Life time of some RNA products of rDNA intergenic spacer in HeLa cells

. 2019 Oct ; 152 (4) : 271-280. [epub] 20190725

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31346697

Grantová podpora
P302/12/G157 Grant Agency of the Czech Republic
19-21715S Grant Agency of the Czech Republic
19-19779S Grant Agency of the Czech Republic
Progres Q28 Charles University

Odkazy

PubMed 31346697
DOI 10.1007/s00418-019-01804-5
PII: 10.1007/s00418-019-01804-5
Knihovny.cz E-zdroje

In human cells, the intergenic spacers (IGS), which separate ribosomal genes, are complex approximately 30 kb-long loci. Recent studies indicate that all, or almost all, parts of IGS may be transcribed, and that at least some of them are involved in the regulation of the ribosomal DNA (rDNA) transcription, maintenance of the nucleolar architecture, and response of the cell nucleus to stress. However, since each cell contains hundreds not quite identical copies of IGS, the structure and functions of this locus remain poorly understood, and the dynamics of its products has not been specially studied. In this work, we used quantitative PCR to measure the expression levels of various rDNA regions at different times after inhibition of the transcription by Actinomycin D applied in high doses. This approach allowed us to measure real or extrapolated half-life times of some IGS loci. Our study reveals characteristic dynamic patterns suggestive of various pathways of RNA utilization and decay.

Zobrazit více v PubMed

Nucleic Acids Res. 2011 Jul;39(12):4949-60 PubMed

Nucleic Acids Res. 2015 May 26;43(10):5208-20 PubMed

Curr Opin Cell Biol. 2018 Jun;52:105-111 PubMed

Nat Rev Mol Cell Biol. 2003 Aug;4(8):641-9 PubMed

Nucleic Acids Res. 1994 Jul 11;22(13):2651-7 PubMed

Genomics. 2001 May 1;73(3):255-63 PubMed

Annu Rev Cell Dev Biol. 2008;24:131-57 PubMed

EMBO Rep. 2008 Aug;9(8):774-80 PubMed

Mol Biol Evol. 1987 Nov;4(6):594-601 PubMed

Nucleic Acids Res. 1992 Nov 11;20(21):5846 PubMed

IUBMB Life. 2004 Aug;56(8):457-65 PubMed

Annu Rev Biochem. 1980;49:727-64 PubMed

Biochem Cell Biol. 2005 Jun;83(3):332-43 PubMed

Histochem Cell Biol. 2016 Apr;145(4):359-72 PubMed

Mol Cell Biol. 1986 Jan;6(1):227-35 PubMed

Mol Cell. 2012 Jan 27;45(2):147-57 PubMed

Biochem J. 1987 Sep 1;246(2):519-27 PubMed

Epigenomics. 2015;7(3):363-78 PubMed

G3 (Bethesda). 2014 Feb 19;4(2):243-54 PubMed

Eur J Biochem. 1995 Mar 15;228(3):605-15 PubMed

Mol Cell Biol. 1994 May;14(5):2871-82 PubMed

F1000Prime Rep. 2015 Apr 02;7:48 PubMed

Biochim Biophys Acta. 2016 Jan;1859(1):184-91 PubMed

PLoS Genet. 2013;9(9):e1003786 PubMed

Mol Cell. 2006 May 5;22(3):351-61 PubMed

Nucleus. 2013 Mar-Apr;4(2):134-41 PubMed

Prog Nucleic Acid Res Mol Biol. 1994;49:197-239 PubMed

EMBO J. 2015 Nov 12;34(22):2758-74 PubMed

EMBO Rep. 2010 Jan;11(1):52-8 PubMed

Genes Dev. 2018 Jun 1;32(11-12):836-848 PubMed

Cell. 1989 Jun 2;57(5):753-61 PubMed

Genome Res. 2013 Dec;23(12):2003-12 PubMed

Mol Cell Biol. 2005 Aug;25(15):6789-97 PubMed

Cell Cycle. 2012 Jun 1;11(11):2059-62 PubMed

Cell Mol Life Sci. 2007 Jan;64(1):29-49 PubMed

Nucleus. 2017 Jul 4;8(4):421-432 PubMed

Proc Natl Acad Sci U S A. 1972 Nov;69(11):3394-8 PubMed

Genomics. 1995 May 20;27(2):320-8 PubMed

Methods Mol Biol. 2016;1455:161-81 PubMed

EMBO Rep. 2010 Feb;11(2):106-11 PubMed

Transcription. 2011 May;2(3):103-108 PubMed

Chromosome Res. 2019 Mar;27(1-2):31-40 PubMed

Genome Res. 2005 Aug;15(8):1079-85 PubMed

Trends Biochem Sci. 1999 Nov;24(11):437-40 PubMed

PLoS One. 2018 Dec 5;13(12):e0207531 PubMed

Nucleus. 2012 Jul 1;3(4):315-9 PubMed

Mol Cell. 2014 May 22;54(4):675-82 PubMed

RNA Biol. 2014;11(1):3-9 PubMed

Methods Mol Biol. 2014;1094:319-28 PubMed

Cell Rep. 2016 Mar 1;14(8):1876-82 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace