Variability of Human rDNA and Transcription Activity of the Ribosomal Genes

. 2022 Dec 02 ; 23 (23) : . [epub] 20221202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36499515

Grantová podpora
19-21715S Grant Agency of Czech Republic
Cooperatio - Oncology and Haematologhy Charles University

Human ribosomal DNA is represented by hundreds of repeats in each cell. Every repeat consists of two parts: a 13 kb long 47S DNA with genes encoding 18S, 5.8S, and 28S RNAs of ribosomal particles, and a 30 kb long intergenic spacer (IGS). Remarkably, transcription does not take place in all the repeats. The transcriptionally silent genes are characterized by the epigenetic marks of the inactive chromatin, including DNA hypermethylation of the promoter and adjacent areas. However, it is still unknown what causes the differentiation of the genes into active and silent. In this study, we examine whether this differentiation is related to the nucleotide sequence of IGS. We isolated ribosomal DNA from the nucleoli of human-derived HT1080 cells, and separated methylated and non-methylated DNA by chromatin immunoprecipitation. Then, we used PCR to amplify a 2 kb long region upstream of the transcription start and sequenced the product. We found that six SNVs and a series of short deletions in a region of simple repeats correlated with the DNA methylation status. These data indicate that variability of IGS sequence may initiate silencing of the ribosomal genes. Our study also suggests a number of pathways to this silencing that involve micro-RNAs and/or non-canonical DNA structures.

Zobrazit více v PubMed

Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. PubMed DOI

Conconi A., Widmer R.M., Koller T., Sogo J.M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell. 1989;57:753–761. doi: 10.1016/0092-8674(89)90790-3. PubMed DOI

Henderson A.S., Warburton D., Atwood K.C. Location of ribosomal DNA in the human chromosome complement. Proc. Natl. Acad. Sci. USA. 1972;69:3394–3398. doi: 10.1073/pnas.69.11.3394. PubMed DOI PMC

McKeown P.C., Shaw P.J. Chromatin: Linking structure and function in the nucleolus. Chromosoma. 2009;118:11–23. doi: 10.1007/s00412-008-0184-2. PubMed DOI

Lam Y.W., Trinkle-Mulcahy L. New insights into nucleolar structure and function. F1000Prime Rep. 2015;7:48. doi: 10.12703/P7-48. PubMed DOI PMC

Shaw P.J., McKeown P.C. The Structure of rDNA Chromatin. In: Olson M.O.J., editor. The Nucleolus. Springer; New York, NY, USA: 2011. pp. 43–55. DOI

Zillner K., Komatsu J., Filarsky K., Kalepu R., Bensimon A., Nemeth A. Active human nucleolar organizer regions are interspersed with inactive rDNA repeats in normal and tumor cells. Epigenomics. 2015;7:363–378. doi: 10.2217/epi.14.93. PubMed DOI

Smirnov E., Chmurciakova N., Cmarko D. Human rDNA and Cancer. Cells. 2021;10:3452. doi: 10.3390/cells10123452. PubMed DOI PMC

Smirnov E., Chmurciakova N., Liska F., Bazantova P., Cmarko D. Variability of Human rDNA. Cells. 2021;10:196. doi: 10.3390/cells10020196. PubMed DOI PMC

Wehner S., Dorrich A.K., Ciba P., Wilde A., Marz M. pRNA: NoRC-associated RNA of rRNA operons. RNA Biol. 2014;11:3–9. doi: 10.4161/rna.27448. PubMed DOI PMC

Leone S., Bar D., Slabber C.F., Dalcher D., Santoro R. The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Rep. 2017;18:1248–1262. doi: 10.15252/embr.201744330. PubMed DOI PMC

Bierhoff H., Schmitz K.M., Maass F., Ye J., Grummt I. Noncoding Transcripts in Sense and Antisense Orientation Regulate the Epigenetic State of Ribosomal RNA Genes. Cold Spring Harb. Symp. Quant. Biol. 2010;75:357–364. doi: 10.1101/sqb.2010.75.060. PubMed DOI

Bierhoff H., Dammert M.A., Brocks D., Dambacher S., Schotta G., Grummt I. Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol. Cell. 2014;54:675–682. doi: 10.1016/j.molcel.2014.03.032. PubMed DOI

Zhao Z., Sentürk N., Song C., Grummt I. lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev. 2018;32:836–848. doi: 10.1101/gad.311688.118. PubMed DOI PMC

Drygin D., Siddiqui-Jain A., O’Brien S., Schwaebe M., Lin A., Bliesath J., Ho C.B., Proffitt C., Trent K., Whitten J.P., et al. Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 2009;69:7653–7661. doi: 10.1158/0008-5472.CAN-09-1304. PubMed DOI

Niehrs C., Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat. Rev. Mol. Cell Bio. 2020;21:167–178. doi: 10.1038/s41580-019-0206-3. PubMed DOI PMC

Zhou H., Wang Y., Wang Q., Li L., Hu Y., Wu Y., Gautam M., Li L. R-loops mediate transcription-associated formation of human rDNA secondary constrictions. J. Cell. Biochem. 2021;122:1517–1533. doi: 10.1002/jcb.30074. PubMed DOI

Puget N., Miller K.M., Legube G. Non-canonical DNA/RNA structures during Transcription-Coupled Double-Strand Break Repair: Roadblocks or Bona fide repair intermediates? DNA Repair. 2019;81:102661. doi: 10.1016/j.dnarep.2019.102661. PubMed DOI PMC

Vydzhak O., Luke B., Schindler N. Non-coding RNAs at the Eukaryotic rDNA Locus: RNA–DNA Hybrids and Beyond. J. Mol. Biol. 2020;432:4287–4304. doi: 10.1016/j.jmb.2020.05.011. PubMed DOI

Santoro R. Analysis of chromatin composition of repetitive sequences: The ChIP-Chop assay. Methods Mol. Biol. 2014;1094:319–328. doi: 10.1007/978-1-62703-706-8_25. PubMed DOI

Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI

Sun D., Hurley L.H. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: Implications for drug targeting and control of gene expression. J. Med. Chem. 2009;52:2863–2874. doi: 10.1021/jm900055s. PubMed DOI PMC

Havlova K., Fajkus J. G4 Structures in Control of Replication and Transcription of rRNA Genes. Front. Plant Sci. 2020;11:593692. doi: 10.3389/fpls.2020.593692. PubMed DOI PMC

Teng F.Y., Jiang Z.Z., Guo M., Tan X.Z., Chen F., Xi X.G., Xu Y. G-quadruplex DNA: A novel target for drug design. Cell Mol. Life Sci. 2021;78:6557–6583. doi: 10.1007/s00018-021-03921-8. PubMed DOI PMC

Datta A., Pollock K.J., Kormuth K.A., Brosh R.M., Jr. G-Quadruplex Assembly by Ribosomal DNA: Emerging Roles in Disease Pathogenesis and Cancer Biology. Cytogenet. Genome Res. 2021;161:285–296. doi: 10.1159/000516394. PubMed DOI PMC

Hao Q., Prasanth K.V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm. Genome. 2022;33:402–411. doi: 10.1007/s00335-021-09906-z. PubMed DOI PMC

Zou H., Wu L.X., Tan L., Shang F.F., Zhou H.H. Significance of Single-Nucleotide Variants in Long Intergenic Non-protein Coding RNAs. Front. Cell Dev. Biol. 2020;8:347. doi: 10.3389/fcell.2020.00347. PubMed DOI PMC

Bhartiya D., Scaria V. Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics. 2016;107:59–68. doi: 10.1016/j.ygeno.2016.01.005. PubMed DOI

Yoshikawa M., Fujii Y.R. Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BioMed. Res. Int. 2016;2016:7562085. doi: 10.1155/2016/7562085. PubMed DOI PMC

Abraham K.J., Khosraviani N., Chan J.N.Y., Gorthi A., Samman A., Zhao D.Y., Wang M., Bokros M., Vidya E., Ostrowski L.A., et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585:298–302. doi: 10.1038/s41586-020-2497-0. PubMed DOI PMC

Malig M., Hartono S.R., Giafaglione J.M., Sanz L.A., Chedin F. Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J. Mol. Biol. 2020;432:2271–2288. doi: 10.1016/j.jmb.2020.02.014. PubMed DOI PMC

Nadel J., Athanasiadou R., Lemetre C., Wijetunga N.A., Ó Broin P., Sato H., Zhang Z., Jeddeloh J., Montagna C., Golden A., et al. RNA:DNA hybrids in the human genome have distinctive nucleotide characteristics, chromatin composition, and transcriptional relationships. Epigenet. Chromatin. 2015;8:46. doi: 10.1186/s13072-015-0040-6. PubMed DOI PMC

De Magis A., Manzo S.G., Russo M., Marinello J., Morigi R., Sordet O., Capranico G. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl. Acad. Sci. USA. 2019;116:816–825. doi: 10.1073/pnas.1810409116. PubMed DOI PMC

Lam Y.W., Lamond A.I. Isolation of Nucleoli. In: Celis J.E., editor. Cell Biology. 3rd ed. Academic Press; Burlington, NJ, USA: 2006. pp. 103–107. DOI

Higashinakagawa T., Muramatsu M., Sugano H. Isolation of nucleoli from rat liver in the presence of magnesium ions. Exp. Cell Res. 1972;71:65–74. doi: 10.1016/0014-4827(72)90264-9. PubMed DOI

Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Gruning B.A., et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 20131303.3997

Garrison E., Marth G. Haplotype-based variant detection from short-read sequencing. arXiv. 20121207.3907

Robinson J.T., Thorvaldsdottir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Non-canonical DNA structures in the human ribosomal DNA

. 2023 Dec ; 160 (6) : 499-515. [epub] 20230926

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace