Development and Characterization of "Green Open-Cell Polyurethane Foams" with Reduced Flammability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LIDER/28/0167/L-8/16/NCBR/2017
Narodowe Centrum Badań i Rozwoju
PubMed
33266256
PubMed Central
PMC7730901
DOI
10.3390/ma13235459
PII: ma13235459
Knihovny.cz E-zdroje
- Klíčová slova
- bio-foams, bio-polyol, flammability, open-cell polyurethane foams, spray foams,
- Publikační typ
- časopisecké články MeSH
This work presents the cell structure and selected properties of polyurethane (PUR) foams, based on two types of hydroxylated used cooking oil and additionally modified with three different flame retardants. Bio-polyols from municipal waste oil with different chemical structures were obtained by transesterification with triethanolamine (UCO_TEA) and diethylene glycol (UCO_DEG). Next, these bio-polyols were used to prepare open-cell polyurethane foams of very low apparent densities for thermal insulation applications. In order to obtain foams with reduced flammability, the PUR systems were modified with different amounts (10-30 parts per hundred polyol by weight-php) of flame retardants: TCPP (tris(1-chloro-2-propyl)phosphate), TEP (triethyl phosphate), and DMPP (dimethyl propylphosphonate). The flame retardants caused a decrease of the PUR formulations reactivity. The apparent densities of all the foams were comparable in the range 12-15 kg/m3. The lowest coefficients of thermal conductivity were measured for the open-cell PUR foams modified with DMPP. The lowest values of heat release rate were found for the foams based on the UCO_TEA and UCO_DEG bio-polyols that were modified with 30 php of DMPP.
Zobrazit více v PubMed
Kurańska M., Malewska E., Polaczek K., Prociak A., Kubacka J. A Pathway toward a New Era of Open-Cell Polyurethane Foams—Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties. Materials. 2020;13:5161. doi: 10.3390/ma13225161. PubMed DOI PMC
Bello A., Xue Y., Gore R., Woskie S., Bello D. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int. J. Hyg. Environ. Health. 2019;222:804–815. doi: 10.1016/j.ijheh.2019.04.014. PubMed DOI
Liszkowska J., Borowicz M., Paciorek-Sadowska J., Isbrant M., Czupryński B., Moraczewski K. Assessment of Photodegradation and Biodegradation of RPU/PIR Foams Modified by Natural Compounds of Plant Origin. Polymers. 2020;12:33. doi: 10.3390/polym12010033. PubMed DOI PMC
Borowicz M., Paciorek-Sadowska J., Lubczak J., Czupryński B. Biodegradable, Flame-Retardant, and Bio-Based RigidPolyurethane/Polyisocyanurate Foams for Thermal Insulation Application. Polymers. 2019;11:1816. doi: 10.3390/polym11111816. PubMed DOI PMC
Zhou W., Bo C., Jia P.-Y., Zhou Y.-H., Zhang M. Effects of Tung Oil-Based Polyols on the Thermal Stability, Flame Retardancy, and Mechanical Properties of Rigid Polyurethane Foam. Polymers. 2018;11:45. doi: 10.3390/polym11010045. PubMed DOI PMC
Kirpluks M., Kalnbunde D., Walterova Z., Cabulis U. Rapeseed Oil as Feedstock for High Functionality Polyol Synthesis. J. Renew. Mater. 2017;5:258–270. doi: 10.7569/JRM.2017.634116. DOI
Strąkowska A., Członka S., Strzelec K. POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites) Polymers. 2019;11:1092. doi: 10.3390/polym11071092. PubMed DOI PMC
Salasinska K., Borucka M., Leszczyńska M., Zatorski W., Celiński M., Gajek A., Ryszkowska J. Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J. Therm. Anal. Calorim. 2017;130:131–141. doi: 10.1007/s10973-017-6294-4. DOI
Günther M., Levchik S.V., Schartel B. Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams. Polym. Adv. Technol. 2020;31:2185–2198. doi: 10.1002/pat.4939. DOI
Członka S., Strąkowska A., Strzelec K., Kairytė A., Kremensas A. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties. Polym. Test. 2020;87:106511. doi: 10.1016/j.polymertesting.2020.106511. DOI
Poppendieck D., Gong M., Ng L.C., Dougherty B., Pham V., Zimmerman S.M. Applicability of Spray Polyurethane Foam Ventilation Guidelines for Do-It-Yourself Application Events. Build. Environ. 2019;157:227–234. doi: 10.1016/j.buildenv.2019.04.033. PubMed DOI PMC
Zhang M., Zhang J., Chen S., Zhou Y. Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym. Degrad. Stab. 2014;110:27–34. doi: 10.1016/j.polymdegradstab.2014.08.009. DOI
Kurańska M., Prociak A. The influence of rapeseed oil-based polyols on the foaming process of rigid polyurethane foams. Ind. Crop. Prod. 2016;89:182–187. doi: 10.1016/j.indcrop.2016.05.016. DOI
International Organization for Standardization . ISO 4590:2016 Rigid Cellular Plastics—Determination of the Volume Percentage of Open Cells and of Closed Cells. International Organization for Standardization; Geneva, Switzerland: 2016.
International Organization for Standardization . ISO 845:2006 Cellular Plastics and Rubbers — Determination of Apparent Density. International Organization for Standardization; Geneva, Switzerland: 2006.
International Organization for Standardization . ISO 8301:1991 Thermal Insulation — Determination of Steady-State Thermal Resistance and Related Properties — Heat Flow Meter Apparatus. International Organization for Standardization; Geneva, Switzerland: 1991.
Polish Committee for Standardization . PN-EN 826:2013-07 Thermal Insulating Products for Building Applications - Determination of Compression Behavior. Polish Committee for Standardization; Warszawa, Poland: 2013.
International Organization for Standardization . ISO 5660-1:2015 Reaction-to-Fire Tests — Heat Release, Smoke Production and Mass Loss Rate — Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement) International Organization for Standardization; Geneva, Switzerland: 2015.
International Organization for Standardization . ISO 4589-2:2017 Plastics — Determination of Burning Behaviour by Oxygen Index — Part 2: Ambient-Temperature Test. International Organization for Standardization; Geneva, Switzerland: 2017.
Palanisamy A., Karuna M.S.L., Satyavani T., Kumar D.B.R. Development and Characterization of Water-Blown Polyurethane Foams from Diethanolamides of Karanja Oil. J. Am. Oil Chem. Soc. 2011;88:541–549. doi: 10.1007/s11746-010-1694-7. DOI
Septevani A.A., Evans D.A.C., Chaleat C., Martin D.J., Annamalai P.K. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam. Ind. Crop. Prod. 2015;66:16–26. doi: 10.1016/j.indcrop.2014.11.053. DOI
Prociak A., Kurańska M., Cabulis U., Ryszkowska J., Leszczyńska M., Uram K., Kirpluks M. Effect of bio-polyols with different chemical structures on foaming of polyurethane systems and foam properties. Ind. Crop. Prod. 2018;120:262–270. doi: 10.1016/j.indcrop.2018.04.046. DOI
Piszczyk Ł., Strankowski M., Danowska M., Haponiuk J.T., Gazda M. Preparation and characterization of rigid polyurethane–polyglycerol nanocomposite foams. Eur. Polym. J. 2012;48:1726–1733. doi: 10.1016/j.eurpolymj.2012.07.001. DOI
Kurańska M., Polaczek K., Auguścik-królikowska M., Prociak A., Ryszkowska J. Open-cell polyurethane foams based on modified used cooking oil. Polimery. 2020;65:216–225. doi: 10.14314/polimery.2020.3.6. DOI
Paciorek-Sadowska J., Borowicz M., Isbrant M., Czupryński B., Apiecionek Ł. The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites. Polymers. 2019;11:1431. doi: 10.3390/polym11091431. PubMed DOI PMC
Kurańska M., Polaczek K., Auguścik-Królikowska M., Prociak A., Ryszkowska J. Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer. 2020;190:122164. doi: 10.1016/j.polymer.2020.122164. DOI
Liu L., Wang Z., Zhu M. Flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam modified by nano zirconium amino-tris-(methylenephosphonate) and expandable graphite. Polym. Degrad. Stab. 2019;170:108997. doi: 10.1016/j.polymdegradstab.2019.108997. DOI
Schartel B., Wilkie C.A., Camino G. Recommendations on the scientific approach to polymer flame retardancy: Part 1—Scientific terms and methods. J. Fire Sci. 2016;34:447–467. doi: 10.1177/0734904116675881. DOI
Lv Y.F., Thomas W., Chalk R., Singamneni S. Flame retardant polymeric materials for additive manufacturing. Mater. Today Proc. 2020 doi: 10.1016/j.matpr.2020.05.081. DOI
Xi W., Qian L., Huang Z., Cao Y., Li L. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym. Degrad. Stab. 2016;130:97–102. doi: 10.1016/j.polymdegradstab.2016.06.003. DOI
Wang S.-X., Zhao H.-B., Rao W.-H., Huang S.-C., Wang T., Liao W., Wang Y.-Z. Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer. 2018;153:616–625. doi: 10.1016/j.polymer.2018.08.068. DOI
Lorenzetti A., Modesti M., Besco S., Hrelja D., Donadi S. Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym. Degrad. Stab. 2011;96:1455–1461. doi: 10.1016/j.polymdegradstab.2011.05.012. DOI
Liu X., Salmeia K.A., Rentsch D., Hao J., Gaan S. Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrolysis. 2017;124:219–229. doi: 10.1016/j.jaap.2017.02.003. DOI
Gaan S., Liang S., Mispreuve H., Perler H., Naescher R., Neisius M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stab. 2015;113:180–188. doi: 10.1016/j.polymdegradstab.2015.01.007. DOI
Chen X., Huo L., Jiao C., Li S. TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J. Anal. Appl. Pyrolysis. 2013;100:186–191. doi: 10.1016/j.jaap.2012.12.017. DOI
He J.-J., Jiang L., Sun J.-H., Lo S. Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. J. Anal. Appl. Pyrolysis. 2016;120:269–283. doi: 10.1016/j.jaap.2016.05.015. DOI