Chemically recycled commercial polyurethane (PUR) foam using 2-hydroxypropyl ricinoleate as a glycolysis reactant for flexibility-enhanced automotive applications

. 2024 Sep 18 ; 14 (41) : 29966-29978. [epub] 20240920

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39309646

The automotive industry uses polyurethane (PUR) foam core in the vehicle headliner composite. The sector demands recycling suggestions to reduce its scrap and decrease the expenses. This work investigated the PUR depolymerization using synthesized 2-hydroxypropyl ricinoleate (2-HPR) from castor oil and incorporated the liquid recyclate (REC) into the original PUR foam. The synthesis of 2-HPR yielded 97.5%, and the following PUR depolymerization (via glycolysis) reached 87.2% yield. The synthesized products were verified by GPC, FTIR, ESI-MS, and 1H NMR cross-analysis. The laboratory experiments (565 mL) included rheological, structural, and reactivity investigations. Added 30% REC content decreased the apparent viscosity to 109 mPa s from standard 274 mPa s. The reactivity of the 30% REC system increased by 51.2% based on the cream time due to the high REC amine value. The block foam density of systems with 15% REC and above decreased by 14.8%. A system with 20% REC content was the most prospective for up-scale. The industrially significant up-scale (125 L) was performed successfully, and the tensile and flexural test specimens were sampled from the up-scaled foam. The tensile characteristic (tensile strength 107 ± 8 kPa and elongation 9.2 ± 0.7%) and flexural characteristic (flexural strength 156 ± 12 kPa and flexural strain at deformation limit 23.4 ± 0.6%) confirmed that the REC incorporation in the standard PUR foam improves the applicable significant mechanical properties and assures the manufacture improve.

Zobrazit více v PubMed

Romero P. E. Arribas-Barrios J. Rodriguez-Alabanda O. González-Merino R. Guerrero-Vaca G. Manufacture Of Polyurethane Foam Parts For Automotive Industry Using Fdm 3D Printed Molds. CIRP Journal of Manufacturing Science and Technology. 2021;32:396–404. doi: 10.1016/j.cirpj.2021.01.019. DOI

Mkrtchyan L. Maier M. Huber U. Structural Polyurethane Foam: Testing And Modelling For Automotive Applications. Int. J. Crashworthiness. 2008;13(5):523–532. doi: 10.1080/13588260802221310. DOI

Azmami O. Sajid L. Boukhriss A. Majid S. El Ahmadi Z. Benayada A. Gmouh S. Mechanical And Aging Performances Of Palm/Wool And Palm/Polyester Nonwovens Coated By Waterborne Polyurethane For Automotive Interiors. Ind. Crops Prod. 2021;170:113681. doi: 10.1016/j.indcrop.2021.113681. DOI

Akindoyo J. O. Beg M. D. H. Ghazali S. Islam M. R. Jeyaratnam N. Yuvaraj A. R. Polyurethane Types, Synthesis And Applications – A Review. RSC Adv. 2016;6(115):114453–114482. doi: 10.1039/C6RA14525F. DOI

de Souza F. M.; Kahol P. K. and Gupta R. K., Introduction To Polyurethane Chemistry, in Polyurethane Chemistry: Renewable Polyols and Isocyanates, DOI

Eling B. Tomović Ž. Schädler V. Current And Future Trends In Polyurethanes: An Industrial Perspective. Macromol. Chem. Phys. 2020;221(14):2000114. doi: 10.1002/macp.202000114. DOI

Ghoreishi R. Suppes G. J. Chain Growth Polymerization Mechanism In Polyurethane-Forming Reactions. RSC Adv. 2015;5(84):68361–68368. doi: 10.1039/C5RA10725C. DOI

Santiago-Calvo M. Tirado-Mediavilla J. Ruiz-Herrero J. L. Rodríguez-Pérez M. Á. Villafañe F. The Effects Of Functional Nanofillers On The Reaction Kinetics, Microstructure, Thermal And Mechanical Properties Of Water Blown Rigid Polyurethane Foams. Polymer. 2018;150:138–149. doi: 10.1016/j.polymer.2018.07.029. DOI

Thirumal M. Khastgir D. Singha N. K. Manjunath B. S. Naik Y. P. Effect Of Foam Density On The Properties Of Water Blown Rigid Polyurethane Foam. J. Appl. Polym. Sci. 2008;108(3):1810–1817. doi: 10.1002/app.27712. DOI

Armistead J. P. Wilkes G. L. Turner R. B. Morphology Of Water-Blown Flexible Polyurethane Foams. J. Appl. Polym. Sci. 1988;35(3):601–629. doi: 10.1002/app.1988.070350305. DOI

Oka H. Tokunaga Y. Masuda T. Kiso H. Yoshimura H. Characterization Of Local Structures In Flexible Polyurethane Foams By Solid-State Nmr And Ftir Spectroscopy. J. Cell. Plast. 2006;42(4):307–323. doi: 10.1177/0021955X06063516. DOI

Borreguero A. M. Zamora J. Garrido I. Carmona M. Rodríguez J. F. Improving The Hydrophilicity Of Flexible Polyurethane Foams With Sodium Acrylate Polymer. Materials. 2021;14(9):2197. doi: 10.3390/ma14092197. PubMed DOI PMC

Deng R. Davies P. Bajaj A. K. Flexible Polyurethane Foam Modelling And Identification Of Viscoelastic Parameters For Automotive Seating Applications. J. Sound Vib. 2003;262(3):391–417. doi: 10.1016/S0022-460X(03)00104-4. DOI

Quinsaat J. E. Q. Feghali E. van de Pas D. J. Vendamme R. Torr K. M. Preparation Of Mechanically Robust Bio-Based Polyurethane Foams Using Depolymerized Native Lignin. ACS Appl. Polym. Mater. 2021;3(11):5845–5856. doi: 10.1021/acsapm.1c01081. DOI

Oprea S. Effect Of Composition And Hard-Segment Content On Thermo-Mechanical Properties Of Cross-Linked Polyurethane Copolymers. High Perform. Polym. 2009;21(3):353–370. doi: 10.1177/0954008308092071. DOI

Das A. Mahanwar P. A Brief Discussion On Advances In Polyurethane Applications. Adv. Ind. Eng. Polym. Res. 2020;3(3):93–101. doi: 10.1016/j.aiepr.2020.07.002. DOI

Begum S. Ahmed G. M. S. Badruddin I. A. Tirth V. Algahtani A. Analysis Of Digital Light Synthesis Based Flexible And Rigid Polyurethane For Applications In Automobile Bumpers. Mater. Express. 2019;9(8):839–850. doi: 10.1166/mex.2019.1578. DOI

Pearson B. A. New low MDI polyurethane foam system for acoustical barrier applications in the automotive industry. SAE Trans. 1999:2540–2544.

Mester E. Pecsmány D. Jálics K. Filep Á. Varga M. Gráczer K. Viskolcz B. Fiser B. Exploring The Potential To Repurpose Flexible Moulded Polyurethane Foams As Acoustic Insulators. Polymers. 2022;14(1):163. doi: 10.3390/polym14010163. PubMed DOI PMC

Siano D. Viscardi M. Panza M. A. Automotive Materials: An Experimental Investigation Of An Engine Bay Acoustic Performances. Energy Procedia. 2016;101:598–605. doi: 10.1016/j.egypro.2016.11.076. DOI

Qi H. J. Boyce M. C. Stress–Strain Behavior Of Thermoplastic Polyurethanes. Mech. Mater. 2005;37(8):817–839. doi: 10.1016/j.mechmat.2004.08.001. DOI

Solouki Bonab V. Manas-Zloczower I. Revisiting Thermoplastic Polyurethane, From Composition To Morphology And Properties. J. Polym. Sci., Part B: Polym. Phys. 2017;55(20):1553–1564. doi: 10.1002/polb.24413. DOI

Reynolds J. P. Brown J. R. Das A. Long T. E. Willoughby P. Delaney J. Dyndikova T. Bortner M. J. Characterization Methods To Predict Extrusion Performance In Thermoplastic Polyurethane Batches. Polym. Degrad. Stab. 2024;224:110746. doi: 10.1016/j.polymdegradstab.2024.110746. DOI

Chen T. Xie Y. Wang Z. Lou J. Liu D. Xu R. Cui Z. Li S. Panahi-Sarmad M. Xiao X. Recent Advances Of Flexible Strain Sensors Based On Conductive Fillers And Thermoplastic Polyurethane Matrixes. ACS Appl. Polym. Mater. 2021;3(11):5317–5338. doi: 10.1021/acsapm.1c00840. DOI

Maury T., Tazi N., Torres D., Cristina M. A. T. O. S., Nessi S., Antonopoulos I. and Mathieux F., Towards Recycled Plastic Content Targets in New Passenger Cars and Light Commercial Vehicles, Publications Office of the European Union, Luxembourg, 2023, 10.2838/834615 DOI

Kemona A. Piotrowska M. Polyurethane Recycling And Disposal: Methods And Prospects. Polymers. 2020;12(8):1752. doi: 10.3390/polym12081752. PubMed DOI PMC

Polo Fonseca L. Duval A. Luna E. Ximenis M. De Meester S. Avérous L. Sardon H. Reducing The Carbon Footprint Of Polyurethanes By Chemical And Biological Depolymerization: Fact Or Fiction? Curr. Opin. Green Sustainable Chem. 2023;41:100802. doi: 10.1016/j.cogsc.2023.100802. DOI

He H. Su H. Yu H. Du K. Yang F. Zhu Y. Ma M. Shi Y. Zhang X. Chen S. Wang X. Chemical Recycling Of Waste Polyurethane Foams: Efficient Acidolysis Under The Catalysis Of Zinc Acetate. ACS Sustain. Chem. Eng. 2023;11(14):5515–5523. doi: 10.1021/acssuschemeng.2c07260. DOI

Grdadolnik M. Zdovc B. Drinčić A. Onder O. C. Utroša P. Ramos S. G. Ramos E. D. Pahovnik D. Žagar E. Chemical Recycling Of Flexible Polyurethane Foams By Aminolysis To Recover High-Quality Polyols. ACS Sustain. Chem. Eng. 2023;11(29):10864–10873. doi: 10.1021/acssuschemeng.3c02311. PubMed DOI PMC

Banik J. Chakraborty D. Rizwan M. Shaik A. H. Chandan M. R. Review On Disposal, Recycling And Management Of Waste Polyurethane Foams: A Way Ahead. Waste Manage. Res. 2023;41(6):1063–1080. doi: 10.1177/0734242X221146082. PubMed DOI

Liu B. Westman Z. Richardson K. Lim D. Stottlemyer A. L. Farmer T. Gillis P. Vlcek V. Christopher P. Abu-Omar M. M. Opportunities In Closed-Loop Molecular Recycling Of End-Of-Life Polyurethane. ACS Sustain. Chem. Eng. 2023;11(16):6114–6128. doi: 10.1021/acssuschemeng.2c07422. PubMed DOI PMC

Simón D. Borreguero A. M. de Lucas A. Rodríguez J. F. Recycling Of Polyurethanes From Laboratory To Industry, A Journey Towards The Sustainability. Waste Manage. 2018;76:147–171. doi: 10.1016/j.wasman.2018.03.041. PubMed DOI

Lin Y.-H. Chen-Huang Y.-L. Chang A. C.-C. Vitrimer Synthesis From Recycled Polyurethane Gylcolysate. Front. Bioeng. Biotechnol. 2023;11:1209294. doi: 10.3389/fbioe.2023.1209294. PubMed DOI PMC

Ko J. Zarei M. Lee S. G. Cho K. Single-Phase Recycling Of Flexible Polyurethane Foam By Glycolysis And Oxyalkylation: Large-Scale Industrial Evaluation. ACS Sustain. Chem. Eng. 2023;11(27):10074–10082. doi: 10.1021/acssuschemeng.3c01927. DOI

Donadini R. Boaretti C. Lorenzetti A. Roso M. Penzo D. Dal Lago E. Modesti M. Chemical Recycling Of Polyurethane Waste Via A Microwave-Assisted Glycolysis Process. ACS Omega. 2023;8(5):4655–4666. doi: 10.1021/acsomega.2c06297. PubMed DOI PMC

Sarim M. Alavi Nikje M. M. Dargahi M. Synthesis And Characterization Of Polyurethane Rigid Foam By Using Feedstocks Received From Renewable And Recyclable Resources. J. Porous Mater. 2023;30(4):1337–1356. doi: 10.1007/s10934-023-01425-3. DOI

Mangal M. Rao C. V. Banerjee T. Bioplastic: An Eco-Friendly Alternative To Non-Biodegradable Plastic. Polym. Int. 2023;72(11):984–996. doi: 10.1002/pi.6555. DOI

Gurgel D. Bresolin D. Sayer C. Cardozo Filho L. Hermes de Araújo P. H. Flexible Polyurethane Foams Produced From Industrial Residues And Castor Oil. Ind. Crops Prod. 2021;164:113377. doi: 10.1016/j.indcrop.2021.113377. DOI

Gama N. Godinho B. Madureira P. Marques G. Barros-Timmons A. Ferreira A. Polyurethane Recycling Through Acidolysis: Current Status And Prospects For The Future. J. Polym. Environ. 2024 doi: 10.1007/s10924-024-03278-6. DOI

Ewonkem M. B. Grinberg S. Lemcoff G. Shaubi E. Linder C. Heldman E. Newly Synthesized Bolaamphiphiles From Castor Oil And Their Aggregated Morphologies For Potential Use In Drug Delivery. Tetrahedron. 2015;71(45):8557–8571. doi: 10.1016/j.tet.2015.09.031. DOI

Wang F. Allen D. Tian S. Oler E. Gautam V. Greiner R. Metz T. O. Wishart D. S. Cfm-Id 4.0 – A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022;50(W1):W165–W174. doi: 10.1093/nar/gkac383. PubMed DOI PMC

Giap S. G. E. The hidden property of Arrhenius-type relationship: viscosity as a function of temperature. J. Phys. Sci. 2010;21(1):29–39.

Iyer D. Galadari M. Wirawan F. Huaco V. Martinez R. Gallagher M. T. Pilon L. Ono K. Simonetti D. A. Sant G. N. Srivastava S. High-Strength Organic–Inorganic Composites With Superior Thermal Insulation And Acoustic Attenuation. ACS Polym. Au. 2024;4(1):86–97. doi: 10.1021/acspolymersau.3c00037. PubMed DOI PMC

Peyrton J. Avérous L. Structure-Properties Relationships Of Cellular Materials From Biobased Polyurethane Foams. Mater. Sci. Eng., R. 2021;145:100608. doi: 10.1016/j.mser.2021.100608. DOI

Amundarain I. Miguel-Fernández R. Asueta A. García-Fernández S. Arnaiz S. Synthesis Of Rigid Polyurethane Foams Incorporating Polyols From Chemical Recycling Of Post-Industrial Waste Polyurethane Foams. Polymers. 2022;14(6):1157. doi: 10.3390/polym14061157. PubMed DOI PMC

Donadini R. Boaretti C. Scopel L. Lorenzetti A. Modesti M. Deamination Of Polyols From The Glycolysis Of Polyurethane. Chem.–Eur. J. 2024;30(3):e202301919. doi: 10.1002/chem.202301919. PubMed DOI

Wegener G. Brandt M. Duda L. Hofmann J. Klesczewski B. Koch D. Kumpf R.-J. Orzesek H. Pirkl H.-G. Six C. Steinlein C. Weisbeck M. Trends In Industrial Catalysis In The Polyurethane Industry. Appl. Catal., A. 2001;221(1–2):303–335. doi: 10.1016/S0926-860X(01)00910-3. DOI

Ju S. Lee A. Shin Y. Jang H. Yi J.-W. Oh Y. Jo N.-J. Park T. Preventing The Collapse Behavior Of Polyurethane Foams With The Addition Of Cellulose Nanofiber. Polymers. 2023;15(6):1499. doi: 10.3390/polym15061499. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Vegetable Oils for Material Applications - Available Biobased Compounds Seeking Their Utilities

. 2025 Apr 09 ; 5 (2) : 105-128. [epub] 20250319

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...