Variability of Human rDNA and Transcription Activity of the Ribosomal Genes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-21715S
Grant Agency of Czech Republic
Cooperatio - Oncology and Haematologhy
Charles University
PubMed
36499515
PubMed Central
PMC9740796
DOI
10.3390/ijms232315195
PII: ijms232315195
Knihovny.cz E-zdroje
- Klíčová slova
- micro-RNAs, non-canonical DNA structures, rDNA, sequence variability, transcription,
- MeSH
- intergenová DNA MeSH
- lidé MeSH
- mezerníky ribozomální DNA genetika MeSH
- ribozomální DNA genetika MeSH
- ribozomy * MeSH
- RNA ribozomální 28S genetika MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- intergenová DNA MeSH
- mezerníky ribozomální DNA MeSH
- ribozomální DNA MeSH
- RNA ribozomální 28S MeSH
Human ribosomal DNA is represented by hundreds of repeats in each cell. Every repeat consists of two parts: a 13 kb long 47S DNA with genes encoding 18S, 5.8S, and 28S RNAs of ribosomal particles, and a 30 kb long intergenic spacer (IGS). Remarkably, transcription does not take place in all the repeats. The transcriptionally silent genes are characterized by the epigenetic marks of the inactive chromatin, including DNA hypermethylation of the promoter and adjacent areas. However, it is still unknown what causes the differentiation of the genes into active and silent. In this study, we examine whether this differentiation is related to the nucleotide sequence of IGS. We isolated ribosomal DNA from the nucleoli of human-derived HT1080 cells, and separated methylated and non-methylated DNA by chromatin immunoprecipitation. Then, we used PCR to amplify a 2 kb long region upstream of the transcription start and sequenced the product. We found that six SNVs and a series of short deletions in a region of simple repeats correlated with the DNA methylation status. These data indicate that variability of IGS sequence may initiate silencing of the ribosomal genes. Our study also suggests a number of pathways to this silencing that involve micro-RNAs and/or non-canonical DNA structures.
Zobrazit více v PubMed
Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. PubMed DOI
Conconi A., Widmer R.M., Koller T., Sogo J.M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell. 1989;57:753–761. doi: 10.1016/0092-8674(89)90790-3. PubMed DOI
Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. doi: 10.1073/pnas.69.11.3394. PubMed DOI PMC
McKeown P.C., Shaw P.J. Chromatin: Linking structure and function in the nucleolus. Chromosoma. 2009;118:11–23. doi: 10.1007/s00412-008-0184-2. PubMed DOI
Lam Y.W., Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000Prime Rep. 2015;7:48. doi: 10.12703/P7-48. PubMed DOI PMC
Shaw P.J., McKeown P.C. The Structure of rDNA Chromatin. In: Olson M.O.J., editor. The Nucleolus. Springer; New York, NY, USA: 2011. pp. 43–55. DOI
Zillner K., Komatsu J., Filarsky K., Kalepu R., Bensimon A., Nemeth A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics. 2015;7:363–378. doi: 10.2217/epi.14.93. PubMed DOI
Smirnov E., Chmurciakova N., Cmarko D. Human rDNA and Cancer. Cells. 2021;10:3452. doi: 10.3390/cells10123452. PubMed DOI PMC
Smirnov E., Chmurciakova N., Liska F., Bazantova P., Cmarko D. Variability of Human rDNA. Cells. 2021;10:196. doi: 10.3390/cells10020196. PubMed DOI PMC
Wehner S., Dorrich A.K., Ciba P., Wilde A., Marz M. pRNA: NoRC-associated RNA of rRNA operons. RNA Biol. 2014;11:3–9. doi: 10.4161/rna.27448. PubMed DOI PMC
Leone S., Bar D., Slabber C.F., Dalcher D., Santoro R. The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Rep. 2017;18:1248–1262. doi: 10.15252/embr.201744330. PubMed DOI PMC
Bierhoff H., Schmitz K.M., Maass F., Ye J., Grummt I. Noncoding Transcripts in Sense and Antisense Orientation Regulate the Epigenetic State of Ribosomal RNA Genes. Cold Spring Harb. Symp. Quant. Biol. 2010;75:357–364. doi: 10.1101/sqb.2010.75.060. PubMed DOI
Bierhoff H., Dammert M.A., Brocks D., Dambacher S., Schotta G., Grummt I. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell. 2014;54:675–682. doi: 10.1016/j.molcel.2014.03.032. PubMed DOI
Zhao Z., Sentürk N., Song C., Grummt I. lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev. 2018;32:836–848. doi: 10.1101/gad.311688.118. PubMed DOI PMC
Drygin D., Siddiqui-Jain A., O’Brien S., Schwaebe M., Lin A., Bliesath J., Ho C.B., Proffitt C., Trent K., Whitten J.P., et al. Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69:7653–7661. doi: 10.1158/0008-5472.CAN-09-1304. PubMed DOI
Niehrs C., Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Bio. 2020;21:167–178. doi: 10.1038/s41580-019-0206-3. PubMed DOI PMC
Zhou H., Wang Y., Wang Q., Li L., Hu Y., Wu Y., Gautam M., Li L. R-loops mediate transcription-associated formation of human rDNA secondary constrictions. J. Cell. Biochem. 2021;122:1517–1533. doi: 10.1002/jcb.30074. PubMed DOI
Puget N., Miller K.M., Legube G. Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair. 2019;81:102661. doi: 10.1016/j.dnarep.2019.102661. PubMed DOI PMC
Vydzhak O., Luke B., Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond. J. Mol. Biol. 2020;432:4287–4304. doi: 10.1016/j.jmb.2020.05.011. PubMed DOI
Santoro R. Analysis of chromatin composition of repetitive sequences: The ChIP-Chop assay. Methods Mol. Biol. 2014;1094:319–328. doi: 10.1007/978-1-62703-706-8_25. PubMed DOI
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI
Sun D., Hurley L.H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: Implications for drug targeting and control of gene expression. J. Med. Chem. 2009;52:2863–2874. doi: 10.1021/jm900055s. PubMed DOI PMC
Havlova K., Fajkus J. G4 Structures in Control of Replication and Transcription of rRNA Genes. Front. Plant Sci. 2020;11:593692. doi: 10.3389/fpls.2020.593692. PubMed DOI PMC
Teng F.Y., Jiang Z.Z., Guo M., Tan X.Z., Chen F., Xi X.G., Xu Y. G-quadruplex DNA: A novel target for drug design. Cell Mol. Life Sci. 2021;78:6557–6583. doi: 10.1007/s00018-021-03921-8. PubMed DOI PMC
Datta A., Pollock K.J., Kormuth K.A., Brosh R.M., Jr. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet. Genome Res. 2021;161:285–296. doi: 10.1159/000516394. PubMed DOI PMC
Hao Q., Prasanth K.V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm. Genome. 2022;33:402–411. doi: 10.1007/s00335-021-09906-z. PubMed DOI PMC
Zou H., Wu L.X., Tan L., Shang F.F., Zhou H.H. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front. Cell Dev. Biol. 2020;8:347. doi: 10.3389/fcell.2020.00347. PubMed DOI PMC
Bhartiya D., Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics. 2016;107:59–68. doi: 10.1016/j.ygeno.2016.01.005. PubMed DOI
Yoshikawa M., Fujii Y.R. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BioMed. Res. Int. 2016;2016:7562085. doi: 10.1155/2016/7562085. PubMed DOI PMC
Abraham K.J., Khosraviani N., Chan J.N.Y., Gorthi A., Samman A., Zhao D.Y., Wang M., Bokros M., Vidya E., Ostrowski L.A., et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585:298–302. doi: 10.1038/s41586-020-2497-0. PubMed DOI PMC
Malig M., Hartono S.R., Giafaglione J.M., Sanz L.A., Chedin F. Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J. Mol. Biol. 2020;432:2271–2288. doi: 10.1016/j.jmb.2020.02.014. PubMed DOI PMC
Nadel J., Athanasiadou R., Lemetre C., Wijetunga N.A., Ó Broin P., Sato H., Zhang Z., Jeddeloh J., Montagna C., Golden A., et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenet. Chromatin. 2015;8:46. doi: 10.1186/s13072-015-0040-6. PubMed DOI PMC
De Magis A., Manzo S.G., Russo M., Marinello J., Morigi R., Sordet O., Capranico G. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl. Acad. Sci. USA. 2019;116:816–825. doi: 10.1073/pnas.1810409116. PubMed DOI PMC
Lam Y.W., Lamond A.I. Isolation of Nucleoli. In: Celis J.E., editor. Cell Biology. 3rd ed. Academic Press; Burlington, NJ, USA: 2006. pp. 103–107. DOI
Higashinakagawa T., Muramatsu M., Sugano H. Isolation of nucleoli from rat liver in the presence of magnesium ions. Exp. Cell Res. 1972;71:65–74. doi: 10.1016/0014-4827(72)90264-9. PubMed DOI
Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Gruning B.A., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997
Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907
Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC
Non-canonical DNA structures in the human ribosomal DNA