Deletions in (CCCT)n repeat regions belonging to the human pRNA gene inhibit its expression

. 2025 Oct 28 ; 19 (1) : 124. [epub] 20251028

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41153069

Grantová podpora
Cooperatio Univerzita Karlova v Praze
Cooperatio Univerzita Karlova v Praze
Cooperatio Univerzita Karlova v Praze
Cooperatio Univerzita Karlova v Praze

Odkazy

PubMed 41153069
PubMed Central PMC12570693
DOI 10.1186/s40246-025-00830-w
PII: 10.1186/s40246-025-00830-w
Knihovny.cz E-zdroje

BACKGROUND: Ribosomal DNA (rDNA), the most abundantly expressed locus in the human genome, is represented by hundreds of units per cell. Each unit includes a 13 kb long region (47S rDNA) containing the genes of ribosomal particles, and a 30 kb long intergenic spacer (IGS). The 47S rDNA is transcribed with varying intensity in different units, some of which remain permanently silent. A key intermediator of this silencing is the promoter-associated RNA (pRNA) produced from a 2 kb long gene situated upstream of the rDNA transcription start site. Recent studies, including ours, suggest that the sequence variability, which normally occurs in mammalian cells, may account for the selective transcription of different rDNA units. The present work is based on the deep sequencing of a pRNA gene fragment and its RNA product and subsequent bioinformatic analysis. RESULTS: We found that a certain SNV, which converts the CCC motif into CCT, as well as deletions which reduce the number of (CCCT) tandem repeats, were significantly more frequent in the DNA than in the respective transcripts. CONCLUSIONS: These findings allowed us to establish directly the inhibitory effect of DNA variants on the expression of pRNA and thus (indirectly) the promoting effect on the production of ribosomal RNA. Our results also suggest that (CCCT)n/(GGGA)n DNA repeats and the respective (GGGA)n RNA repeats may form triplex structures, facilitating the function of pRNA.

Zobrazit více v PubMed

Hori Y, Engel C, Kobayashi T. Regulation of ribosomal RNA gene copy number, transcription and nucleolus organization in eukaryotes. Nat Rev Mol Cell Biol. 2023;24(6):414–29. PubMed

Smirnov E, Cmarko D, Mazel T, Hornacek M, Raska I. Nucleolar DNA: the host and the guests. Histochem Cell Biol. 2016;145(4):359–72. PubMed

Schofer C, Weipoltshammer K. Nucleolus and chromatin. Histochem Cell Biol. 2018;150(3):209–25. PubMed PMC

Wehner S, Dorrich AK, Ciba P, Wilde A, Marz M. pRNA: NoRC-associated RNA of rRNA operons. RNA Biol. 2014;11(1):3–9. PubMed PMC

Leone S, Bär D, Slabber CF, Dalcher D, Santoro R. The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. Embo Rep. 2017;18(7):1248–62. PubMed PMC

Mayer C, Neubert M, Grummt I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. Embo Rep. 2008;9(8):774–80. PubMed PMC

Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell. 2006;22(3):351–61. PubMed

Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64. PubMed

Anosova I, Melnik S, Tripsianes K, Kateb F, Grummt I, Sattler M. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes. Nucleic Acids Res. 2015;43(10):5208–20. PubMed PMC

McStay B. Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev. 2016;30(14):1598–610. PubMed PMC

Bersaglieri C, Santoro R. Genome organization in and around the nucleolus. Cells. 2019;8(6). PubMed PMC

Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and Silencing of rRNA genes. Genes Dev. 2010;24(20):2264–9. PubMed PMC

Sibai DS, Tremblay MG, Lessard F, Tav C, Sabourin-Felix M, Robinson M et al. TTF1 control of LncRNA synthesis delineates a tumor suppressor pathway directly regulating the ribosomal RNA genes. J Cell Physiol. 2024. PubMed

Chmurciakova N, Smirnov E, Kurfurst J, Liska F, Cmarko D. Variability of human rDNA and transcription activity of the ribosomal genes. Int J Mol Sci. 2022;23(23). PubMed PMC

Rodriguez-Algarra F, Seaborne RAE, Danson AF, Yildizoglu S, Yoshikawa H, Law PP et al. Genetic variation at mouse and human ribosomal DNA influences associated epigenetic States. Genome Biol. 2022;23(1). PubMed PMC

Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT et al. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv. 2018;4(2). PubMed PMC

Dev VG, Tantravahi R, Miller DA, Miller OJ. Nucleolus organizers in Mus musculus subspecies and in the RAG mouse cell line. Genetics. 1977;86(2 Pt):389–98. PubMed PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011;17(1):3.

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: Genomics; 2013.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and samtools. Bioinformatics. 2009;25(16):2078–9. PubMed PMC

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. PubMed

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2. PubMed PMC

Santoro R, Grummt I. Molecular mechanisms mediating methylation-dependent Silencing of ribosomal gene transcription. Mol Cell. 2001;8(3):719–25. PubMed

Brinkmann B, Klintschar M, Neuhuber F, Huhne J, Rolf B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet. 1998;62(6):1408–15. PubMed PMC

Ramamoorthy S, Garapati HS, Mishra RK. Length and sequence dependent accumulation of simple sequence repeats in vertebrates: potential role in genome organization and regulation. Gene. 2014;551(2):167–75. PubMed

Gymrek M, Willems T, Guilmatre A, Zeng H, Markus B, Georgiev S, et al. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet. 2016;48(1):22–9. PubMed PMC

Langst G, Becker PB, Grummt I. TTF-I determines the chromatin architecture of the active rDNA promoter. Embo J. 1998;17(11):3135–45. PubMed PMC

Vacík T, Kereïche S, Raska I, Cmarko D, Smirnov E. Life time of some RNA products of rDNA intergenic spacer in HeLa cells. Histochem Cell Biol. 2019;152(4):271–80. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...