized all potential wastes generated during the 2-HPRDM production. This article presents the innovative vacuum-distillation esterification approach that generates PGDMA. All synthesized compounds were structurally characterized via NMR, ESI-MS, and FTIR analyses. The formed curable compounds were fabricated into testing specimens and a detailed prototype by an mSLA three-dimensional (3D) printer to confirm their usability. The 3D-printed object was used for the mechanical and thermomechanical characterization of the formulated curable resins via dynamic mechanical analysis (DMA), tensile, and flexural tests. The best-performing 2-HPRDM-based system contained 45 wt % of PGDMA and recorded a storage modulus of 750 MPa, a glass-transition temperature of 85.6 °C, a cross-linking density of 18.9 kmol/m3, a tensile strength of 16.1 ± 2.4 MPa, and a flexural strength of 14.3 ± 1.0 MPa.
Zobrazit více v PubMed
Chakraborty I., Chatterjee K.. Polymers And Composites Derived From Castor Oil As Sustainable Materials And Degradable Biomaterials: Current Status And Emerging Trends. Biomacromolecules. 2020;21(12):4639–4662. doi: 10.1021/acs.biomac.0c01291. PubMed DOI
Pan J.-L., Xu C.-R., Zeng F.-R., Liang Y., Zhang T., Xu J., Li Z.-L., Li Z.-C.. Castor Oil-Based Bioplastics Via Polyesterification: Synthesis, Characterization, And Functionalization. ACS Appl. Polym. Mater. 2021;3(4):2054–2062. doi: 10.1021/acsapm.1c00109. DOI
Borrego M., Martín-Alfonso J. E., Valencia C., del Carmen Sánchez Carrillo M., Franco J. M.. Developing Electrospun Ethylcellulose Nanofibrous Webs: An Alternative Approach For Structuring Castor Oil. ACS Appl. Polym. Mater. 2022;4(10):7217–7227. doi: 10.1021/acsapm.2c01090. PubMed DOI PMC
Jašek V., Figalla S.. Vegetable Oils For Material Applications – Available Biobased Compounds Seeking Their Utilities. ACS Polym. Au. 2025;5(2):105–128. doi: 10.1021/acspolymersau.5c00001. PubMed DOI PMC
Becquet C., Berche F., Bricout H., Monflier E., Tilloy S.. Hydrohydroxymethylation Of Ethyl Ricinoleate And Castor Oil. ACS Sustainable Chem. Eng. 2021;9(28):9444–9454. doi: 10.1021/acssuschemeng.1c02924. DOI
Prabakaran R., Marie J. M., Xavier A. J. M.. Biobased Unsaturated Polyesters Containing Castor Oil-Derived Ricinoleic Acid And Itaconic Acid In Vitro Antibacterial, And Cytocompatibility Studies: Synthesis, In Vitro Antibacterial, And Cytocompatibility Studies. ACS Appl. Bio Mater. 2020;3(9):5708–5721. doi: 10.1021/acsabm.0c00480. PubMed DOI
Rischard F., Flourat A. L., Broche L., Dosso A., Godon B., Allais F., Gore E., Savary G.. Novel Biobased Multifunctional Emollients For Cosmetic Applications: Toward The Ingredient-List Reduction. ACS Sustainable Chem. Eng. 2023;11(48):16955–16964. doi: 10.1021/acssuschemeng.3c04259. DOI
Singh S., Sharma S., Sarma S. J., Brar S. K.. A Comprehensive Review Of Castor Oil-Derived Renewable And Sustainable Industrial Products. Environ. Prog. Sustainable Energy. 2023;42(2):e14008. doi: 10.1002/ep.14008. DOI
Wu Z., Thoresen P. P., Matsakas L., Rova U., Christakopoulos P., Shi Y.. Facile Synthesis Of Lignin-Castor Oil-Based Oleogels As Green Lubricating Greases With Excellent Lubricating And Antioxidation Properties. ACS Sustainable Chem. Eng. 2023;11(34):12552–12561. doi: 10.1021/acssuschemeng.3c01801. DOI
Borrero-López A. M., Guzmán D. B., González-Delgado J. A., Arteaga J. F., Valencia C., Pischel U., Franco J. M.. Toward Uv-Triggered Curing Of Solvent-Free Polyurethane Adhesives Based On Castor Oil. ACS Sustainable Chem. Eng. 2021;9(33):11032–11040. doi: 10.1021/acssuschemeng.1c02461. DOI
Zhao X., Qi X., Chen Q., Ao X., Guo Y.. Sulfur-Modified Coated Slow-Release Fertilizer Based On Castor Oil: Synthesis And A Controlled-Release Model. ACS Sustainable Chem. Eng. 2020;8(49):18044–18053. doi: 10.1021/acssuschemeng.0c06056. DOI
Costa Cornellà A., Tabrizian S. K., Ferrentino P., Roels E., Terryn S., Vanderborght B., Van Assche G., Brancart J.. Self-Healing, Recyclable, And Degradable Castor Oil-Based Elastomers For Sustainable Soft Robotics. ACS Sustainable Chem. Eng. 2023;11(8):3437–3450. doi: 10.1021/acssuschemeng.2c06874. DOI
Wei D., Zeng J., Yong Q.. High-Performance Bio-Based Polyurethane Antismudge Coatings Using Castor Oil-Based Hyperbranched Polyol As Superior Cross-Linkers. ACS Appl. Polym. Mater. 2021;3(7):3612–3622. doi: 10.1021/acsapm.1c00503. DOI
Nekhavhambe E., Mukaya H. E., Nkazi D. B.. Development Of Castor Oil–Based Polymers: A Review. J. Adv. Manuf. Process. 2019;1(4):e10030. doi: 10.1002/amp2.10030. DOI
Vaz B. M. C., Contieri L. S., Sosa F. H. B., Martins M., Conde A., Dias A. C. R. V., Rostagno M. A., de Souza Mesquita L. M., Ventura S. P. M.. Unleashing The Potential Of Castor Oil As Extraction Solvent Of Carotenoids From Tomatoes. Sep. Purif. Technol. 2025;358:130278. doi: 10.1016/j.seppur.2024.130278. DOI
Mustata F., Tudorachi N.. Synthesis And Thermal Characterization Of Some Hardeners For Epoxy Resins Based On Castor Oil And Cyclic Anhydrides. Ind. Crops Prod. 2021;159:113087. doi: 10.1016/j.indcrop.2020.113087. DOI
Kalayci D., Akar E., Luleburgaz S., Çakmakçi E., Gunay U. S., Kumbaraci V., Durmaz H., Tunca U.. Facile Modification Of Propiolated Castor Oil Via Nucleophilic Thiol-Yne Click Reactions. Macromol. Chem. Phys. 2025;226(7):2400146. doi: 10.1002/macp.202400146. DOI
Xu P., Yan F., Bi Y., Peng D., Li J.. Synthesis Of Dehydrated Ricinoleic Acid/Maleic Anhydride Adduct Based On Diels-Alder Reaction: Characteristics And Its Application In Pressure-Sensitive Adhesive. ChemistrySelect. 2025;10(13):e202405848. doi: 10.1002/slct.202405848. DOI
Kuo T.-H., Chung H.-H., Chang H.-Y., Lin C.-W., Wang M.-Y., Shen T.-L., Hsu C.-C.. Deep Lipidomics And Molecular Imaging Of Unsaturated Lipid Isomers: A Universal Strategy Initiated By Mcpba Epoxidation. Anal. Chem. 2019;91(18):11905–11915. doi: 10.1021/acs.analchem.9b02667. PubMed DOI
Yan W., Wang Z., Luo C., Xia X., Liu Z., Zhao Y., Du F., Jin X.. Opportunities And Emerging Challenges Of The Heterogeneous Metal-Based Catalysts For Vegetable Oil Epoxidation. ACS Sustainable Chem. Eng. 2022;10(23):7426–7446. doi: 10.1021/acssuschemeng.2c00617. DOI
Chen J., de Liedekerke Beaufort M., Gyurik L., Dorresteijn J., Otte M., Gebbink R. J. M. K.. Highly Efficient Epoxidation Of Vegetable Oils Catalyzed By A Manganese Complex With Hydrogen Peroxide And Acetic Acid. Green Chem. 2019;21(9):2436–2447. doi: 10.1039/C8GC03857K. DOI
Lewandowski G., Musik M., Malarczyk-Matusiak K., Sałaciński Ł., Milchert E.. Epoxidation Of Vegetable Oils, Unsaturated Fatty Acids And Fatty Acid Esters: A Review. Mini-Rev. Org. Chem. 2020;17(4):412–422. doi: 10.2174/1570193X16666190430154319. DOI
Ling Z., Zhou Q.. Synthesis And Properties Of Linseed Oil-Based Waterborne Non-Isocyanate Polyurethane Coating. Green Chem. 2023;25(23):10082–10090. doi: 10.1039/D3GC03249C. DOI
Jia P., Ma Y., Xia H., Zheng M., Feng G., Hu L., Zhang M., Zhou Y.. Clean Synthesis Of Epoxidized Tung Oil Derivatives Via Phase Transfer Catalyst And Thiol–Ene Reaction: A Detailed Study. ACS Sustainable Chem. Eng. 2018;6(11):13983–13994. doi: 10.1021/acssuschemeng.8b02446. DOI
Tang Q., Jiang J., Li J., Zhao L., Xi Z.. Understanding The Structure-Property Relationship Of Anhydride-Cured Epoxidized Vegetable Oils: Modeling And Molecular Dynamics Simulation. Polymer. 2024;312:127593. doi: 10.1016/j.polymer.2024.127593. DOI
Li Y., Sun X. S.. Di-Hydroxylated Soybean Oil Polyols With Varied Hydroxyl Values And Their Influence On Uv-Curable Pressure-Sensitive Adhesives. J. Am. Oil Chem. Soc. 2014;91(8):1425–1432. doi: 10.1007/s11746-014-2474-6. DOI
Moser B. R., Cermak S. C., Doll K. M., Kenar J. A., Sharma B. K.. A Review Of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, And Applications. J. Am. Oil Chem. Soc. 2022;99(10):801–842. doi: 10.1002/aocs.12623. DOI
Fei M., Liu T., Zhao B., Otero A., Chang Y.-C., Zhang J.. From Glassy Plastic To Ductile Elastomer: Vegetable Oil-Based Uv-Curable Vitrimers And Their Potential Use In 3D Printing. ACS Appl. Polym. Mater. 2021;3(5):2470–2479. doi: 10.1021/acsapm.1c00063. DOI
Vazquez-Martel C., Becker L., Liebig W. V., Elsner P., Blasco E.. Vegetable Oils As Sustainable Inks For Additive Manufacturing: A Comparative Study. ACS Sustainable Chem. Eng. 2021;9(49):16840–16848. doi: 10.1021/acssuschemeng.1c06784. DOI
Arnaud S. P., Andreou E., Köster L. V. G. P., Robert T.. Selective Synthesis Of Monoesters Of Itaconic Acid With Broad Substrate Scope: Biobased Alternatives To Acrylic Acid? ACS Sustainable Chem. Eng. 2020;8(3):1583–1590. doi: 10.1021/acssuschemeng.9b06330. DOI
Esen H., Çayli G.. Epoxidation And Polymerization Of Acrylated Castor Oil. Eur. J. Lipid Sci. Technol. 2016;118(6):959–966. doi: 10.1002/ejlt.201500132. DOI
Kumar S., Samal S. K., Mohanty S., Nayak S. K.. Epoxidized Soybean Oil-Based Epoxy Blend Cured With Anhydride-Based Cross-Linker: Thermal And Mechanical Characterization. Ind. Eng. Chem. Res. 2017;56(3):687–698. doi: 10.1021/acs.iecr.6b03879. DOI
Luo Y., Liu G., Zhang P., Zhou B., Zhang P., Xu P., Qiu Z., Xie Z., Mei L.. Modified Castor Oil-Based Uv/Thermal Dual-Curing Polyurethane Acrylate Coatings With Outstanding Comprehensive Properties. Mater. Today Commun. 2024;41:110978. doi: 10.1016/j.mtcomm.2024.110978. DOI
Lavazza J., Zhang Q., de Kergariou C., Comandini G., Briscoe W. H., Rowlandson J. L., Panzera T. H., Scarpa F.. Rigid Polyurethane Foams From Commercial Castor Oil Resins. Polym. Test. 2024;135:108457. doi: 10.1016/j.polymertesting.2024.108457. DOI
Liu Y., Lan Y., Tie Y., Yu L., Zhang Y., Wang J., Wang T.. Renewable Photosensitive Castor Oil To Fabricate Ionogels: Freezing-Tolerance, Stretchability, And Degradation For 3D Printing And Flexible Sensor Applications. Small. 2025;21(24):2502700–2502711. doi: 10.1002/smll.202502700. PubMed DOI
Bhanushali H., Mestry S., Mhaske S. T.. Castor Oil-Based Uv -Curable Polyurethane Acrylate Resins For Digital Light Processing (Dlp) 3D Printing Technology. J. Appl. Polym. Sci. 2023;140(18):e53817. doi: 10.1002/app.53817. DOI
Dillman B. F., Kang N. Y., Jessop J. L. P.. Solventless Synthesis And Free-Radical Photopolymerization Of A Castor Oil-Based Acrylate Oligomer. Polymer. 2013;54(7):1768–1774. doi: 10.1016/j.polymer.2013.02.006. DOI
Lai H., Zhang J., Xiao P.. Renewable Photopolymers: Transformation Of Biomass Resources Into Value-Added Products Under Light. ACS Sustainable Chem. Eng. 2023;11(46):16365–16406. doi: 10.1021/acssuschemeng.3c05257. DOI
Liu C., Wang C., Hu Y., Zhang F., Shang Q., Lei W., Zhou Y., Cai Z.. Castor Oil-Based Polyfunctional Acrylate Monomers: Synthesis And Utilization In Uv-Curable Materials. Prog. Org. Coat. 2018;121:236–246. doi: 10.1016/j.porgcoat.2018.04.020. DOI
Briede S., Platnieks O., Barkane A., Sivacovs I., Leitans A., Lungevics J., Gaidukovs S.. Tailored Biobased Resins From Acrylated Vegetable Oils For Application In Wood Coatings. Coatings. 2023;13(3):657. doi: 10.3390/coatings13030657. DOI
Jašek V., Fučík J., Bartoš O., Figalla S., Přikryl R.. Photocurable Oil-Based Thermosets Containing Modifiers From Renewable Sources For Coating Applications. ACS Polym. Au. 2024;4(6):527–539. doi: 10.1021/acspolymersau.4c00068. PubMed DOI PMC
Wang F., Allen D., Tian S., Oler E., Gautam V., Greiner R., Metz T. O., Wishart D. S.. Cfm-Id 4.0 – A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022;50(W1):W165–W174. doi: 10.1093/nar/gkac383. PubMed DOI PMC
Zhang C., Madbouly S. A., Kessler M. R.. Biobased Polyurethanes Prepared From Different Vegetable Oils. ACS Appl. Mater. Interfaces. 2015;7(2):1226–1233. doi: 10.1021/am5071333. PubMed DOI
Shao L., Chang Y.-C., Hao C., Fei M.-E., Zhao B., Bliss B. J., Zhang J.. A Chemical Approach For The Future Of Pla Upcycling: From Plastic Wastes To New 3D Printing Materials. Green Chem. 2022;24(22):8716–8724. doi: 10.1039/D2GC01745H. DOI
Sukirno; Farhandika, L. In Synthesis And Characterization Of Ethylene Glycol Ester From Spent Bleaching Earth Oil And Ethylene Glycol As Hydraulic Lubricants, AIP Conference Proceedings; AIP, 2020; pp 060015–060021.
Jadhav A. L., Malkar R. S., Yadav G. D.. Zn- And Ti-Modified Hydrotalcites For Transesterification Of Dimethyl Terephthalate With Ethylene Glycol: Effect Of The Metal Oxide And Catalyst Synthesis Method. ACS Omega. 2020;5(5):2088–2096. doi: 10.1021/acsomega.9b02230. PubMed DOI PMC
Jang W.-J., Jeong D.-W., Shim J.-O., Kim H.-M., Roh H.-S., Son I. H., Lee S. J.. Combined Steam And Carbon Dioxide Reforming Of Methane And Side Reactions: Thermodynamic Equilibrium Analysis And Experimental Application. Appl. Energy. 2016;173:80–91. doi: 10.1016/j.apenergy.2016.04.006. DOI
Meunier F. C., Scalbert J., Thibault-Starzyk F.. Unraveling The Mechanism Of Chemical Reactions Through Thermodynamic Analyses: A Short Review. Appl. Catal., A. 2015;504:220–227. doi: 10.1016/j.apcata.2014.12.028.. DOI
Treskow, M. ; Glock, M. ; Gräff, G. ; Schütz, T. ; Krill, S. ; U.S. Patent and Trademark Office . Preparation of diesters of (meth) acrylic acid from epoxides. US Patent, US11,319,276.2022. https://patentimages.storage.googleapis.com/9b/69/d7/49c066029a0204/US11319276.pdf.
Blanazs A., Madsen J., Battaglia G., Ryan A. J., Armes S. P.. Mechanistic Insights For Block Copolymer Morphologies: How Do Worms Form Vesicles? J. Am. Chem. Soc. 2011;133(41):16581–16587. doi: 10.1021/ja206301a. PubMed DOI
Jašek V., Fučík J., Krhut J., Mravcova L., Figalla S., Přikryl R.. A Study Of Isosorbide Synthesis From Sorbitol For Material Applications Using Isosorbide Dimethacrylate For Enhancement Of Bio-Based Resins. Polymers. 2023;15(17):3640. doi: 10.3390/polym15173640. PubMed DOI PMC
Cseri L., Kumar S., Palchuber P., Szekely G.. Nmr Chemical Shifts Of Emerging Green Solvents, Acids, And Bases For Facile Trace Impurity Analysis. ACS Sustainable Chem. Eng. 2023;11(14):5696–5725. doi: 10.1021/acssuschemeng.3c00244. DOI
Hernandez N. L. P., Bonon A. J., Bahú J. O., Barbosa M. I. R., Maciel M. R. W., Filho R. M.. Epoxy Monomers Obtained From Castor Oil Using A Toxicity-Free Catalytic System. J. Mol. Catal. A: Chem. 2017;426:550–556. doi: 10.1016/j.molcata.2016.08.005. DOI
Rastegari H., Ghaziaskar H. S., Yalpani M., Shafiei A.. Development Of A Continuous System Based On Azeotropic Reactive Distillation To Enhance Triacetin Selectivity In Glycerol Esterification With Acetic Acid. Energy Fuels. 2017;31(8):8256–8262. doi: 10.1021/acs.energyfuels.7b01068. DOI
Inayat A., van Assche A., Clark J. H., Farmer T. J.. Greening The Esterification Between Isosorbide And Acetic Acid. Sustainable Chem. Pharm. 2018;7:41–49. doi: 10.1016/j.scp.2017.10.004. DOI
Jašek V., Fučík J., Melcova V., Figalla S., Mravcova L., Krobot Š., Přikryl R.. Synthesis Of Bio-Based Thermoset Mixture Composed Of Methacrylated Rapeseed Oil And Methacrylated Methyl Lactate: One-Pot Synthesis Using Formed Methacrylic Acid As A Continual Reactant. Polymers. 2023;15(8):1811. doi: 10.3390/polym15081811. PubMed DOI PMC
Liu W., Xie T., Qiu R.. Biobased Thermosets Prepared From Rigid Isosorbide And Flexible Soybean Oil Derivatives. ACS Sustainable Chem. Eng. 2017;5(1):774–783. doi: 10.1021/acssuschemeng.6b02117. DOI
Zhou M., Hu Y., Zhou X., Wen Q., Ye C., Ye Z., Li P., Yang S., Yang Z.. A Solvent-Free And Scalable Method To Prepare Alkali Soluble Soybean Oil-Based Epoxy Acrylic Resin For Photoresist Application. Ind. Crops Prod. 2023;191:115877. doi: 10.1016/j.indcrop.2022.115877. DOI
Mendes-Felipe C., Costa P., Roppolo I., Sangermano M., Lanceros-Mendez S.. Bio-Based Piezo- And Thermoresistive Photocurable Sensing Materials From Acrylated Epoxidized Soybean Oil. Macromol. Mater. Eng. 2022;307(7):2100934. doi: 10.1002/mame.202100934. DOI
Guggenbiller G., Brooks S., King O., Constant E., Merckle D., Weems A. C.. 3D Printing Of Green And Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Appl. Polym. Mater. 2023;5(5):3201–3229. doi: 10.1021/acsapm.2c02171. DOI