Life time of some RNA products of rDNA intergenic spacer in HeLa cells
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P302/12/G157
Grant Agency of the Czech Republic
19-21715S
Grant Agency of the Czech Republic
19-19779S
Grant Agency of the Czech Republic
Progres Q28
Charles University
PubMed
31346697
DOI
10.1007/s00418-019-01804-5
PII: 10.1007/s00418-019-01804-5
Knihovny.cz E-zdroje
- Klíčová slova
- Intergenic spacer, Processing, RNA decay, lncRNAs, rDNA,
- MeSH
- HeLa buňky MeSH
- lidé MeSH
- mezerníky ribozomální DNA chemie genetika metabolismus MeSH
- RNA analýza biosyntéza genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mezerníky ribozomální DNA MeSH
- RNA MeSH
In human cells, the intergenic spacers (IGS), which separate ribosomal genes, are complex approximately 30 kb-long loci. Recent studies indicate that all, or almost all, parts of IGS may be transcribed, and that at least some of them are involved in the regulation of the ribosomal DNA (rDNA) transcription, maintenance of the nucleolar architecture, and response of the cell nucleus to stress. However, since each cell contains hundreds not quite identical copies of IGS, the structure and functions of this locus remain poorly understood, and the dynamics of its products has not been specially studied. In this work, we used quantitative PCR to measure the expression levels of various rDNA regions at different times after inhibition of the transcription by Actinomycin D applied in high doses. This approach allowed us to measure real or extrapolated half-life times of some IGS loci. Our study reveals characteristic dynamic patterns suggestive of various pathways of RNA utilization and decay.
Zobrazit více v PubMed
Nucleic Acids Res. 2011 Jul;39(12):4949-60 PubMed
Nucleic Acids Res. 2015 May 26;43(10):5208-20 PubMed
Curr Opin Cell Biol. 2018 Jun;52:105-111 PubMed
Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 PubMed
Nucleic Acids Res. 1994 Jul 11;22(13):2651-7 PubMed
Genomics. 2001 May 1;73(3):255-63 PubMed
Annu Rev Cell Dev Biol. 2008;24:131-57 PubMed
EMBO Rep. 2008 Aug;9(8):774-80 PubMed
Mol Biol Evol. 1987 Nov;4(6):594-601 PubMed
Nucleic Acids Res. 1992 Nov 11;20(21):5846 PubMed
IUBMB Life. 2004 Aug;56(8):457-65 PubMed
Annu Rev Biochem. 1980;49:727-64 PubMed
Biochem Cell Biol. 2005 Jun;83(3):332-43 PubMed
Histochem Cell Biol. 2016 Apr;145(4):359-72 PubMed
Mol Cell Biol. 1986 Jan;6(1):227-35 PubMed
Mol Cell. 2012 Jan 27;45(2):147-57 PubMed
Biochem J. 1987 Sep 1;246(2):519-27 PubMed
Epigenomics. 2015;7(3):363-78 PubMed
G3 (Bethesda). 2014 Feb 19;4(2):243-54 PubMed
Eur J Biochem. 1995 Mar 15;228(3):605-15 PubMed
Mol Cell Biol. 1994 May;14(5):2871-82 PubMed
F1000Prime Rep. 2015 Apr 02;7:48 PubMed
Biochim Biophys Acta. 2016 Jan;1859(1):184-91 PubMed
PLoS Genet. 2013;9(9):e1003786 PubMed
Mol Cell. 2006 May 5;22(3):351-61 PubMed
Nucleus. 2013 Mar-Apr;4(2):134-41 PubMed
Prog Nucleic Acid Res Mol Biol. 1994;49:197-239 PubMed
EMBO J. 2015 Nov 12;34(22):2758-74 PubMed
EMBO Rep. 2010 Jan;11(1):52-8 PubMed
Genes Dev. 2018 Jun 1;32(11-12):836-848 PubMed
Cell. 1989 Jun 2;57(5):753-61 PubMed
Genome Res. 2013 Dec;23(12):2003-12 PubMed
Mol Cell Biol. 2005 Aug;25(15):6789-97 PubMed
Cell Cycle. 2012 Jun 1;11(11):2059-62 PubMed
Cell Mol Life Sci. 2007 Jan;64(1):29-49 PubMed
Nucleus. 2017 Jul 4;8(4):421-432 PubMed
Proc Natl Acad Sci U S A. 1972 Nov;69(11):3394-8 PubMed
Genomics. 1995 May 20;27(2):320-8 PubMed
Methods Mol Biol. 2016;1455:161-81 PubMed
EMBO Rep. 2010 Feb;11(2):106-11 PubMed
Transcription. 2011 May;2(3):103-108 PubMed
Chromosome Res. 2019 Mar;27(1-2):31-40 PubMed
Genome Res. 2005 Aug;15(8):1079-85 PubMed
Trends Biochem Sci. 1999 Nov;24(11):437-40 PubMed
PLoS One. 2018 Dec 5;13(12):e0207531 PubMed
Nucleus. 2012 Jul 1;3(4):315-9 PubMed
Mol Cell. 2014 May 22;54(4):675-82 PubMed
RNA Biol. 2014;11(1):3-9 PubMed
Methods Mol Biol. 2014;1094:319-28 PubMed
Cell Rep. 2016 Mar 1;14(8):1876-82 PubMed