Continuous Sustainable Production of Biobased Multicomponent Enhanced Resin for SLA 3D Printing
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40385959
PubMed Central
PMC12082353
DOI
10.1021/acsmaterialsau.5c00014
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work focuses on biobased reactive diluents' synthesis, continuing with optimized oil-based resin precursor production. Our approach introduces vanillin methacrylate (VanMMA), cinnamyl methacrylate (CinMMA), and vanillyl dimethacrylate (VanDiMMA) synthesis using methacrylic anhydride. The introduced approach involves an innovative and available catalyst, potassium acetate, which possesses much suitable potential compared with the usually used 4-dimethylaminopyridine (DMAP). Moreover, we separated the formed secondary product, methacrylic acid (MA), and used it to modify rapeseed oil to prepare a curable thermoset. All synthesized products were structurally verified via complex cross-analysis (NMR, ESI-MS, and FTIR). The reactive systems were mixed to form a multicomponent mixture appropriate for stereolithography (SLA) and 3D printing. It was found that VanDiMMA exhibited comparable diluting properties to the commercially available and used compound, isobornyl methacrylate (IBOMA), while achieving better mechanical, thermo-mechanical, and thermal properties than IBOMA. VanDiMMA-containing SLA resin reached a tensile strength of 12.7 ± 0.3 MPa, a flexural strength of 16.8 ± 0.4 MPa, a storage modulus of 570 MPa at 30 °C, a glass-transition temperature of 83.7 °C, and the heat-resistant index of 169.5 °C.
Zobrazit více v PubMed
Mukhtarkhanov M.; Perveen A.; Talamona D. Application Of Stereolithography Based 3D Printing Technology In Investment Casting. Micromachines 2020, 11 (10), 946–973. 10.3390/mi11100946. PubMed DOI PMC
Bove A.; Calignano F.; Galati M.; Iuliano L. Photopolymerization Of Ceramic Resins By Stereolithography Process: A Review. Appl. Sci. 2022, 12 (7), 3591–3608. 10.3390/app12073591. DOI
Wu Y.; He J.; Huang W.; Chen W.; Zhou S.; She X.; Zhu W.; Huang F.; Li H.; Xu H. Stereolithography 3D Printed Monolithic Catalyst For Highly Efficient Oxidative Desulfurization Of Fuels. Fuel 2023, 332, 126021–126030. 10.1016/j.fuel.2022.126021. DOI
Karakurt I.; Aydoğdu A.; Çıkrıkcı S.; Orozco J.; Lin L. Stereolithography (Sla) 3D Printing Of Ascorbic Acid Loaded Hydrogels: A Controlled Release Study. Int. J. Pharm. 2020, 584, 119428–119437. 10.1016/j.ijpharm.2020.119428. PubMed DOI
Lee H.-B.; Noh M.-J.; Bae E.-J.; Lee W.-S.; Kim J.-H. Accuracy Of Zirconia Crown Manufactured Using Stereolithography And Digital Light Processing. J. Dent. 2024, 141, 104834–104841. 10.1016/j.jdent.2024.104834. PubMed DOI
Nguyen D. M.; Lo C.-Y.; Guo T.; Choi T.; Sundar S.; Swain Z.; Wu Y.; Dhong C.; Kayser L. V. One Pot Photomediated Formation Of Electrically Conductive Hydrogels. ACS Polym. Au 2024, 4 (1), 34–44. 10.1021/acspolymersau.3c00031. PubMed DOI PMC
Hozdić E. Characterization And Comparative Analysis Of Mechanical Parameters Of Fdm- And Sla-Printed Abs Materials. Appl. Sci. 2024, 14 (2), 649–671. 10.3390/app14020649. DOI
Nagaraju D. S.; Krupakaran R. L.; Sripadh C.; Nitin G.; Joy Joseph Emmanuel G.. Mechanical Properties Of 3D Printed Specimen Using Fdm (Fused Deposition Modelling) And Sla (Stereolithography) Technologies Mater. Today: Proc. 202310.1016/j.matpr.2023.09.223. DOI
Rogolino A.; Savio G. Trends In Additively Manufactured Microfluidics, Microreactors And Catalytic Materials. Mater. Adv. 2021, 2 (3), 845–855. 10.1039/D0MA00704H. DOI
Manzano J. S.; Wang H.; Slowing I. I. High Throughput Screening Of 3D Printable Resins: Adjusting The Surface And Catalytic Properties Of Multifunctional Architectures. ACS Appl. Polym. Mater. 2019, 1 (11), 2890–2896. 10.1021/acsapm.9b00598. DOI
Abubakar A. J. A.; Canevesi R. L. S.; Sanchez D. A. L.; Grande C. A. Monoliths For Gas Storage Manufactured With Precision Pore Engineering Using 3D-Printed Templates. Chem. Eng. J. 2024, 489, 151450–151458. 10.1016/j.cej.2024.151450. DOI
Lee D.; Kim B.-Y.; Park C. H.; Jeong G.; Park S.-D.; Yoo M. J.; Yang H.; Lee W. S. Photocurable Three-Dimensional Printing Resin To Enable Laser-Assisted Selective Electroless Metallization For Customized Electronics. ACS Appl. Polym. Mater. 2021, 3 (9), 4735–4745. 10.1021/acsapm.1c00997. DOI
Laguna O. H.; Lietor P. F.; Godino F. J. I.; Corpas-Iglesias F. A. A Review On Additive Manufacturing And Materials For Catalytic Applications: Milestones, Key Concepts, Advances And Perspectives. Mater. Des. 2021, 208, 109927–109963. 10.1016/j.matdes.2021.109927. DOI
Gao Y.; Lalevée J.; Simon-Masseron A. An Overview On 3D Printing Of Structured Porous Materials And Their Applications. Adv. Mater. Technol. 2023, 8 (17), 2300377–2300405. 10.1002/admt.202300377. DOI
Montaner M. B.; Hilton S. T. Recent Advances In 3D Printing For Continuous Flow Chemistry. Curr. Opin. Green Sustainable Chem. 2024, 47, 100923–100931. 10.1016/j.cogsc.2024.100923. DOI
Krishna A. V.; Reddy V. V.; Dexter D. W.; Wälivaara D. -Å.; Abrahamsson P.; Rosen B.-G.; Anderud J. Quality Assurance Of Stereolithography Based Biocompatible Materials For Dental Applications. Surf. Topogr.:Metrol. Prop. 2023, 11 (1), 014008–014027. 10.1088/2051-672X/acbe54. DOI
Ding R.; Du Y.; Goncalves R. B.; Francis L. F.; Reineke T. M. Sustainable Near Uv-Curable Acrylates Based On Natural Phenolics For Stereolithography 3D Printing. Polym. Chem. 2019, 10 (9), 1067–1077. 10.1039/C8PY01652F. DOI
Zirak N.; Shirinbayan M.; Benfriha K.; Deligant M.; Tcharkhtchi A. Stereolithography Of (Meth)Acrylate-Based Photocurable Resin: Thermal And Mechanical Properties. J. Appl. Polym. Sci. 2022, 139 (22), 52248–52259. 10.1002/app.52248. DOI
Marin E.; Boschetto F.; Zanocco M.; Doan H. N.; Sunthar T. P. M.; Kinashi K.; Iba D.; Zhu W.; Pezzotti G. Uv-Curing And Thermal Ageing Of Methacrylated Stereo-Lithographic Resin. Polym. Degrad. Stab. 2021, 185, 109503–109512. 10.1016/j.polymdegradstab.2021.109503. DOI
Ahmadianyazdi A.; Miller I. J.; Folch A. Tunable Resins With Pdms-Like Elastic Modulus For Stereolithographic 3D-Printing Of Multimaterial Microfluidic Actuators. Lab Chip 2023, 23 (18), 4019–4032. 10.1039/D3LC00529A. PubMed DOI PMC
Sommer K.; Rieger P.; Müller S. M.; Schwarz R.; Trimmel G.; Feuchter M.; Griesser T. 3D Printing Of Dual-Cure Networks Based On (Meth)Acrylate/Bispropargyl Ether Building Blocks. Adv. Eng. Mater. 2023, 25 (7), 2200901–2200908. 10.1002/adem.202200901. DOI
Afewerki S.; Edlund U. Engineering An All-Biobased Solvent- And Styrene-Free Curable Resin. ACS Polym. Au 2023, 3 (6), 447–456. 10.1021/acspolymersau.3c00015. PubMed DOI PMC
Chiu Y.-C.; Shen Y.-F.; Lee A. K. -X.; Lin S.-H.; Wu Y.-C.; Chen Y.-W. 3D Printing Of Amino Resin-Based Photosensitive Materials On Multi-Parameter Optimization Design For Vascular Engineering Applications. Polymers 2019, 11 (9), 1394–1407. 10.3390/polym11091394. PubMed DOI PMC
Shahzadi L.; Maya F.; Breadmore M. C.; Thickett S. C. Functional Materials For Dlp-Sla 3D Printing Using Thiol–Acrylate Chemistry: Resin Design And Postprint Applications. ACS Appl. Polym. Mater. 2022, 4 (5), 3896–3907. 10.1021/acsapm.2c00358. DOI
He Y.; Chen S.; Nie L.; Sun Z.; Wu X.; Liu W. Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes For All-Solid-State Lithium Metal Batteries. Nano Lett. 2020, 20 (10), 7136–7143. 10.1021/acs.nanolett.0c02457. PubMed DOI
Wirth D. M.; Jaquez A.; Gandarilla S.; Hochberg J. D.; Church D. C.; Pokorski J. K. Highly Expandable Foam For Lithographic 3D Printing. ACS Appl. Mater. Interfaces 2020, 12 (16), 19033–19043. 10.1021/acsami.0c02683. PubMed DOI
Guggenbiller G.; Brooks S.; King O.; Constant E.; Merckle D.; Weems A. C. 3D Printing Of Green And Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Appl. Polym. Mater. 2023, 5 (5), 3201–3229. 10.1021/acsapm.2c02171. DOI
Saraswat R.; Shagun; Dhir A.; Balan A. S. S.; Powar S.; Doddamani M. Synthesis And Application Of Sustainable Vegetable Oil-Based Polymers In 3D Printing. RSC Sustainability 2024, 2 (6), 1708–1737. 10.1039/D4SU00060A. DOI
Jašek V.; Melčová V.; Figalla S.; Fučík J.; Menčík P.; Přikryl R. Study Of The Thermomechanical Properties Of Photocured Resins Based On Curable Monomers From Pla And Phb For Sla 3D Printing. ACS Appl. Polym. Mater. 2023, 5 (12), 9909–9917. 10.1021/acsapm.3c01730. DOI
Cui Y.; Yang J.; Lei D.; Su J. 3D Printing Of A Dual-Curing Resin With Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020, 59 (25), 11381–11388. 10.1021/acs.iecr.0c01507. DOI
Ding C.; Shuttleworth P. S.; Makin S.; Clark J. H.; Matharu A. S. New Insights Into The Curing Of Epoxidized Linseed Oil With Dicarboxylic Acids. Green Chem. 2015, 17 (7), 4000–4008. 10.1039/C5GC00912J. DOI
Noè C.; Iannucci L.; Malburet S.; Graillot A.; Sangermano M.; Grassini S. New Uv-Curable Anticorrosion Coatings From Vegetable Oils. Macromol. Mater. Eng. 2021, 306 (6), 2100029–2100040. 10.1002/mame.202100029. DOI
Vyas A.; Garg V.; Ghosh S. B.; Bandyopadhyay-Ghosh S. Photopolymerizable Resin-Based 3D Printed Biomedical Composites: Factors Affecting Resin Viscosity. Mater. Today: Proc. 2022, 62, 1435–1439. 10.1016/j.matpr.2022.01.172. DOI
Papadopoulos L.; Pezzana L.; Malitowski N.; Sangermano M.; Bikiaris D. N.; Robert T. Influence Of Reactive Diluent Composition On Properties And Bio-Based Content Of Itaconic Acid-Based Additive Manufacturing Materials. Discover Appl. Sci. 2024, 6 (6), 290–304. 10.1007/s42452-024-05926-x. DOI
Hevus I.; Tiwari S.; Thorat S.; Gibbon L. R.; La Scala J. J.; Ulven C. A.; Sibi M. P.; Webster D. C. Vanillin-Derived Veratrole Reactive Diluents In Stereolithography. ACS Appl. Polym. Mater. 2024, 6 (13), 7705–7715. 10.1021/acsapm.4c01183. DOI
Rapp J. L.; Borden M. A.; Bhat V.; Sarabia A.; Leibfarth F. A. Continuous Polymer Synthesis And Manufacturing Of Polyurethane Elastomers Enabled By Automation. ACS Polym. Au 2024, 4 (2), 120–127. 10.1021/acspolymersau.3c00033. PubMed DOI PMC
Schimpf V.; Asmacher A.; Fuchs A.; Bruchmann B.; Mülhaupt R. Polyfunctional Acrylic Non-Isocyanate Hydroxyurethanes As Photocurable Thermosets For 3D Printing. Macromolecules 2019, 52 (9), 3288–3297. 10.1021/acs.macromol.9b00330. DOI
Liu W.; Xie T.; Qiu R. Biobased Thermosets Prepared From Rigid Isosorbide And Flexible Soybean Oil Derivatives. ACS Sustainable Chem. Eng. 2017, 5 (1), 774–783. 10.1021/acssuschemeng.6b02117. DOI
Jašek V.; Fučík J.; Krhut J.; Mravcova L.; Figalla S.; Přikryl R. A Study Of Isosorbide Synthesis From Sorbitol For Material Applications Using Isosorbide Dimethacrylate For Enhancement Of Bio-Based Resins. Polymers 2023, 15 (17), 3640–3658. 10.3390/polym15173640. PubMed DOI PMC
Subramanian A. S.; Peng E.; Lau W. C.; Goh D. C. W.; Pramono S.; Sriramulu D.; Wu Y.; Kobayashi H.; Moo J. G. S.; Su P.-C. Morphological Effects Of Various Silica Nanostructures On The Mechanical Properties Of Printed Parts In Digital Light Projection 3D Printing. ACS Appl. Nano Mater. 2021, 4 (5), 4522–4531. 10.1021/acsanm.1c00127. DOI
Lublin D.; Hao T.; Malyala R.; Kisailus D. Multiscale Mechanical Characterization Of Biobased Photopolymers Towards Sustainable Vat Polymerization 3D Printing. RSC Adv. 2024, 14 (15), 10422–10430. 10.1039/D4RA00574K. PubMed DOI PMC
Fang Z.; Shi Y.; Zhang Y.; Zhao Q.; Wu J. Reconfigurable Polymer Networks For Digital Light Processing 3D Printing. ACS Appl. Mater. Interfaces 2021, 13 (13), 15584–15590. 10.1021/acsami.0c23107. PubMed DOI
Briede S.; Barkane A.; Jurinovs M.; Thakur V. K.; Gaidukovs S. Acrylation Of Biomass: A Review Of Synthesis Process: Know-How And Future Application Directions. Curr. Opin. Green Sustainable Chem. 2022, 35, 100626–100636. 10.1016/j.cogsc.2022.100626. DOI
Sanchez-Rexach E.; Johnston T. G.; Jehanno C.; Sardon H.; Nelson A. Sustainable Materials And Chemical Processes For Additive Manufacturing. Chem. Mater. 2020, 32 (17), 7105–7119. 10.1021/acs.chemmater.0c02008. DOI
Voet V. S. D.; Guit J.; Loos K. Sustainable Photopolymers In 3D Printing: A Review On Biobased, Biodegradable, And Recyclable Alternatives. Macromol. Rapid Commun. 2021, 42 (3), 2000475–2000486. 10.1002/marc.202000475. PubMed DOI
Parikh A. R.; Cortés-Guzmán K. P.; Bian N.; Johnson R. M.; Smaldone R. A.; Lu H.; Voit W. E. Surface-Methacrylated Microcrystalline Cellulose Bioresins With Soybean Oil For Additive Manufacturing Via Vat Photopolymerization. J. Polym. Sci. 2024, 62 (12), 2692–2703. 10.1002/pol.20230700. DOI
Matt L.; Parve J.; Parve O.; Pehk T.; Pham T. H.; Liblikas I.; Vares L.; Jannasch P. Enzymatic Synthesis And Polymerization Of Isosorbide-Based Monomethacrylates For High- T G Plastics. ACS Sustainable Chem. Eng. 2018, 6 (12), 17382–17390. 10.1021/acssuschemeng.8b05074. DOI
Nakipoglu M.; Özkabadayı Y.; Karahan S.; Tezcaner A. Bilayer Wound Dressing Composed Of Asymmetric Polycaprolactone Membrane And Chitosan-Carrageenan Hydrogel Incorporating Storax Balsam. Int. J. Biol. Macromol. 2024, 254, 128020–128037. 10.1016/j.ijbiomac.2023.128020. PubMed DOI
Liu Y.; Sun L.; Huo Y.-X.; Guo S. Strategies For Improving The Production Of Bio-Based Vanillin. Microb. Cell Fact. 2023, 22 (1), 147–158. 10.1186/s12934-023-02144-9. PubMed DOI PMC
Wang F.; Allen D.; Tian S.; Oler E.; Gautam V.; Greiner R.; Metz T. O.; Wishart D. S. Cfm-Id 4.0 – A Web Server For Accurate Ms-Based Metabolite Identification. Nucleic Acids Res. 2022, 50 (W1), W165–W174. 10.1093/nar/gkac383. PubMed DOI PMC
Jašek V.; Fučík J.; Bartoš O.; Figalla S.; Přikryl R. Photocurable Oil-Based Thermosets Containing Modifiers From Renewable Sources For Coating Applications. ACS Polym. Au 2024, 4 (6), 527–539. 10.1021/acspolymersau.4c00068. PubMed DOI PMC
Jašek V.; Fučík J.; Melcova V.; Figalla S.; Mravcova L.; Krobot Š.; Přikryl R. Synthesis Of Bio-Based Thermoset Mixture Composed Of Methacrylated Rapeseed Oil And Methacrylated Methyl Lactate: One-Pot Synthesis Using Formed Methacrylic Acid As A Continual Reactant. Polymers 2023, 15 (8), 1811–1832. 10.3390/polym15081811. PubMed DOI PMC
Bodhak C.; Patel T.; Sahu P.; Gupta R. K. Soybean Oil-Derived Acrylate/Methacrylate Ether For High-Resolution Additive Manufacturing. ACS Appl. Polym. Mater. 2024, 6 (20), 12886–12896. 10.1021/acsapm.4c02568. DOI
Yu Y.; Zou B.; Wang X.; Huang C. Rheological Behavior And Curing Deformation Of Paste Containing 85 Wt% Al2O3 Ceramic During Sla-3D Printing. Ceram. Int. 2022, 48 (17), 24560–24570. 10.1016/j.ceramint.2022.05.099. DOI
Skoog S. A.; Goering P. L.; Narayan R. J. Stereolithography In Tissue Engineering. J. Mater. Sci.: Mater. Med. 2014, 25 (3), 845–856. 10.1007/s10856-013-5107-y. PubMed DOI
Yang J.; Liang X.; Liu F.; Biao Y.; He J.. Comparing Properties Of Urethane Dimethacrylate (Udma) Based 3D Printing Resin Using N-Acryloylmorpholine (Acmo) And Triethylene Glycol Dimethacrylate (Tegdma) Separately As Diluents J. Macromol. Sci., Part B:Phys. 2024, pp 1–1710.1080/00222348.2024.2377507. DOI
Binobaid A.; De Lisi M.; Camilleri J.; Hassanin H.; Essa K. Zirconia-Calcium Silicate Bioactive Composites For Dental Applications Using Dlp Additive Manufacturing. Bioprinting 2025, 45, e00377–e00392. 10.1016/j.bprint.2024.e00377. DOI
Wu J.; Li Z.; Meng X.; Cheng B.; Yang J.; Li B.; Wang X. Zro2-Cps/Zro2 Graded Composite Ceramics With High Osteoinductivity For Dental Implants Fabricated By Stereolithography. Ceram. Int. 2025, 10.1016/j.ceramint.2025.02.350. DOI
Nabavian Kalat M.; Ziai Y.; Dziedzic K.; Gradys A.; Urbański L.; Zaszczyńska A.; Díaz Lantada A.; Kowalewski Z. Experimental Evaluation Of Build Orientation Effects On The Microstructure, Thermal, Mechanical, And Shape Memory Properties Of Sla 3D-Printed Epoxy Resin. Eur. Polym. J. 2025, 228, 113829–113847. 10.1016/j.eurpolymj.2025.113829. DOI
Mamba’udin A.; Ristyawan M. R.; Ariyadi H. M.; Nugroho G.; Mahardika M.; Norcahyo R.; Triawan F.; Muflikhun M. A.. Defectiveness Of Stereolithography (Sla) 3D Printing Manufacturing Process Using Bio-Based Resin Pla Of Nasopharyngeal Swabs. 2025, pp 020019–02002710.1063/5.0227767. DOI
Chaudhary S.; Avinashi S. K.; Rao J.; Gautam C. Recent Advances In Additive Manufacturing, Applications And Challenges For Dentistry: A Review. ACS Biomater. Sci. Eng. 2023, 9 (7), 3987–4019. 10.1021/acsbiomaterials.2c01561. PubMed DOI
Kumari S.; Mishra R. K.; Parveen S.; Avinashi S. K.; Hussain A.; Kumar S.; Banerjee M.; Rao J.; Kumar R.; Gautam R. K.; Gautam C. Fabrication, Structural, And Enhanced Mechanical Behavior Of Mgo Substituted Pmma Composites For Dental Applications. Sci. Rep. 2024, 14 (1), 2128–2148. 10.1038/s41598-024-52202-4. PubMed DOI PMC
Gallagher J. J.; Hillmyer M. A.; Reineke T. M. Isosorbide-Based Polymethacrylates. ACS Sustainable Chem. Eng. 2015, 3 (4), 662–667. 10.1021/sc5008362. DOI
Nonque F.; Sahut A.; Jacquel N.; Saint-Loup R.; Woisel P.; Potier J. Isosorbide Monoacrylate: A Sustainable Monomer For The Production Of Fully Bio-Based Polyacrylates And Thermosets. Polym. Chem. 2020, 11 (43), 6903–6909. 10.1039/D0PY00957A. DOI
Badía A.; Agirre A.; Barandiaran M. J.; Leiza J. R. Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures Of Isosorbide Methacrylate Monomers. Biomacromolecules 2020, 21 (11), 4522–4531. 10.1021/acs.biomac.0c00474. PubMed DOI
Cho H.-G.; Park S.-Y.; Jegal J.; Song B.-K.; Kim H.-J. Preparation And Characterization Of Acrylic Polymers Based On A Novel Acrylic Monomer Produced From Vegetable Oil. J. Appl. Polym. Sci. 2010, 116 (2), 736–742. 10.1002/app.31467. DOI
Briede S.; Jurinovs M.; Nechausov S.; Platnieks O.; Gaidukovs S. State-Of-The-Art Uv-Assisted 3D Printing Via A Rapid Syringe-Extrusion Approach For Photoactive Vegetable Oil Acrylates Produced In One-Step Synthesis. Mol. Syst. Des. Eng. 2022, 7 (11), 1434–1448. 10.1039/D2ME00085G. DOI